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Abstract— Grasping an unstructured object and setting the 

required air pressure is a significant problem for a soft 

robotic gripper. However, most extant Soft Robotic 

Grippers struggle to create this function automatically and 

efficiently. This article develops a new approach to an 

automated control method for a gripper using the NI Vision 

Builder Automated Inspection (VBAI) to create an 

intelligent robotic gripper based on the LabVIEW program. 

Machine vision and object classification methods were used 

in this experiment to get information about each object to be 

gripped. This system has collaborated between 

measurement and gripping tasks in real-time. Using the 

state diagram design, detecting and classifying objects at the 

point of placement found that the state diagram can detect 

and categorize all measured things precisely according to 

their actual size with an accuracy of ±0.5 millimeters. 

Furthermore, from the data obtained by utilizing the NI 

Distributed system manager feature to transmit data in real-

time into the gripper control program, it was found that the 

gripper can grip perfectly with the automation system that 

has been built.  

 

Index Terms— autonomous assembly, machine vision, soft 

robotic gripper, object detection, automated inspection 

 

I. INTRODUCTION 

A thing that is the most concern of a gripper is 

grasping. Grasping is becoming one of the Robot's most 

essential tasks, enabling many applications ranging from 

industries to residences [1]–[4]. Despite tremendous 

advances in robotic grasping development over the last 

few decades [5]–[8], Grasping objects with complex 

shapes and adjusting the ability of the gripper remains 

challenging and requires a different gripper [9]–[11]. 

However, it is theoretically significant and practical in 

solving the abovementioned problems. On the one hand, 

an adaptive grip is necessary [12]–[15]. While holding 

conventional things in a controlled environment is not 

difficult, achieving an adaptive grip for the most typical 

scenarios in everyday life, such as dealing with free-form 

objects in an unstructured environment, is well worth the 

effort. Controlling the contact force between the gripper 

and the object, on the other hand, is critical [4], [11], 

[16]–[19]. This is due to the fact that excessive force can 
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damage objects, particularly those that are brittle or soft. 

Insufficient strength, on the other hand, might weaken 

stability and lead to mission failure. Grip strength 

estimation and control can increase grasping performance 

dramatically. 

Robot behavior in industrial robot gripper systems will 

necessitate high speed, precision, and accuracy [20]. 

These three things are dependent on various factors, 

including the Robot's programming, the sequence of work, 

the Robot's firm grip, and sensors that can detect what the 

Robot needs to act with precision [21], [22] . However, in 

the soft robotic gripper industry, the operation of robots 

for specific task needs is still being developed in the 

process of use. Therefore, the challenge in this paper is to 

make a soft robotic gripper capable of different gripping 

objects and controlling the appropriate pressure. 

Automatic control is one of the challenges because there 

are systems that work with each other in the robotics 

system and are expected to have a fast response [23]. 

This paper proposes a new system to regulate a soft 

robotic gripper to perform tasks automatically. The main 

task performed on this gripper is to grip different objects 

with a camera for vision tasks mounted on a workbench 

[24], [25]. It must be compensated for the position 

between the robot grip, the center point on the point 

calibration plate, the image marker point, and the center 

of the detected and classified objects. The program 

settings used are National Instruments Vision Builder 

Automated Inspection (NI VBAI), Vision Builder AI 

Vision Builder AI is an application software that rapidly 

develop and deploy machine vision inspection systems. 

This system is configured with the LabVIEW program 

for the control system so that the gripper can work in 

real-time, precisely, and quickly. 

II. OVERVIEW SYSTEM IN MACHINE VISION 

Machine vision is one of the fast-growing branches of 

Artificial Intelligence. With machine vision, machines 

can have the ability to see like humans, capture and 

identify images, and make decisions. Thanks to 

technologies such as Fuzzy Logic, Neural Networks, and 

Deep Learning, the gap between human vision and 

machine vision is getting smaller [26], [27]. Based on 

such research conducted to measure the soft pneumatic 
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ability, an image sensor was combined with a computer 

vision algorithm to evaluate the angle results in soft 

pneumatics correctly. 

