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Abstract—In this paper, an adaptive Model Predictive 

Controller (MPC) is proposed as a solution for path tracking 

control problem for autonomous vehicles. The effect of 

feeding the MPC with a continuously changing vehicle’s 

mathematical model is studied, so that the controller becomes 

more adaptable to changing parameter values accompanied 

with instantaneous states. The proposed MPC is compared 

with both Stanley controller and a similar MPC that uses a 

fixed vehicle model. The performance is measured by the 

ability to minimize both lateral position and heading angle 

errors. A dynamic bicycle model for the vehicle is deployed 

in the MPC and the controllers are simulated in CarSim-

MATLAB/Simulink co-simulation environment using three 

common maneuvers: S-Road, double lane change and curved 

road. Results show that the proposed controller gives better 

tracking performance than the two others with minimal 

instantaneous and root mean square RMS errors.   

Index Terms—autonomous vehicle, model predictive control, 

path tracking control 

 

I. INTRODUCTION 

Autonomous vehicles have become the core of interest 

for both researchers and manufacturers in the automotive 

industry where the latest approaches in sensing 

technologies, artificial intelligence (AI) and control 

strategies combine together to produce a vehicle of an 

autonomy level from zero to five [1] which is – to an extent 

– able to eliminate the human role to drive it in order to 

optimize consumption and pollution emission [2], enhance 

ride comfort [3] and increase driving safety [4]. To reach 

a driverless ride, the vehicle must be capable of: 1) 

Planning an optimal trajectory through which it can move 

from a starting to a terminal position [5], [6]. 2) Tracking 

the planned trajectory in terms of position and speed. 3) 

Perceiving the surrounding environment with all its 

constraints. 4) Localizing itself with respect to the 

perceived surroundings. 

Trajectory tracking control is based on 1) manipulating 

the steering wheel angle both accurately and smoothly to 

assure ride comfort, and 2) achieving the desired speed at 

every waypoint throughout the tracked path. Various 

control theories can be used in path tracking problem such 

as the traditional proportional integral differential (PID) 

controller, geometric controllers’ algorithms as Follow the 

Carrot, Pure Pursuit [7] and the Stanley controllers [8]. 
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However, Fuzzy logic controllers [9] and model predictive 

controllers (MPC) [10], [11], [12] are more advanced 

competitors. In [13] Normey-Rico et al. proposed a robust 

PID controller to control a simplified robot model along a 

given path, but the tracking control problem is usually a 

multiple input multiple output (MIMO) problem with 

many constraints which the PID controller fails to handle. 

An Adaptive modified Stanley controller with fuzzy 

supervisory system is constructed in [14] to guide an 

autonomous armored vehicle while in [15] a fuzzy-logic 

controller is developed to imitate the human behavior to 

perform a double lane overtaking maneuver.  

The MPC algorithm is thoroughly a multi-constraint 

multi-variable optimization problem as described in 

Section-III.A and it helps in dealing with nonlinear 

systems [16]. Jie Ji et al. used the MPC method in [17] to 

plan a path and track it in order to avoid vehicle collisions, 

while, in [18] an adaptive MPC is proposed to deal with 

moving obstacles by performing short-term path planning. 

In [19] Hengyang, Wang et al. added some fuzzy 

improvements to the MPC and tested its behavior through 

simulations which show enhancements in ride comfort and 

in the ability to track the desired path even if the vehicle is 

initially far from it. Mohseni et al. in [20] used distributed-

MPC system that cooperate to help in different driving 

scenarios.  

The MPC must acquire the mathematical model of the 

plant which it controls to predict its future states. We 

managed here to give the basic MPC a degree of 

adaptability to the changing parameter values of the 

vehicle model by feeding it with a new discrete model at 

each time step according to the instantaneous states 

returned from the vehicle, as in Section-II we can see how 

these varying states significantly affect the vehicle’s 

mathematical model. We compared our simulation results 

with another MPC which uses a fixed vehicle model and a 

Stanley lateral controller which is used by Hoffmann et al. 

in [21]. The results show that the proposed controller’s 

behavior is too much better than both competitors. 

