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ESTIMATING THE ERROR OF FIELD VARIABLE
FOR NUMERICAL APPROXIMATION TECHNIQUES

USING MATLAB
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The various scientific laws, principles are used to develop mathematical models. Often the
differential equations are used to describe the system. But, formulating the differential equations
for most problems is difficult and hence obtaining the solutions by exact methods of analysis is
a formidable task. The present research discusses the issue of the finding the field variable
deviation for quadratic area of one dimensional continuum. The analysis provides the percentage
error in the field variable for the selected trial functions. Approximate method is useful, if it is
integrated with computer for the problem involving a number of complexities without making
drastic assumption which otherwise complicated to attempt by classical methods. A genuine
necessity for obtaining precise solution for the different numerical approximation methods is
overcome by developing in-house computer program. Graphically results can be displayed to
know the effect of considered weights and the constants assumed.
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INTRODUCTION
The model problem considered is of an axially
loaded bar having quadratic function of area.
The unknown variable is the axial displacement
of one dimensional continuum, u(x) is
attempted in the present research by means
of numerical analysis technique where the
basic inputs to a problem are known with
arbitrary basic data. The models are often
described in terms of algebraic, differential
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and integral equation which relates quantities
of interest. Mathematical model is a set of
relationship among variables that are
expressed in essential features of physical
system or the process in analytical terms. As
a result, physical system or process can be
described by means of mathematical model.
The relationship that governs the system may
take the form of algebraic, differential and
integral equations.
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The governing equations and boundary
conditions are useful means to express the
mathematical model. In general, engineering
problems is often needs to be addressed
considering the domain of interest. The
differential equations are employed to illustrate
the physical significance of the system under
the domain of consideration. For such system,
analytical solution can be found out using
differential equation and boundary conditions.
To establish mathematical model it is required
to describe the relationships of primary and
secondary variables. The solution
characteristics can be expressed in the
algebraic form. For the well defined simple
engineering problems, there are standard
known analytical techniques av ailable to find
solution. But, there are many engineering
problems for which exact solution cannot be
easily obtained using analytical techniques.
The failure to obtain an exact solution may be
attributed to either the complex governing
differential equation or the difficulties in dealing
with the boundary and initial conditions. To deal
with such problems, numerical approximation
is best alternative. An approximate technique
may become the effective tool to define the
nature of unknown variable and enable to
determine the solution at discrete points in the
problem domain.

In the present paper the numerical
techniques like Direct Integration, Method of
Weighted Residuals, Ritz Method and FEM
are used to determine the deviation in the field
variable at the selected node position. For this
purpose the one dimensional continuum is
selected as shown in Figure 1. The computer
programming technique is employed to
minimize computational cost and time. The

developed computer program uses MATLAB
tool and developed sets of subroutines and
functions. The programs are intended as a
primary component for generalization to obtain
the results at any position on the continuum.
The applications can be extended for variety
of similar complex problems.

DEVELOPMENT OF
GOVERNING EQUATIONS
Consider an axially loaded 1D bar having
varying area A with one end fixed at x = 0 and
externally applied force F at x = L as shown in
Figure 1. The Free Body Diagram (FBD) is
shown in Figure 2. The axially loaded
continuum considered here has length L = 2 m
and area as exponential function of x given by

A = Ao, L
x

e
 , E = 200 GPa and F = 1 KN.

Figure 1: Axially Loaded 1D Continuum

Figure 2: Free Body Diagram
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Governing equation is developed for 1D
continuum having varying area. The unknown
variable is the axial displacement given by u(x).

From the Free Body Diagram (FBD) and
using equilibrium equation,

  0



 AdxA
x

A  ...(1)

where, A indicates the area which is assumed
to be a continuous function with respect to x.
The Equation (1) becomes,

  0

 A
x

 ...(2)

From Hooke’s Law, within elastic limit,
Stress   Strain,

or x
uE



 ...(3)

where E is the modulus of elasticity of the
system, Substituting  in Equation (2)

The governing equation is,

Lx
x
uEA

x














 0,0 ...(4)

There are two boundary conditions
associated with the problem,

The essential boundary conditions is.