Angle shooting and calculation are the two main 

aspects of an angle detection program. The term 

"shooting" refers to the process of using a camera to 

capture the current image. After the image is 

preprocessed, the nanosatellites angle calculation 

algorithm is used to calculate the current angle. Instead of 

running on the Raspberry Pi, the program runs on the 

computer to speed up the process. The demonstration by 

Xiran Zhang [28] shows a visible result of soft 

pneumatics angle.   

The angular recognition program is written in Python 3 

with the Open Source Computer Vision (OpenCV) library. 

The current method separates the three circles above, 

middle, and bottom of the finger to aid identification. 

When the algorithm detects the boundary of three circles, 

it calculates the circle's center of gravity and calculates 

three points. The current angle is determined using the 

finite circle of three-point fixation and the central angle 

corresponding to the arc produced by the three points. 

Convert to Grayscale, Image Smoothing, Image 

Thresholding, Canny Edge Detection, Contour Detection, 

and Calculation are six critical phases in image 

processing. To continue the process, the algorithm must 

convert the color image to grayscale after capturing it 

from the camera. After smoothing and thresholding the 

image, the algorithm will detect edges using the Canny 

Edge Detection function. Finally, the angle will be 

calculated using the boundary points stored by the reverse 

detection algorithm. Camera resolution and edge 

detection accuracy are the essential factors in determining 

the accuracy of a limited angle reading. Angle detection 

can be affected by the environment and lighting during 

the experiment, so filters are included in the algorithm to 

limit this effect. 

In order to measure in this study, an approach using 

machine vision based on the Laboratory Virtual 

Instrumentation Engineering Workbench (LabVIEW) 

program available in the NI Vision Builder Automated 

Inspection has been proposed. Object measurement can 

be done more quickly and precisely using this system. In 

addition, it is possible to configure the camera using 

menu-based development tools, customize image 

processing of hundreds of algorithms and inspection steps, 

interface with automation hardware, and generate 

inspection results. 

III. BLOCK DIAGRAM 

Fig. 1 shows that the whole system process starts from 

the camera hardware and is continued by several other 

software until finally, at the gripper end, the control is 

automatically controlled by the system. The block 

diagram presented shows that the system being 

implemented is linear and loops continuously to achieve 

the goal of grasping. In addition, the system will 

automatically update the signal in real-time. 

 

Figure 1.  Block diagram of system control on the gripper. 

This paper aims to automate the gripper soft robotic 

gripper process so that the gripper can grip objects of 

various shapes and sizes. The hardware used in this 

system are camera, Personal Computer (PC), NI myRIO, 

and gripper. Figure 1 shows a camera connected to a PC 

that will be used as an image capture process for initial 

processing in the NI Vision builder automatic inspection 

(NI VBAI) application. In this application, real-time 

image processing will be carried out by utilizing this 

automatic capability. The resulting image is converted 

into data with shapes and sizes, then sent through the NI 

Distributed system manager to be distributed to the 

control system managed by NI myRIO. The following NI 

myRIO hardware has been integrated with an electro-

pneumatic regulator valve that can control the air 

pressure that is passed so that it can be used as input from 

the gripper. Eventually the Gripper can grip objects of a 

calibrated size and shape. 

IV. FLOW CHART 

 

 

Figure 2.  Flow diagram of the soft robotic gripper control. 

The experiment was divided into three central systems, 

which were processed by two different software. As 

shown in Fig. 2, the processes conducted are object 

identification, Image Processing, and Control Soft 

Image Processing 

 

Control Soft Gripper 

 

YES 

NO 

YES 

YES 

N
O

 

 

Open Camera 

detection 

Start 

 

Obtain image 

infomation 

Identification the 

corresponding tag of 

target 

Recognize 

Produce the  

measured pose 

Initialization Color plane  

extraction 

Pattern matching 

Set coordinate 

system 

Target size 

determination  

Send variable  

to network system 

Receive 

Data 

PID Control 

Set the pneumatic valve 

pressure 

Grasp the object 

Read analog  

sensor data 

Print the data 

Is data 

comparable ? 

Stop = False 

Is  

stop = true ? 