The remainder of this paper is organized as follows: In 

Section-II the vehicle’s mathematical dynamics model is 

obtained. Section-III introduces the proposed controllers, 

the MPC optimization problem and how the controller 

adapts to the changing vehicle dynamics. In Section-IV the 

simulation environment is explained together with 

comparison results between the proposed controllers. And 
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finally, the conclusion and the future work are presented 

in Section-V. 

II. MATHEMATICAL MODEL 

In this section we will derive the mathematical model 

for the vehicle (car) and the tire model used in our control 

strategy since it is a must to define the plant’s 

mathematical model for any model-based controllers such 

as basic MPC and AMPC. The bicycle model of an 

Ackerman steered vehicle [22] is an effective model 

despite its simplicity, and so it is used in many vehicle 

control applications and gives results that are close enough 

to reality, Table I shows all model parameters and 

symbols. 

 

Figure 1. Bicycle model of vehicle dynamics. XOY represents global 
coordinates and xoy represents local vehicle-fixed coordinates. 

TABLE I. VEHICLE PARAMETERS AND MODEL SYMBOLS. 

Symbol Definition 

Flr / Fcr Longitudinal / Lateral rear wheel force 

Flf / Fcf Longitudinal / Lateral front wheel force 

vlr / vcr Longitudinal / Lateral rear wheel velocity 

vlf / vcf Longitudinal / Lateral front wheel velocity 

αr / αf Slip angle for rear / front wheel 

φ / �̇� Yaw angle / yaw rate 

lf / lr Distance from center of mass to front / rear wheel 

δf Front wheel steering angle 

�̇� Vehicle longitudinal speed in xoy 

�̇� Vehicle lateral speed in xoy 

m Vehicle’s mass 

IZ Vehicle’s body yaw inertia 

Sf / Sr Front / Rear tire slip ratios 

Clf / Clr Longitudinal stiffness for front/rear tires 

Ccf / Ccr Lateral stiffness for front/rear tires 

 

As shown in Fig. 1, this model -for simplicity- assumes: 

1) That the two front wheels are reduced to one wheel 

placed at the center of the front axle, and the same for the 

two rear wheels. 2) Neglection of the aerodynamic forces 

and suspension effects. 3) Neglection of rolling resistance. 

In order to obtain the dynamic equations that describe 

this physical model, Newton’s equations of motion can be 

used after analyzing lateral and longitudinal forces that act 

on the vehicle to construct the three equations for the three 

degrees of freedom (DOF) of the vehicle: lateral, 

longitudinal and yaw. The main forces that act upon the 

vehicle to accelerate, brake, or rotate are generated on the 

tires (Flf, Flr, Fcf and Fcr). This can yield to the following 

dynamic model [19]: 

 

 

{

𝑚𝑥 ̈ = 𝑚�̇��̇� + 2(𝐹𝑙𝑓 cos 𝛿𝑓 − 𝐹𝑐𝑓 sin 𝛿𝑓) + 2𝐹𝑙𝑟    

𝑚𝑦 ̈ = −𝑚�̇��̇� + 2(𝐹𝑙𝑓 sin 𝛿𝑓 + 𝐹𝑐𝑓 cos 𝛿𝑓) + 2𝐹𝑐𝑟

𝐼𝑧𝜑 ̈ = 2𝑙𝑓 (𝐹𝑙𝑓 𝑠𝑖𝑛 𝛿𝑓 + 𝐹𝑐𝑓 𝑐𝑜𝑠 𝛿𝑓) − 2𝑙𝑟𝐹𝑐𝑟          

 
(1 )

 

 

Due to the effect of tire forces, it is very important to 

follow a tire model to obtain these forces in a way that is 

close enough to reality. A Pacejka tire model is used here, 

which is a semi-empirical nonlinear model [23], [24]. 