  00 xu ...(5)

and the natural boundary condition,

 
AE
Fx

x
u



 2 ...(6)

where F is the axially applied load

DEVELOPMENT OF ROUTINE
SCRIPT
MATLAB provides interactive platform for
executing numerical computations. The

program code is written in MATLAB 7.10.0
(R 2010a) version. In-house computer
program is developed dif ferent
approximation numerical methods to
determine the solutions to overcome long and
tedious task which otherwise need to be
attempted by hand calculation. The important
steps which are used for writing the program
script are indicated in the block diagram
shown in Figure 3.

Figure 3: Block Diagram Representation
Used for Developing Program

DIRECT INTEGRATION
APPROACH
The direct integration technique is analytical
way of finding exact solution (Pian and Tong,
1969). The result of approximate method is
verified using classical methods, i.e., Direct
Integration method. The technique is used for
obtaining the result and finding the error of field
variable at the discrete points.

Applying boundary condition,   00 xu

Substituting values of F, E and A at x = 2
and applying 2nd boundary condition

Equation (6) becomes

AE
F

dx
du
 ...(7)
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Integrating the governing Equation (4),

EA
c

dx
duc

dx
duEA 1

1 







...(8)

dx
eAE

cdu
L
x

o




 1

...(9)

Again Integrating,

2
1

/1
1 C

EA
ec

L
u

o

L
x




 ...(10)

Now, applying 2nd boundary condition to
Equation (8), i.e., substitute x = 2, the result is
c1 = 1000

Put the value of c1 in Equation (10) at x = 0,

5
2 102 c

Substituting the value of c1 and c2 in
Equation (10), the generalized equation for
displacement is,

  5
49 102

10510200
10010002 







xu ...(11)

The displacement at interval of 0.25 m
increment position from the starting point is

evaluated and depicted in Table 1 and the
graphically results are represented in Figure 4.

Program Code for Direct
Integration Method
The developed program calculate ‘c1’ and ‘c2’,
the constants of the governing differential
equation. The deformation is calculated in
three statements of program. ‘X’ is an array
having different values of distances from fixed
end. The second step call the value of X and
final deformation values are obtained in the
third step.

0.00 0 0 0 0 0 0

0.25 2.66 2.25 2.27 2.49 2.55 2.25

0.50 5.68 5.51 5.11 5.49 5.56 5.51

0.75 9.09 9.04 8.50 9.01 9.12 9.04

1.00 12.97 13.07 12.47 13.05 13.14 13.07

1.25 17.36 17.62 16.99 17.60 17.66 17.62

1.50 22.34 22.67 22.08 22.67 22.68 22.67

1.75 27.90 28.24 27.74 28.25 28.19 28.24

2.00 34.37 34.32 33.95 34.34 34.19 34.32

Table 1: Deformation Results for the Numerical Methods Considered

Methods
Distance

(m)

Direct
Integration

x 10–3

Galerkin
x 10–3

Petrov-
Galerkin

x 10–3

Sub-Domain
x 10–3

Least Square
x 10–3

Ritz
x 10–3

Figure 4: Displacement Plot
for the Considered Continuum
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F=input(‘Enter load acting on body in
“N”:-’);

E=input(‘Enter the value of Youngs modulus
in “GPa”:-’);

E=E*(10^9); % to convert in GPa

A=(0.0005)*(exp(-x/2));% Cross-sectional
Area

x1=input(‘The starting position of
deformation in “m”:-’);

x2=input(‘The ending position of
deformation in “m”:-’);

n=input(‘The number of parts the body is to
be divided:-’);

X=x1:(x2/n):x2; % produces array of
distance from fixed end

a=5*(10^-4);

D=(R/(E*(a*(exp(-1)))));% First differential
of u wrt x

c1=(D*(E*(a*(exp(-1)))));% Constant of
integration 1

c2=-(4*c1*(exp(x1/x2))/(E*(a)*x2));%
Constant of integration 2

k1=(4*(exp(X/x2))*c1)/((E)*x2*5*(10^-4));

ue=k1+c2;% Equation of deformation

APPROXIMATION METHODS
Approximate methods use numerical
technique to obtain the solution from the
governing equations. The present section
discusses the issue of the finding the field
variable deviation for the various positions on
the continuum. The different standard
numerical techniques are applied to these one
dimensional continuum systems to determine
results at different nodes.