End 

  

YES 

Object Identification 

CAMERA 

NI myRIO 

 

PC 

GRIPPER NI LabVIEW 

NI VBAI 

N
O

 
N

O
 

738

International Journal of Mechanical Engineering and Robotics Research Vol. 11, No. 10, October 2022

© 2022 Int. J. Mech. Eng. Rob. Res



Gripper. In this first process, the NI VBAI software is 

used for the inspection process of the object to be 

identified. From the identification results, the shape of the 

object will be found which will then lead from each 

pattern (case) to the measurement process that occurs in 

the second process. This process is image processing 

because this process will perform precise data processing 

to get the actual size. In the end, after the data is obtained, 

the data will be sent to the NI myRIO which takes the 

PID data on the sensor and provides an electrical signal to 

the valve. Fig. 3 shows the entire system that has been 

integrated in this research. 

This experiment uses several hardware components 

which are the main points in the experiment. Each piece 

of hardware has its function to control the gripper. 

 

 

Figure 3.  Distribution of devices in the experiment. 

This experiment uses two object shapes as experiments 

with different sizes so that it has four paths in the 

gripping task shown in Figure 4. The object being held is 

placed on the workbench next to it so that when the 

system is running, the program can detect the object's 

shape and size.  

 

Figure 4.  Different objects and sizes for grasping task. 

V. CODE IMPLEMENTATED IN THE SYSTEM 

A. Object Detection Using NI VBAI 

Image processing is responsible for capturing the areas 

that need to detect objects. Then analyze and classify 

objects and find the location of objects in that area. When 

processing is complete, the object location information 

will be sent via the NI Distributed system manager to the 

control gripper system. The image processing flow chart 

is shown in the figure. 5. 

The first stage is to measure the object using the NI 

VBAI program run on a PC. The speed expected in the 

measurement is as fast as possible cause the processing 

was running on a PC. So, running NI VBAI programs 

that require large memory cannot run properly if placed 

on NI myRIO. 

 

 

Figure 5.  Distribution of devices in the experiment 

 

In Fig. 5, the object in this experiment uses two shapes: 

a circle and a rectangle. Each object must be classified 

individually in its stages, which are called states one and 

two. From the initial inspection results, when looking for 

patterns to determine the shape of objects, determine the 

coordinates and size of each object. After determining the 

classified objects, the system will automatically use the 

logic that has been built to determine which stage the 

program will run next. 
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B. System Control Using LabVIEW 

 

 

Figure 6.  The front panel of the LabVIEW interface. 

. 

Figure 7.  The Block diagram of the LabVIEW program. 

The Proportional, Integral, and Derivative (PID) 

system is used to create a feedback mechanism in the 

gripper task control system. Fig. 7 shows that the system 

used in the program is a case structure where each 

process will run in the same direction and one case. In 

this system, four bending sensors are used to obtain the 

released pressure data so that it can control the electro-

pneumatic valve continuously as shown in Fig. 6.  

VI. RESULT 

In order to verify that the pneumatic soft gripper can 

be used for the range of object sizes, this paper focuses 

on A. Case 1: Circle, Size:40mm; B. Case 2: Circle, 

Size:65 mm; C. Case 3: Rectangle, Size:47 mm; D. Case 

4: Rectangle, Size: 69 mm. The size of the object is 

confirmed by the vision detection system, and then the 

pneumatic soft gripper is given with the appropriate 

pneumatic pressure control to achieve the object 

clamping function. 

The gripping process as a result of Case 1 is to 

measure the diameter of a small circle which in this 

process uses a ping pong ball with a diameter of 40 mm. 

The results of the examination from the NI VBAI 

program showed that the final ball result was 40.841637 

mm. The results show that the figure is close to the actual 

value. Fig. 8 shows the measurement results on a Ping 

Pong ball in real-time. In the second gripping process, the 

second circle test was carried out using a tennis ball with 

a diameter of 65 mm. The program results show a tennis 

ball with a size of 65.90 mm. Figure 9 shows the results 

of the measurement process. In the process of holding a 

ball with a diameter of 65 mm, it undergoes a break time 

process. This is because the VBAI program identifies 

image acquisition as a process that sometimes fails. This 

is identified because the process of converting images for 

machine vision needs to use bright colors so that the 

detected object does not look the same as the background 

or good lighting on the workbench. 

