Handling of raw material, semi finished, finished product and other material is ever concern and cost in an industry. With increasing cost of labour and its scare city the manual work or operation in industries are now replaced by semiautomatic or automatic system. These low cost systems are not only cost efficient but also enhance productivity and address the issues related to labour problem. Conventionally in micro or small scale industries which are labour intrinsic transportation of raw material, semi finished product is always an expensive and problematic issue. After visiting Waghmare food products, Nagpur and after discussion with the concern the shifting of raw material from store to the work place was a costly labour activity. Presently it is done manually. The industry was interested to identifying some optional material handling system to encounter their problems. After carefully survey of factory layout, discussing with management, concern exhaustively literature search it was preferred to design and develop a overhead monorail for handling of raw material. The main aims to design cost efficient, overhead monorail material handling system.

Keywords: Overhead monorail, Dead load factor, Operating wind load, Hoist load factor

INTRODUCTION

The purpose of this is to present a basic concept for the design of a single girder monorail system for bottom-running manually-driven. The concept and procedures were presented in a matter that it is useful for designing perfect monorail for waghmare industry with minimum capital investment and to obtain maximum output in term of money, time and quantity.

Basic principles of selecting material handling system

- Direction of load travel.
- Length of load travel.
- Properties and characteristics of the material being handled.
• The rate of flow of material.
• Kind of the production process.
• Method of loading and unloading.
• Existing layout and conditions of the workspace.
• Initial and operational costs
 Some important material handling systems
 • Monorail conveyor
 • Belt Conveyor
 • Screw Conveyor
 • Deep Pan Conveyor
 • Drag Chain Conveyor
 • Flexowell Conveyor
 • Rope way Trolley
 • Skip Charging System

 Overhead monorails are primarily used to lift large or heavy items and move them horizontally. Monorails can be driven manually or powered. Power-operated overhead monorails systems are typically powered by air, hydraulics, or electricity. Overhead material handling systems can be supported on single or multiple girders and can be top-running or bottom-running. Bottom-running systems travel along the bottom flange of the supporting beam and are typically associated with monorails and bridge cranes. Multiple girders and top-running systems are typically not associated with monorails but rather with overhead or gantry bridge cranes. This course covers the basic design of a monorail with a bottom-running manually driven on a single beam.

SELECTION OF CONVEYOR COMPONENTS

This subject is dealt with exhaustively in trade literature, and it is only proposed to mention the main points to be consider briefly.

It is then necessary to decide on the load, speed, idler type and structure in order to establish the basic parameters of the conveyor design.

I-Beam Track

The I beam Track must support the entire load carried by the conveyor and the lower flange of the I beam must be withstand the wear cause by the wheel.

![Figure 1: Cross Section of Beam Track](image)

Chain

To determine the proper size of the chain you need toanalyse total pull in the system and required number of drives. 1-beam Chain is drop forged and heat treated for added strength and resistance to corrosive to abrasive to weight reaction.
I-Beam Trolley
The I-Beam trolley is designed to use with the 3" to 4" I-Beam track. It is an important element of a system which pulls the entire load, hence it should withstand heavy stress and load factors.

I-Attachment
The "I" attachment is used with intermediate trolleys that do not carry any load. "I" attachment is used where loaded trolley exceeds the maximum 36" for 3" I-Beam and 32" for 4" I-Beam.

Clevis “H” Attachment
The standard clevis H attachment is commonly used with trolley attachment. The H attachment is used with both the 3" and 4" trolley. It consists of two pieces of formed steel which fit between the trolley halves.
Rollerbank Turn
The rollerbank turn is used for carrying an overhead I-Beam Conveyor chain around the a horizontal curve.

Connections
Bolted and/or welded connections can be used on a monorail. The type of connection may be driven by the owner's specification, costs, and constructability. The CMAA code provides guidance for the fatigue check of a welded connection. For bolted connections, AISC is ASD and LRFD list bolt capacities for strength checks. For fatigue of bolted connections.

Deflection Limitation
The most common shape utilized for the design of monorails with under hung hoists is the S-shape. The S-shape sections have narrow flange widths but also thicker flanges compared to equivalent W-shape sections. Monorails can also be designed using W-shape sections; however, the local bending of the bottom flange due to the wheel loads governs the design of the beam more often.

ASTM A36 ($F_y = 36$ ksi) is the most common material readily available for S-shape sections. ASTM A992 ($F_y = 50$ ksi) is now more common for W-shape sections. Recently, ASTM revised the A992 specification to include shapes other than W-shape; however, S-shapes are not yet readily available in A992.