Method of Weighted Residuals
The weighted residual methods are based on
the assumption of an approximate solution for
the governing differential equation. The
assumed solution must satisfy the initial and
boundary conditions of the given problem. As
the assumed solution is not exact, substitution
of the trial solution into the differential equation
will lead to some residuals or errors. Each
residual method requires the error to vanish
over some selected intervals or at desired
points called nodes.

The governing equation for the above
considered problem is equal to residual (R)
when, eapproximatuu   where eapproximatu  is a
polynomial function which describes the
solution at the discrete points (Petrolito, 1998).

The governing equation for these methods
is

R
dx

du
EA

dx
d eapproximat 








...(12)

Considering trial approximate solution,

2
210 xaxaauu eapproximat  ...(13)

xaa
dx

du eapproximat
21 2 ...(14)

Applying first B.C. u = 0 at x = 0

00 a

Therefore the Equation (13) becomes

2
210 xaxaauu eapproximat  ...(15)

This function is subsequently used for further
calculation.

The weighted residual methods uses virtual
work principle and the integrals error function
are defined as
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L

i iRdxW
0

,3,2,1,0  ...(16)

 







L

i dx
dx
duEA

dx
dW

0
0

The equation is integrated by parts
























 0x

i
Lx

i dx
duAEW

dx
duAEW

0
0

  dx
dx

dW
dx
duEA

L
i ...(17)

where Wi are the weights, which are different
for each method.

The constants of trial solution a1 and a2 are
calculated by solving Equation (12) for different
weights. The deformation is calculated by
substituting them in Equation (15).

2
21 xaxauu eapproximat 

In the developed program the constants are
‘a1’ and ‘a2’ are declared. The letter ‘x’ is
variable in ‘u’ of trial solution assumed. The
first order differentiation of ‘u’ is calculated as
‘du’. The weights are defined as ‘w1’ and ‘w2’
which will modify as per the methods
considered for analysis. The differentiation of
these weights is calculated as ‘dw1’ and ‘dw2’.
The differential equation ‘f12’ is formulated by
building the equation in terms of ‘f11’. Similarly
the second equation ‘f22’ is formulated and
integrated over the domain. The integration
provides us with two simultaneous equations
‘c1’ and ‘c2’. These equations are solved
simultaneously and their values are saved in
‘a’, which is an array holding the solution. The
constants of trial solution are retrieved from it
and the trial solution is calculated for different
values of ‘X’ , the distance of a point from fixed
end. The common syntax applicable for the

different Method of Weighted Residuals is
depicted below with the appropriate comments
with each statement.

syms x;

A=(0.0005)*(exp(-x/2)); % Cross-sectional
Area

syms a1 a2;

u=(a1*x)+(a2*(x^2));% Trial solution

du=diff(u,x);% First differential of u wrt x

w1= %**% Weight defined by particular
method

dw1=diff(w1,x);% First differential of w1 wrt x

f11=diff((w1*F),x);% Part 1 of differential
eq(1)

f12=(dw1*A*E*du);% Part 2 of differential
eq(1)

c1=int(f11,x,x1,x2)-int(f12,x,x1,x2);% Total
differential eq(1)

w2= %**% Weight defined by particular
method

dw2=diff(w2,x);% First differential of w2 wrt x

f21=diff((w2*F),x);% Part 1 of differential
eq(2)

f22=(dw2*A*E*du);% Part 2 of differential
eq(2)

c2=int(f21,x,x1,x2)-int(f22,x,x1,x2);% Total
differential eq(2)

a=solve(c1,c2,a1,a2); % Solving eq(1) & (2)
simultaneously

aa1=a.a1; % Constant 1 of Trial solution

aa2=a.a2; % Constant 2 of Trial solution

uu=(aa1*X)+(aa2*(X.^2));% Equation of
Trial solution
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The above syntax will remain same only with
the changes in the weight used corresponding
to the method of selection considered for
execution.