When the cornering angle and slip ratio of the tires are 

small, the linearized and simplified formulae of 

longitudinal and lateral forces in the tire model are given 

by: 

 

{
 

 
𝐹𝑙𝑓 = 𝐶𝑙𝑓𝑠𝑓  

𝐹𝑐𝑓 = 𝐶𝑐𝑓𝛼𝑓
𝐹𝑙𝑟 = 𝐶𝑙𝑟𝑠𝑟  
𝐹𝑐𝑟 = 𝐶𝑐𝑟𝛼𝑟

 (2) 

 

where the longitudinal force (𝐹𝑙𝑓  & 𝐹𝑙𝑟) is proportional to 

the tire slip ratio (𝑠𝑓  & 𝑠𝑟) with the longitudinal stiffness 

(𝐶𝑙𝑓 & 𝐶𝑙𝑟) and the lateral force (𝐹𝑐𝑓 & 𝐹𝑐𝑟) is proportional 

to the tire slip angle (αf & αr) with the lateral stiffness 

(𝐶𝑐𝑓 & 𝐶𝑐𝑟), and this applies for the front and rear wheels. 

From the geometry of the bicycle model in Fig. 1, we can 

deduce that: 

 

{

𝛼𝑓 = tan−1
𝑣𝑐𝑓

𝑣𝑙𝑓

𝛼𝑟 = tan
−1
𝑣𝑐𝑟
𝑣𝑙𝑟

 (3) 

The slip ratio of the for both front and rear tires during 

acceleration is defined as: 

 
𝑆 =  

𝜔𝑅 − 𝑣𝑙
𝜔𝑅

 (4) 

where (ω and R) are the rotational speed and the rolling 

radius of the wheel respectively, and (vl) is the actual linear 

speed of the wheel in the longitudinal direction. 

The longitudinal and lateral speeds of the front and rear 

wheels (vlf, vcf, vlr and vcr) can be expressed in terms of 

local-body-coordinates’ speeds (�̇�, �̇� 𝑎𝑛𝑑 �̇�) as follows: 

 

{
 

 
𝑣𝑐𝑓 = (�̇� + 𝑙𝑓�̇�) cos 𝛿𝑓 − �̇� sin 𝛿𝑓
𝑣𝑙𝑓 = (�̇� + 𝑙𝑓�̇�) sin 𝛿𝑓 − �̇� cos 𝛿𝑓
𝑣𝑐𝑟 = 𝑙𝑟�̇� − �̇�                                     
𝑣𝑙𝑟 = �̇�                                                 

 (5) 

Substituting by Eq. (2), (3) and (5) in the equations of 

motion in Eq. (1) yields to the continuous dynamic model 

Y 

X O 
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of the vehicle. Local-body coordinates (xoy) can be 

converted to the global coordinates (XOY) as:
 

 

{
�̇� = �̇� cos𝜑 − �̇� sin𝜑

�̇� = �̇� sin𝜑 + �̇� cos𝜑

 
(6)
 

As the MPC utilizes the state-space representation of 

the plant model, the

 

obtained model is converted to a four-

state-variable model as follows:

 

 

𝑋�̇� = 𝐴𝑡𝑋𝑡 + 𝐵𝑡𝑢𝑡

 

(7)

 

 

𝑌𝑡 = 𝐶𝑡𝑋𝑡 + 𝐷𝑡𝑢𝑡

 

(8)

 

where the state vector is 𝑋𝑡 = [�̇�, 𝜑, �̇�, 𝑌]
𝑇 ,

 

the steering 

angle (δf) is the only control action passed to the plant, so, 

the input vector is 𝑢𝑡 = 𝛿𝑓

 

and the two controlled 

variables (i.e., plant’s outputs) are the lateral position (Y) 

and the yaw angle (φ), so, the output vector is 𝑌𝑡 =
[𝑌 𝜑]𝑇. The state-space matrices (At, Bt, Ct

 

and

 

Dt) are

 

obtained from the above equations as:

 

 

𝐴𝑡 = 

[
 
 
 
 
 

−2(𝐶𝑐𝑓 + 𝐶𝑐𝑟)

