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DYNAMIC MODELING AND PATH PLANNING
OF FLEXIBLE-LINK MANIPULATORS
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In this paper, dynamic modeling and path planning of flexible-link manipulators are presented.
Each link of flexible manipulator is modeled by finite number of elements, and the displacement
of element is formulated based on nodal coordinates and shape functions of beam element.
Then, the kinetic and potential energy of the system is developed using the displacement in the
reference coordinate systems. Then, by employing the Lagrange principle, the nonlinear dynamic
model of the system is derived and validated.
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INTRODUCTION
Flexible-link manipulators exhibit many
advantages over their traditional rigid ones:
they have light weight, their motors are smaller,
and their production is frugal. Because of these
novel features, the application of flexible
manipulators are exceedingly developed
during last decades, and they have been
achieved an important role in many fields of
science such as surgical operation (Kumar
et al., 2000; and Liao et al., 2008), nuclear
application (Jansen et al., 1991; and Perrot
et al., 2003), and aero space structures
(Satoko and Kazuya, 2010; and Zhong, 2011).
Thus, the dynamic modeling and analysis of
such system is important and treated by some
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authors: Book (1999) analyzed the dynamic
behavior of flexible manipulators based on
recursive lagrangian method. Moreover, a
Newton-Euler approach is presented in
Rakhsha and Goldenberg (1985) to model the
dynamic of a flexible robot. Meghdari and
Fahimi (2001) used an analytical method to
decouple the dynamic equations of elastic
manipulators. Furthermore, a lumped model
of a planer flexible manipulator is presented
in Megahed and Hamza (2004). Singh
(Megahed and Hamza, 2004) used an
extended Hamilton’s principle to derive the
equation of motion of the flexible manipulator.
Korayem and Rahimi (2011) and Korayem
et al. (2012 and 2013) presented the dynamic
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modeling of flexible manipulator systems,
based on assumed mode method. In their
method, the flexible behavior of the system is
modeled via eigen functions multiplied by
modal coordinate of the system.

In this paper, the mathematical analysis and
dynamic modeling of flexible manipulator is
presented based on finite element method.
Each link of the system is modeled by finite
number of elements, and the displacement
vector of each point of the robot is formulated
in the reference coordinate by means of finite
formulation of beam element. Then, the kinetic
and potential energies of the system are
presented, and the dynamic model of the
system is derived using Lagrange principle.
Finally, simulation results are presented.

FINITE ELEMENT
FORMULATION FOR
MATHEMATICAL MODEL OF
THE SYSTEM
To present the mathematical and dynamic
model of the flexible manipulators, the system
with m number of links, each link is divided to
ni elements with length of lij. As the total
displacement of each point of the flexible
manipulator can be presented as ijr


. According

to Figure 1, the reference coordinate system
is shown by OXY, and the local coordinate
system attached to ith link is assumed as

iii YXO . The parameters of the flexible
manipulator are shown as follows: ij is jth

element of ith link, ijr


 is displacement vector of
element, 

ior
  is displacement vector of ith joint,

i represents angular displacement of ith joint,
ni is number of elements of ith link, Li is length
of ith link, mi is mass per length of ith link, g is
gravitational constant of earth, lij is length of jth

element of ith link, Ei is elasticity modulus of ith
link, Ii is moment of inertia of ith link, iT0

represents rotation matrix between local and
global coordinate system. Figure 1 shows a
flexible-link manipulator.

To present the total displacement vector of
ijth element of the system in the global
coordinate system, this vector is assumed as
a summation of displacement of Oi, and the
deflection of the link in the local coordinate

iii YXO :

Figure 1: The Flexible Manipulator
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Where yij is the deflection of element due to
flexibility of system in the local coordinates. By
implementation of finite element method, this
displacement is presumed a summation of
Hermitian shape function multiplied to nodal
coordinate of the element (Zienkiewicz et al.,
2005):
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Where k shows the shape function and
kiju 22  are the nodal coordinate of the systems,

and are given as (Zienkiewicz et al., 2005):
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As the displacement vector of element is
formulated, the kinetic energy of the element
is stated as follows:
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If, the vectors
 Tijijijijiij uuuuz 2212212  

  and

 Tijijijijij uuuu 2212212 
  are defined, the

Equation (7) can be rewritten as:
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Beside, the potential energy of the element
is shown as ijV , and is a summation of
gravitational potential energy gijV , and elastic

potential energy eijV :

 
ijeijgij VVV  ...(8)

The gravitational potential energy is given
as:

   ijij
il

iijg dxrgmV 

0

10 ...(9)

And the elastic energy of the system is:
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Where the stiffness matrix Kij is presented
as:
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Now, the generalized coordinate vector is
defined as q , and the total kinetic and potential
energy of the system can be written as:
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Then, the Lagrange function is introduced
as VTqqL ),(  , and the Lagrange’ principle
is developed: The principle of Lagrange for
dynamic systems is expressed as:

j
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 ...(13)

Where qj represents the generalized
coordinates, Qj is the generalized external
force. Thus, by implementation of Lagrange
principle, the nonlinear dynamic equations of
the system are summarized as follows:

   
 BqqfqM  , ...(13)

As in Equation (13) is presented, the
nonlinear dynamic model of the system is
developed, and no linearization is done. Thus,
the nonlinear terms affect the dynamic of the
system.

It must be noticed that for each link of the
flexible manipulator, the first node is coincided
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on the joint of the link. Thus, these nodal
coordinates are zero:

 00 21  )t(u,)t(u ii ...(14)

DYNAMIC MODEL OF A
SINGLE LINK MANIPULATOR
For a single-link flexible manipulator, as the
link modeled by one element, the generalized
coordinate vector of the system is

 431 uuq 
 , where 1 is angular
displacement of the robot joint, u3 and u4 are
the elastic deflection and slope of the end point
of the flexible manipulator. Moreover, the
rotation matrix of the system is:
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And the total displacement of any point of
the robot is:
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So, the kinetic and potential energies of the
single-link flexible manipulator are stated as:

 41
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Thus, the dynamic equation of the system
can be derived, using Lagrange principle.

To simulate the dynamic behavior of the
system, the parameters are given as: m1 = 5
kg, L1 = 1 m, I1 = 5e-9, E = 20e9 pa, g = 9.81.
The simulation results are as follows:

Figure 2: Angular Displacement
of Flexible Manipulator

Figure 3: Displacement Mode Shape
of the Flexible Manipulator

CONCLUSION
In this paper, the nonlinear dynamic analysis
of the flexible manipulators has been studied
using finite element method. The total
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displacement vector of the system has been
formulated using Hermitian shape function.
Hence, the total displacement of the elastic
arm in reference coordinate system has
been presented, the Lagrange principle has
been used to derive the nonlinear dynamic
motion of the elastic manipulator. Finally, the
proposed method has been employed to
derive the dynamic equations of a single-link
manipulator, and some simulations are
done.
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