Galerkin Method
Galerkin Method is a Weighted Residual
Methods which derives its weight functions
from the trial solution.

Weight function is given by

,3,2,1 i
da

du
W

i

eapproximat
i ...(18)

Therefore

2
2

1
1 and

da
du

W
da

du
W eapproximateapproximat 

Integral of the error function is 0 dxRWi

(Cockburn et al., 2000).

Considering the weight functions as W1 and
W2 and finding the constants, the trial solution
is obtained.

The weights for this method can be
calculated in form of

w 1 _ g a l = d i f f ( u _ g a l , a 1 _ g a l ) ; %
Weight(1)obtained from u

w 2 _ g a l = d i f f ( u _ g a l , a 2 _ g a l ) ; %
Weight(2)obtained from u

The constants are determined and field
equation obtained is,

266 100871.4109158.8 xxu eapproximat
 

Displacements at various points are
determined and represented in Table 1 and
the graphically results are represented in
Figure 4.

Petrov-Galerkin Method
Petrov-Galerkin Method works on similar
approach which uses different pairs of weight
functions such as ,and1,and,and1 22 xxxxWi 

etc.

Considering the weight functions as x2 and
x3 for further calculation.

The weights for this method can be written
in program as

w1_petro_gal=x^2; % First Weight
considered

w2_petro_gal=x^3; % Second Weight
considered

Again the same integral error function is
used which is symbolized as

Integral of the error function is 0 dxRWi

(Cockburn et al., 2000).

The constants are determined and field
equation obtained is,

266 100871.4109158.8 xxu  

Displacements at various points is depicted
in Table 1 and the graphically results are
represented in Figure 4.

Sub-Domain Method
The domain of Figure 1 is divided in two halves
and the analysis is carried out with single
weight function (Mikhlin, 1963).

Considering weight as w = x, 1
dx
dw

The domain is 0 to 2 m which is divided
into two halves from 0 m to 1 m and 1 m to 2
m. The governing Equation (17) used in this
method which is multiplied by considered
weight function. The equation is expressed as
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L

dxRW
0

0 ...(19)

For sub domain 0 to
2
L  and

2
L  to L Equation

(19) gives two equations which when solved
simultaneously provides the constants of trial
solution a1 and a2. Additional variable in term
of x3 = (x2 – x1)/2; is defined to indicate
intermediate limit of integration.

To execute the program following changes
are carried out.

c1=int(f11,x,x1,x2)-int(f12,x,x1,x3); % eq(1)

c2=int(f21,x,x1,x2)-int(f22,x,x3,x2); % eq(2)

The constants are determined and field
equation obtained is,

266 1009.4109 xxu eapproximat
 

Displacements at various points is depicted
in Table 1 and the graphically results are
represented in Figure 4.

Least Square Method
The Least Square Method is a weighted
residual method which derives its weight
functions from the Residual itself. Weight
function is given by

,3,2,1 i
da
dRW

i
i ...(20)

Therefore

2
2

1
1 and

da
dRW

da
dRW 

Weights are multiplied with Residual and
integrated over the domain (Cockburn et al.,
2000).

The weights for this method can be
calculated in form of

res=diff((E*A*du_les),x); % Residual

w1_les=diff((res),a1_les); % Weight(1)
obtained from Residual

w2_les=diff((res),a2_les); % Weight(1)
obtained from Residual

The constants are determined and field
equation obtained is,

66 109497.3101946.9   xu eapproximat

Displacements at various points is depicted
in Table 1 and the graphically results are
represented in Figure 4.

