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Turning is one of the most widely used metal cutting processes. The increasing importance of
turning operation is gaining new dimensions in the present industrial age in which the growing
competition calls for all the efforts to be directed towards the economical manufacture of
machined parts as well as surface finish is one of the most critical quality measure in mechanical
products. In present work, a non linear regression analysis is adopted to establish a prediction
model for surface roughness which may help to optimize machining process. Once the process
parameters viz., cutting speed, feed, depth of cut, Nose Radius are given, the surface roughness
can be found out experimentally following which a comparative study are made to analyze the
deviation in surface roughness values from prediction model. The work piece material is EN8
which is machined by carbide inserted tool. All the experimental works have been conducted on
CNC lathe. The experiments are carried out by using design of experiment. Finally the contributions
are summarized in tabular form and may be used as an indicative of quality measure of machined
parts.
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INTRODUCTION
Todays manufacturing industries are very much
concerned about the quality of their products.
They are focused on producing high quality
products in time at minimum cost. Surface
Roughness (finish) is one of the crucial
performance parameters that have to be
controlled within suitable limits for a particular
process. Therefore, prediction or monitoring
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of the surface roughness of machined
components has been an important area of
research. Surface roughness is harder to
attain and track than physical dimensions are,
because relatively many factors affect surface
roughness. Some of these factors can be
controlled and some cannot. Controllable
process parameters include feed, cutting
speed, tool geometry, nose radius and tool
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setup. Other factors, such as tool, work piece
and machine vibration, tool wear and
degradation, and work piece and tool material
variability can not be controlled as easily.
Surface roughness also affects several
functional attributes of parts, such as contact
causing surface friction, wearing, light
reflection, heat transmission, ability of
distributing and holding a lubricant, coating or
resisting fatigue. Therefore the desired finish
surface is usually specif ied and the
appropriate are selected to reach the required
quality. Several works have been reported in
the broad field of tool condition monitoring.
Researchers are trying to develop a robust and
accurate model that can find a correlation
between the cutting parameters and the
surface roughness of the machined products.
The purpose of developing the non linear
regression model relating the machining
responses and their machining factors is to
facilitate the optimization of the machining
process. Using this regression model, the
objective function and process constraints are
formulated, and the optimization problem has
been solved by using regression approach.

MATERIALS AND METHODS

Design of Experiment (DOE)

It is a structured, organized method that is used
to determine the relationship between the
different factors (Xs) affecting a process and
the output of that process (Y) as well as to
understand the impact of specific changes to
the inputs of the process, and then to maximize,
minimize or normalize the outcome by
manipulating the input. The DOE process is
divided into three main phases, which
encompasses all experimental approaches.

These three phases are: 1) The Planning
Phase, 2) The Conducting Phase, 3) The
analyzing phase. The planning phase is when
factors and levels are selected and, therefore
the most important stage of experimentation.
Also the correct selection factors and levels is
non statistical in nature and more dependent
upon product or process expertise. The
second most important phase is the
conducting phase, when the test results are
actually collected. If experiments are well
planned and conducted, the analysis is actually
much easier and more likely to yield positive
information about factors and levels. The
analysis phase is when the positive or negative
information concerning the selected factors
and levels is generated based on the previous
two phases. This phase is statistical in nature.
The major steps to complete an effective
designed experiment are listed in the following
12 steps. The planning phase includes steps
1 through 9, the conducting step 10, and the
analysis phase include steps 11 and 12. The
following phases are 1) Stating the problem(s)
or areas(s) of concern. 2) Stating the
objective(s) of the experiment. 3) Stating the
quality characteristic(s) and measurement
system(s). 4) Select the factors that may
influence. 5) The selected quality
characteristics. 6) Identify control and noise
factors. 7) Select levels of factor. 8) Select the
appropriate Orthogonal Array (OA) or Ors. 9)
Select interactions that may influence the
selected quality characteristics or go back to
step 4 (iterative steps) and assign factors to
OA(s) and locate interactions. 10) Conduct
tests described by trials in OAs. 11) Analyze
and interpret results of the experimental trials.
12) Conduct confirmation experiment.
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Specifications of Surface
Roughness Measuring Instrument

Make: Taylor/Hobson (Supplied from England),
Traverse Unit: Traverse Speed: 1mm/Sec
Measurement: Metric/Inch Preset by DIP-
Switch Parameters: Ra, Rq, Rz (DIN), Ry and
Sm.