After previously measuring the circle object. In this 

cases 3 and 4, we carried out tests to measure rectangular 

objects with actual width of 47 mm, as shown in Figure 

10. The program's success process shows that the object's 

size obtained is 47.75 mm. The last step is to measure the 

square object with a larger size than before. In this 

process, we use objects with actual width of 69 mm. The 

NI VBAI program showed a measurement result of 69.28 

mm. Fig. 11 shows the real-time measurement results in 

this process. 

A. Case 1: The detection shape is a ball with a diameter 

of 40mm, and the image measurement size of 

40.84mm can be calculated by the contouring process. 
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Figure 8.  Result Case 1. 

B. Case 2: The detection shape is a ball with a diameter 

of 65 mm, and the image measurement size of 65.90 

mm can be calculated by the contour algorithm. 

 

 

 

Figure 9.  Result Case 2. 

C. Case 3: The detection shape is a square body, the 

body appearance size: 47*47*47mm, through the 

contour, border size algorithm, can calculate the 

image measurement size of 47.7*47.6mm. 

 

 

Figure 10.  Result Case 3. 

D. Case 4: The recognition shape is a square body, the 

body appearance size: 69*69*69mm, through the 

contour, border size algorithm, can calculate the 

image measurement size of 69.3*69.3mm. 

 

 

Figure 11. 
 
Result Case 4.

 

The resulting
 
gripper can grip the smallest object with a 

size of 10 mm and the largest size is 100 mm. This is 

because the maximum distance between actuator 1 and 

actuator 2 horizontally is 100 mm. The process of 

gripping each object is shown in figure 12. Each case 

shows that the object can be lifted in the gripping process 

with a force that is accurate enough to be able to grip 

without damaging the gripped object.
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Figure 12. 

 

Grasping tasks result. (a) Case 1, (b) Case 2,

 

(c) Case 3,      

(d) Case 4.

 

In this section, the process of analyzing the ability of 

each gripping task to ensure the smart grasping of a soft 

robotic gripper is carried out. After the application of the 

NI VBAI based on LabVIEW program has been carried 

out in the previous process, this stage shows the success 

rate of the gripping process by utilizing the error rate of 

the signal and actuator. Because the deformation 

characteristics of the actuator depend on the type of 

object to be gripped and the success of each actuator 

during fabrication. Each gripping task shows a data signal 

generated by a different bending sensor. The combination 

of sensor data used as a control variable on the PID led to 

a significant comparison of the output results in 

performing the tasks shown in Fig.

 

12. Next, we 

compared the degree of deformation of each actuator 

during the gripping task. The inflation side space will

 

be 

used for the circular motion, so bending around the x-axis 

is the most important part of this section.

 

The grasping task shows that 95% success is achieved 

from the object being tested. Soft grippers are better at 

gripping larger objects with a coarser

 

texture. This is 

because the surface of the soft gripper has a sensor and is 

flat. This causes an object with a slippery surface to 

easily slip in the other direction. This is due to the soft 

robotic fingers' ability to produce different abilities in 

gripping tasks. Below will be shown the signal generated 

from each finger during the gripping process.

 

 

 

Figure 13.  Grasping tasks signal comparison. 

In the experiment, we focused on the successful 

gripping task of the soft gripper for the overall results. 

The most significant error rate is in Fig. 9, where the 

graph shows a sudden decline in 2 seconds. This is due to 

the failure of object recognition performed in the NI 

VBAI program. Fig. 13 shows the comparison of each 

output signal generated by the gripping process in an 

effort to achieve the goal of accurate gripping. However, 

everything is adjusted accurately, but the difference in 

each signal generated is due to the characteristics of each 

sensor and actuator, as shown in Table I. 

E. Error Percentage Value of Gripping Task Process 

Gripping ability can be performed. However, several 

things affect the gripper's accuracy level because of the 

bending sensor's signal. Therefore, we analyze the error 

value of each task to find out the highest error value 

obtained from each process. Fig. 14 shows that each 

gripping task has a different error rate. From the graph, 

calculate the signal difference error value for each 

gripping process by finding the average value generated 

by looking at the final signal performance. 