𝑚�̇�
0 −�̇� −

2(𝐶𝑐𝑓𝑙𝑓 − 𝐶𝑐𝑟𝑙𝑟)

𝑚�̇�
0

0 0 1 0
−2(𝐶𝑐𝑓𝑙𝑓 − 𝐶𝑐𝑟𝑙𝑟)

𝐼𝑧�̇�
0

−2(𝐶𝑐𝑓𝑙𝑓
2 + 𝐶𝑐𝑟𝑙𝑟

2)

𝐼𝑧�̇�
0

cos𝜑 �̇� cos𝜑 − �̇� sin𝜑 0 0]
 
 
 
 
 
 
  (9)

 

𝐵𝑡 =

[
 
 
 
 
2𝐶𝑐𝑓

𝑚

0
2𝐶𝑐𝑓𝑙𝑓

𝐼𝑧

0 ]
 
 
 
  

   (10)

 

 

𝐶𝑡 = [
0 0 0 1
0 1 0 0

]  𝑎𝑛𝑑 𝐷𝑡 = [
0
0
]

 

     (11)

 

Table II gives the values of the vehicle specific 

parameters according to the model chosen from CarSim.

  

TABLE
 

II.
 

VEHICLE PARAMETERS’
 

VALUES ACCORDING TO CARSIM
 

FOR THE USED VEHICLE.
 

m (kg)

 

1110

 

IZ

 

(kg.m2)

 
1343

 

lf

 

(m)

 

1.04
 

lr

 

(m)

 

1.56
 

Clf

 
/ Clr

 
(N)

 
3000 / 2200

 

Ccf

 
/ Ccr

 
(N/deg)

 
3200 / 2400

 

III.
 
CONTROL STRATEGIES

 

A.
 

Stanley Controller

 

The Stanley controller is a member of the family of the 

geometric controllers that uses only the kinematic

 

model 

of the vehicle

 

ignoring both the dynamic forces and the 

slipping. Eq. (12) [14] shows how the Stanley controller 

computes the steering wheel angle (δ),

 

where (e(t)) is the 

continuous error in lateral position and (k)

 

is the 

controller’s gain.

 

 

 
𝛿(𝑡)

=

{
 
 
 

 
 
 𝜑(𝑡)  +  tan−1 (

𝑘. 𝑒(𝑡)

𝑉(𝑡)
) , |𝜑(𝑡)  +  tan−1 (

𝑘. 𝑒(𝑡)

�̇�
) | < 𝛿(𝑚𝑎𝑥)

𝛿(𝑚𝑎𝑥),                             𝜑(𝑡)  +  tan−1 (
𝑘. 𝑒(𝑡)

�̇�
)  ≥  𝛿(𝑚𝑎𝑥)

−𝛿(𝑚𝑎𝑥),                             𝜑(𝑡)  +  tan−1 (
𝑘. 𝑒(𝑡)

�̇�
) ≤ −𝛿(𝑚𝑎𝑥)

  

 

 

(12)

 

The

 

algorithm

 

ensures

 

that the steering angle is always 

within upper and lower limits defined by (δmax

 

and δmin).

  

B.
 

Model Predictive Control

  

The strategy of the MPC is to use the plant’s 

mathematical

 

model to predict its

 

response over a series of 

control actions within a

 

prediction horizon, where each 

control action is a result of the solution

 

of an

 

online

 

optimization problem that aims to minimize the gap (error) 

between the reference and the actual value of each 

controlled

 

variable

 

(plant-output

 

variable), and through 

this, the system is driven as much as possible to the desired

 

reference states. In path tracking control applications,

 

it is 

required to guide the vehicle to follow a predetermined 

path defined by: longitudinal position, lateral position,

 

and

 

yaw angle of the vehicle

 

(X, Y and φ)

 

at every time (t)

 

with 

respect to

 

a

 

global frame of reference (XOY).

 

According to 

the vehicle model obtained in section II, the MPC is 

designed to have one manipulated variable

 

(i.e., single 

output)

 

which is the steering angle (δf) and two plant-

output variables

 

(i.e., two inputs)

 

which are the lateral 

position (Y) and the yaw angle (φ).