Specification of EN8 Material

Chemical composition C-0.40%, Si-0.25%,
Mn-0.80%, S-0.05% max., P-0.05% max.
Mechanical properties: Normalized and
Tempered, Tensile Strength (tons/sq.in) – 35
(min)/40 (min), Yield Strength (tons/sq.in.) – 18
(min)/28 (min), Elongation % – 20/22, Izod
Impact Value (Ft-lb) – 25 (min), Weld ability-
Poor (Figure 1).

Cutting Tool Material

The tool used was cemented carbide insert
type. The geometry of tool is: Rake angle 6°
(+ve), 5° (+ve) clearance angle, 60° (+ve)
major cutting edge angle, 60° (+ve) included
angle and 0° cutting edge inclination angle.

In the above process parameters matrix
keeping one parameter constant chosen

arbitrarily, remaining three parameters have
been varied in the consecutive step turning
process of the work piece to tabulate surface
roughness values which has been shown in
Table 2. Although parameter values have been
chosen arbitrarily. This matrix pattern has been
adopted to ease strong interaction among
parameters to vary roughness values in the
vicinity of the average value as well as to asses
and predict roughness quality if occurred any
change in parameter or deviation in parameter
value during machining operation to an extent.

THEORY
In statistics, nonlinear regression is the
problem of inference for a model

y = f(x,) + ...(1)

Based on multidimensional x, y data, where
f is some nonlinear function with respect to
unknown parameters  and  random variable.
At a minimum, we may like to obtain the
parameter values associated with the best
fitting curve (usually, least squares). Also,
statistical inference may be needed, such as
confidence intervals for parameters, or a test
of whether of not the fitted model agrees well
with the data. The nonlinear regression is
clarified by considering the case of polynomial
regression, which actually is best not treated
as a case of nonlinear regression. When f
takes a form such as:

Figure 1: Experimental Setup for Turning
a Nine Stepped Cylindrical Work Piece
of EN8 Material on CNC Lathe Machine

R.P.M of Work Piece 400 600 800

Depth of Cut (mm) (d) 0.7 1.6 2.0

Feed (mm/rev.) (ƒ) 0.1 0.2 0.3

Nose Radius (mm) (NR) 0.4 0.8 1.2

Table 1: Process Parameters

LevelsProcess Parameters
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F(x) = ax2 + bx + c ...(2)

Our function f is nonlinear as a function of x
but it is linear as a function of unknown
parameters a, b, and c. The latter is the sense
of “linear” in the context of statistical regression
modeling. The appropriate computational
procedures for polynomial regression are
procedures of (multiple) linear regression with
two predictor variables x and x2 say. However,
on occasion it is suggested that nonlinear
regression is needed for fitting polynomials.
Practical consequences of the
misunderstanding include that a nonlinear
optimization procedure may be used when the
solution is actually available in closed form.
Also, capabilities for linear regression are
likely to be more comprehensive in some
software than capabilities related to nonlinear
regression.

The linear mathematical expression for
surface roughness commonly used is
represented by:

Y = (V, f, d, NR) ...(3)

where Y is the machining response,  is the
response function, V, f, d, NR are machining
variables, i.e., Cutting speed, Feed, Depth of
cut and Nose radius. When expressed in the
non-linear form the above equation becomes

Y = CVn1 f n2 dn3 NRn4 ...(4)

The surface roughness equation may be
formulated as:

Ra = CVn1 f n2 dn3 NRn4 ...(5)

Now logarithm taken on both sides of the
above equation

logRa = logC + n1logV + n2logf + n3logd

+ n4logNR ...(6)

Using the above mathematical expression,
the objective function and process constraints
are formulated, and the optimization problem
then solved by using non linear regression
approach is as shown in Figure 2.