 

Figure 14. 
 
Comparison of bending sensor.

 

TABLE I. 
 

PERFORMANCE SIGNAL PRODUCTION
 

Description
 

Sensor 

1
 

Sensor 

2
 

Sensor 

3
 

Sensor 

4
 

Total
 

Average
 

Type 1
 

17.34
 

14.19
 

21.69
 

13.83
 

67.05
 

16.7625
 

Type 2
 

11.15
 

10.92
 

5.37
 

5.3
 

32.74
 

8.185
 

Type 3
 

14.65
 

14.4
 

18
 

11.47
 

58.52
 

14.63
 

Type 4
 

10.42
 

12.29
 

9.95
 

4.47
 

37.13
 

9.2825
 

 

a.  

 

b. 

 

c. 

 

d. 
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In this step, compare the average of the final signal 

issued. The calculation process is also carried out for 

each gripping task. The error value obtained in this 

process results from dividing each number by the average 

value. Table II shows the error value of each sensor for 

the gripping task performed. 

TABLE II.  ERROR VALUE OF GRIPPING TASK 

Description Average Signal Actual Value 
Error Value 

(%) 

Type 1 16.7625 17.6414 5.243251 

Type 2 8.185 10.988 34.24557 

Type 3 14.63 14.8478 1.435407 

Type 4 9.2825 10.4378 12.446 

 

From the Table II , it is shown that the largest error 

rate is generated during object the type 2 gripping process 

with an error value of 34.24 %. This is due to an incorrect 

detection in the VBAI program that confused the PID 

signal, resulting in a variable that is different from the 

actual value. While the highest level of accuracy was 

obtained from the object the type 4 gripping task with an 

error value of 1.43 %. From the result in this analysis, 

look for the error rate of each sensor in detail by 

comparing the actual value of each sensor with the 

average value in the gripping task of each different type 

of object. Table III shows the error rate of each sensor on 

each process. 

From the result shown in table III, it can be concluded 

that the biggest error was experienced by actuator number 

4 where from the signal data the error value was shown at 

52.71 %. After further analysis and research, the biggest 

on actuator number 4 is caused by the difference in the 

resulting angle. This difference is due to leakage in the 

actuator so the ability to accept fluid pressure received by 

the actuator is also small compared to other actuators. 

Because the input on the soft gripper only uses a 

centralized regulator, it makes it difficult to configure 

different pressures for each actuator. 

TABLE III.  ERROR VALUE OF ACTUATOR 

Description Sensor 1 Sensor 2 Sensor 3 Sensor 4 

Type 1 3.44519 18.12896 29.39597 21.2039 

Type 2 36.2248 33.41478 52.42086 54.43396 

Type 3 0.136705 1.597222 23.03486 27.55013 

Type 4 12.25424 32.39968 7.190951 107.6622 

Error 

Average (%) 
13.01523 21.38516 28.01066 52.71255 

 

The following error data is used as a further 

development to get maximum results to produce a perfect 

grip. Because an error in 1 actuator will affect the success 

of the gripping task. From the data generated above, the 

soft robotic gripper produced can still perform the 

gripping task proper so that the smart gripper that is 

carried out automatically can still be conducted. 

VII. CONCLUSION 

This paper presents a system for automated gripping 

tasks using the NI vision builder integrated with the 

LabVIEW program for automated inspection. The 

designed program has been successfully tested by 

utilizing the PID controller system on the gripper so that 

the gripper can continuously grip successfully on 

different objects and at a speed of 0.5 seconds from the 

start of the program. The accuracy of the measurement 

results in the error rate of less than 1 millimeter. In 

addition to the process of measuring the fabrication 

process of the actuator, further attention needs to be paid 

in an effort to minimize the error rate given by the 

actuator in controlling the PID. Because each actuator 

receives the same pressure, further actuator printing 

needs to be done in further research to make the system 

more robust. But overall, it can be categorized as the 

development of an intelligent gripping system from a soft 

robotic gripper that has been carried out. Therefore, this 

system  can later be applied in the industrial sector in 

automatic gripping tasks. 
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