The loads as defined by the CMAA specification are as follows:
The monorail beam should also be designed for in-line (axial) and out-of-plane (lateral) loading. AISC ASD states that a minimum of 10% of the load shall be applied in-line or longitudinally and a minimum of 20% of the load shall be applied normal to or perpendicular to the beam. The load used in the calculations should be based on the lift load and the trolley weight with all load factors applied. Torsional moment caused by the out-of-plane loading should also be accounted for in the design. The moment is determined by multiplying the lateral load by the vertical distance between the beam’s shear center and the centerline of the load. The load is generally assumed to be applied at the bottom flange for bottom-running trolleys; therefore, for a standard S-beam or I-beam, the distance is one-half (1/2) the beam depth. To determine the torsional stress on the beam, AISC’s Steel Design Guide Series 9: Torsional Analysis of Structure Steel Members can be referenced. The stresses are determined using the section modulus of one flange only.

Load Factors

Load factors are used to account for such items as impact and dynamic lift situations, or to account for unknowns. The load factors discussed below are as defined by the CMAA code; however, these factors can be adjusted to account for the specific design situation being investigated.

Dead Load (DL): The weight of the monorail beam and any other fixed item supported by the beam.

Trolley Load (TL): The weight of the trolley and any other equipment attached to the trolley.

Lifted Load (LL): The weight of the item lifted along with all associated lift devices such as slings, shackles, spreader beams, etc.

Collision Forces (CF): Loading resulting from the collision with another trolley or bumper stop. The velocity and mass of the objects are required to determine the kinetic energy released during the collision.

Inertia Forces from Drives (IFD): Forces occurring during the acceleration, deceleration, and motions of the monorail.

Operating Wind Load (WLO): The loading on the projected area exposed to the wind. The wind velocity at which a safe lift should be used as specified by the owner/specifier. The code states that a minimum of 5 psf loading should be used if no information is provided.

Stored Wind Load (WLS): The maximum wind applied to the monorail when the system is not in use.

Forces Due to Skewing (SK): Horizontal forces normal to the beam when wheels roll along the length of the beam. A table provided in the code is used to determine a factor to be applied to the wheel loads.

Dead Load Factor (DLF): This factor covers the dead loads of the trolley hoist and any associated equipment. The factor is based on the travel speed of the trolley and is determined using Equation

\[
DLF = 1.01 < 1.05 + \left(\frac{Travel\ Speed}{2000} \right) < 1.20 \quad \text{(1)}
\]

where \(Travel\ Speed \) is in feet per minute (fpm).

For a powered trolley, the minimum dead load factor is 1.10. For a trolley that is manually-driven, the travel speed is relatively...
low so Equation (1) is not required. A factor of 1.05 to 1.10 should be utilized to account for some unknowns such as mill and weld tolerance.

Note that the Dead Load Factor (DLF) accounts for the dead load of the beam (DL), trolley and associated equipment (TL), while the term Dead Load (DL) introduced in the previous section only refers to the dead load of the beam. It is important to note this distinction since the nomenclature can be somewhat confusing.

Hoist Load Factor (HLF): This factor accounts for the motion of the rated load in the vertical direction. The factor also accounts for inertia and mass forces due to sudden impact load during lifting. The factor is also a catch-all accounting for all other uncertainties. The HLF factor is determined using Equation (2).

\[
HLF = 1.15 < 1 + 0.55 \times \text{Hoist Speed} < 1.50 \tag{2}
\]

where Hoist Speed is in feet per minute (fpm). For manually-driven trolleys, the load is typically hoisted without the use of power thereby the hoist speed is relatively low. Therefore, Equation (2) may be ignored and a minimum factor of 1.10 to 1.15 can be used.

Load Combinations

The CMAA specification requires that combined stresses be checked for three different stress levels. The three (3) load combinations requiring evaluation are:

Case 1: Monorail in regular use under principle loading (Stress Level 1).

\[(DL \times DLF) + (TL \times DLF) + (LL \times HLF) + IFD \] ...(3)

Case 2: Monorail in regular use under principle loading additional loading (Stress Level 2).

\[(DL \times DLF) + (TL \times DLF) + (LL \times HLF) + IFD + WLO + SK \] ...(4)

Case 3: Monorail under extraordinary loading (Stress Level 3). There are two conditions evaluated for this case. Monorail not in use and Stored Wind Load

\[DL + TL + WLS \] ...(5)

CONCLUSION

After brief study and experimentation we concluded that Overhead monorail conveyor is best suitable conveyor for the Industry as per economical, maintenance, space availability point of view.

BIBLIOGRAPHY

5. Material Handling Industry of America (Mhia).