Figure 2: Flow Chart for Processing Non-
Linear Model in Regression Analysis

The following factors are used in the present
analysis:

Regression sum of squares:
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Total sum of squares: Total variability in the
observations of data

SS
T
 = SS

R
 + SS

Res
...(9)

Predictor variables

k = SS
R
/ 2 ...(10)

This has the same number of degree of
freedom as number of regressor or predictor
variables in the model where  2 = variance
and Regression mean squares

k

SS
MS R

R  ...(11)

Residual mean squares

pn

SS
MS Res

Res 
 ...(12)

where p = k + 1 = parameter in the regression
model and n = number of observations

Test of statistic:

Res

R

MS

MS
F  ...(13)

Coefficient of determination:

T

Res

T

R2

SS

SS
1

SS

SS
R  ...(14)

Adjusted coefficient of determination:

 
 1n/SS

pn/SS
1RAdjusted

T

Res2




 ...(15)

Standard error of regression:

ResMSSE  ...(16)

RESULTS AND DISCUSSION
The work piece consists of 9 steps, total
measurements taken: 9 Ra (µm)

MINITAB Software Aided
Regression Analysis
The regression equation is

logRa = 2.15 – 0.662 logV + 0.427 logf

– 0.504 logd – 0.102 logNR
...(17)

S = 0.2008; R-Sq = 39.8%; R-Sq (Adj.) =
36.6%

Where R denotes an observation with a
large standardized residual.

Where DF denotes degree of freedom of
regression and residual error.

The data of analysis of variance of the
roughness model shown in the surface
roughness model is developed as:

32.06 400 39.04 0.2 0.7 0.4 10.32

32.03 600 62.27 0.2 0.7 0.4 9.16

32.11 800 88.25 0.2 0.7 0.4 8.86

30.12 400 46.63 0.1 0.7 0.4 9.72

30.05 600 73.62 0.1 0.7 0.4 9.04

28.97 800 102.98 0.1 0.7 0.4 11.86

28.67 400 54.04 0.3 0.7 0.4 13.02

28.05 600 84.93 0.3 0.7 0.4 9.44

26.03 800 118.21 0.3 0.7 0.4 12.02

Table 2: Experimentally Obtained Surface Roughness Values

Step Diameter
(mm)

RPM
Cutting Speed

(m/min.)
Feed (mm/Rev)

Depth of Cut
(mm)

Nose Radius
(mm)

Ra (µm)
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Predictor Coef. SE Coef. T P