Ritz Method
In continuum mechanics, a system can be
described in terms of an “energy functional”,
which measures the energy of proposed
configuration. It is often impossible to analyze
all of the infinite configurations of system with
the least amount of energy; an approximate
numerical computation is essential (Mikhlin,
1963). Ritz method is applied to the above
discussed static equilibrium problem. The trial
functions selected above is substituted in to
the functional. The  is equal to summation of
strain energy and applied work potential.

Functional governing equation is

  






 

L

Lx FUdx
dx
duAE

0
2

2

2
1

 ...(21)

Now differentiate Equation (21) with
constants of trial function a1 and a2,

0
1




a


...(22)

and

0
2




a


...(23)
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Solving simultaneous Equations (22 and
23) the constants are determined and field
equation obtained is,

265 10111.110534.1 xxu eapproximat
 

Displacements at various points is depicted
in Table 1 and the graphically results are
represented in Figure 4.

Program Code for Ritz Method
The program calculates the deformation using
Ritz method. The approaches are similar to
MWR. The variables which are required to
define formulated for the trial solution are
selected. The  function is calculated by
evaluating ‘p1’, ‘p2’ and ‘ulr’. Two equations
are formed by differentiating the ‘pi’ function
with respect to the constants of trial solution.
The simultaneous equation is solved to
calculate the value of ‘a1’ and ‘a2’.

syms x a1 a2

u=(a1*x)+(a2*(x^2));% Trial solution

du=diff(u,x);% First differential of u wrt x

p1=(0.5*E*A*(du^2));% Part 1 of Pi inside
function

ulr=((a1*x2)+(a2*(x2^2)))*R;% Part 2 of Pi
function

p2=int(p1,x,x1,x2);% Part 1 of Pi final
function

pi=p2-ulr;% Total Pi function

d1pi=diff(pi,a1);% First differential of pi wrt
a1 eq(1)

d2pi=diff(pi,a2);% First differential of pi wrt
a2 eq(2)

a=solve(d1pi,d2pi,a1,a2);% Solving eq(1)
& eq(2) simulteneosly

a1=a.a1;% Constant 1 of Trial solution

a2=a.a2;% Constant 2 of Trial solution

uu=(a1*X)+(a2*(X.^2));% Equation of Trial
solution

Executing the program the displacements
at various points is depicted in Table 1 and
the graphically results are represented in
Figure 4.

Above Table 1 indicates the comparison of
results between different method. Out of which
we can conclude “Lest Square Method” to be
more accurate on observing the above table
we come to know that the result of first two field
variable are more precise while there is more
deviation of the result in the intermediate
phase, mean while the result of “Galerkin
Method” are accurate but for few field variables
and again for the extreme phase we get
precise result for “Lest Square Method”.

The percentage error is calculated with
respect to direct integration method and it is
represented in Table 2.

Table 2: Percentage Error in Deformations

0.25 0.15410 0.14662 0.06391 0.04135 0.1541

0.5 0.02990 0.10035 0.03345 0.02110 0.0299

0.75 0.00550 0.06491 0.00880 –0.00300 0.0055

1 –0.00770 0.03800 –0.00610 –0.01300 –0.0070

1.25 –0.01498 0.02130 –0.01380 –0.01700 –0.0140

1.5 –0.01480 0.01100 –0.01470 –0.01500 –0.0140

1.75 –0.01220 0.00500 –0.01250 –0.01000 –0.0120
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CONCLUSION
The issue of selecting the numerical methods
to obtain the approximate solution for the
system is addressed with different numerical
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approximation methods. The weighted
residual methods explicitly include the errors
in the field variable which is found out using
the developed program. Fine variation in the
field variable is possible with the developed
program by using the desired steps of
increments. The best convergence is found out
by executing these numerical techniques to
select the appropriate regions of operations.
The smooth convergence close to the exact
solution is essential for a best possible
selection of trial solution which is possible with
the developed program. Selection of trial
function can be forecasted based on the
results of field variable error percentage. The
computer programming technique is employed
to minimize computational cost and time.
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