Constant 2.1451 0.2971 7.22 0.000

log V –0.6623 0.1486 –4.46 0.000

log f 0.4267 0.1134 3.76 0.000

log d –0.5037 0.1156 –4.36 0.000

log NR –0.1017 0.1127 –0.90 0.370

Table 3: Predictor-Coefficient Relationship

Source DF SS MS F P

Regression 4 2.02407 0.50602 12.55 0.000

Residual Error 76 3.06404 0.04032 – –

Total 80 5.08811 – – –

Source DF Seq SS – – –

log V 1 0.65624 – – –

log f 1 0.57009 – – –

log d 1 0.76489 – – –

log NR 1 0.03285 – – –

Table 4: Analysis of Variance

Observation log V log Ra Fit SE Fit Residual St. Residual

1 1.59 0.6300 0.9097 0.0617 –0.2797 –1.46

2 1.79 0.7900 0.7772 0.0490 0.0128 0.07

3 1.95 0.6900 0.6713 0.0505 0.0187 0.10

4 1.67 0.5700 0.7287 0.0607 –0.1587 –0.83

5 1.87 0.6100 0.5962 0.0567 0.0138 0.07

6 2.01 0.5900 0.5035 0.0628 0.0865 0.45

7 1.73 0.9600 0.8938 0.0576 0.0662 0.34

8 1.93 0.8100 0.7613 0.0549 0.0487 0.25

9 2.07 0.7800 0.6686 0.0621 0.1114 0.58

Table 5: log Ra vs. log V Relationship and Fit-Residual Observations

400 38.86 0.2 1.6 0.4 10.32 8.39

600 61.93 0.2 1.6 0.4 9.16 7.96

800 87.55 0.2 1.6 0.4 8.86 6.15

400 46.24 0.1 1.6 0.4 9.72 7.58

Table 6: Comparison of Actual and Calculated Surface Roughness Values

RPM
Cutting Speed

(m/min)
Feed (mm/

Rev)
Depth of
Cut (mm)

Nose Radius
(mm)

Actual Ra
(m)

Calculated Ra
(m)
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logRa = 139.669 – 0.6623 logV

+ 0.4267 logf – 0.5037 logd

– 0.1017 logNR ...(18)

The surface roughness equation formulated
from the above model is:

Ra = 139.669 V–0.6623 f0.4267 d–0.5037 NR –0.1017

...(19)

The R-square value of 38.9% indicated the
variability in the surface roughness was
explained by the model with factors V, f and d.
based on the mathematical model, it can be
concluded that the cutting speed is a dominant
factor in the roughness model of finish turning
in heavy machining operation.

The experimental results obtained from
surface roughness values have been analyzed.
The data for cutting speed, feed, depth of cut
and surface roughness are recorded and
analyzed (software aided) in terms of obtaining
confidence or prediction interval of a
regression line. Two curves (Figure 3)
surrounding the best-fit line define either the
95% confidence interval or 95% prediction
interval of the regression line. The dashed lines
(Figure 4) demarcate the confidence interval
are curved. This does not mean that the
confidence interval includes the possibility of
curves as well as straight lines. Rather, the

curved lines are the boundaries of all possible
straight lines. The Figure 5 shows four possible
linear regression lines (solid) that lie within the
confidence interval (dashed). Given the

600 73.09 0.1 1.6 0.4 9.04 6.64

800 102.43 0.1 1.6 0.4 11.86 8.11

400 53.85 0.3 1.6 0.4 13.02 9.16

600 84.38 0.3 1.6 0.4 9.44 5.84

800 117.49 0.3 1.6 0.4 12.02 8.08

Table 6 (Cont.)

RPM
Cutting Speed

(m/min)
Feed (mm/

Rev)
Depth of
Cut (mm)

Nose Radius
(mm)

Actual Ra
(m)

Calculated Ra
(m)

Figure 3: Prediction Intervals

Figure 4: Confidence Graph
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assumptions of linear regression, we can be
95% confident that the two curved confidence
bands enclose the true best-fit linear
regression line, leaving a 5% chance that the
true line is outside those boundaries. Many
data points will be outside the 95% confidence
interval boundary. The confidence interval is
95% sure to contain the best-fit regression line.
This is not the same as saying it will contain
95% of the data points. The 95% prediction
interval is the area in which you expect 95% of
all data points to fall. In contrast, the 95%
confidence interval is the area that has a 95%
chance of containing the true regression line.
This graph shows both prediction and
confidence intervals (the curves defining the
prediction intervals are further from the
regression line).

CONCLUSION
This research manuscript mainly has
developed a methodology for the prediction
of surface roughness in turning operation using
non linear regression analysis. A good number
of experiments have been conducted on EN8
work-piece material using carbide cutting tool
by Design of Experiment (DOE). Strong
interactions have been established among the

machining parameters for optimization a
selected set of parameters/or optimization
techniques as well as showing the effect of
surface roughness with design parameters.
The predicted surface roughness from the
present non linear regression analysis model
is very close to the roughness values from
machined surface measured experimentally,
thus showing the efficacy of regression
analysis for predicting surface roughness
during turning operation with machining
parameters.
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