 

Because the control 

CarSim 
MPC 

Model Update 

& Discretize 

Adaptation Function 

Path Interpolation 

Function 

Updated discrete 

model matrices [A, 

B, C and D] 

Steering angle (δf) 

[𝑌𝑟𝑒𝑓 , 𝜑𝑟𝑒𝑓] 

𝑋𝑎𝑐𝑡𝑢𝑎𝑙 

[𝑌𝑎𝑐𝑡𝑢𝑎𝑙 ,  𝜑𝑎𝑐𝑡𝑢𝑎𝑙] 

[�̇�,  𝜑𝑎𝑐𝑡𝑢𝑎𝑙] 

Figure 2. Block diagram of simulation process 
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loop runs in a discrete system, the pre-obtained state-space 

model in Eq. (7-11) is discretized as: 

 

 𝑋(𝑘 + 1) = 𝐴𝑘𝑋(𝑘) + 𝐵𝑘𝑢(𝑘) (13) 

 
𝑌(𝑘) = 𝐶𝑘𝑋(𝑘) + 𝐷𝑘𝑢(𝑘) (14) 

where 

 

{
 
 

 
 
𝐴𝑘 = 𝑒

𝐴𝑡𝑇𝑠               

𝐵𝑘 = ∫ 𝑒𝐴𝜏𝑑𝜏
𝑇𝑠

0

. 𝐵𝑡

𝐶𝑘 = 𝐶𝑡                      
𝐷𝑘 = 𝐷𝑡                     

 (15) 

such that Ak, Bk, Ck and Dk are the state-space matrices in 

the discrete form and Ts is the sampling time. 

The basic cost function that is subjected to the online 

optimization for an MPC with one manipulated variable 

and two plant-output variables can be expressed as follows: 

 

𝐽𝑘 =∑∑{
𝑤𝑖,𝑗

𝑠𝑗
[𝑟𝑗(𝑘) − 𝑦𝑗(𝑘)]}

2𝑝

𝑖=1

𝑛𝑦

𝑗=1

 (16) 

such that, 

k: Current control step.  

p: Prediction horizon. steps 

ny: Number of plant-output 

variables. 

2 

yj(k): Predicted value of the jth plant-

output variable at the ith step. 

y1(k) ≡ Ypred.(k) 

y2(k) ≡ φpred.(k) 

rj(k): Reference value of the jth plant-

output variable at the ith step. 

r1(k) ≡ Yref.(k) 

r2(k) ≡ φref.(k) 

sj: Scale factor of jth plant output  

wi, j: Weight for jth plant output at ith 

step. 

dimensionless 

At each control loop the MPC receives the actual values 

for the lateral position and the yaw angle (Y and φ) as 

feedback returned from the vehicle and compares them 

with the reference values computed from the path 

interpolation function, then, within the prediction horizon, 

the MPC attempts to predict ahead p values for the 

manipulated variable that yields to the optimum path that 

should minimize the error with the reference values and 

the controller performs only the first control action of this 

series and then repeats the same algorithm again within 

each control loop (time step). The optimization problem is 

usually a weighted minimization for the cost function, we 

gave a fixed value for the weight of the lateral position (Y) 

double that given to the yaw angle (φ) such that 𝑤𝑦 = 2, 

while 𝑤𝜑 = 1 . Also, the MPC problem here has a 

constraint for the manipulated variable (δf) where: 

 

 −𝛿𝑓
𝑚𝑎𝑥 ≤ 𝑢(𝑘) ≤ 𝛿𝑓

𝑚𝑎𝑥  (14) 

 

So that hard boundaries are kept for the front wheel 

angle within the real range of the vehicle. 

The QP-KWIK algorithm [25] is used for solving the 

optimization problem. 

C. Adaptive MPC 

The state-space matrices in Eq. (9-11) show that the 

instantaneous values of the vehicle states (i.e., �̇�, �̇� 𝑎𝑛𝑑 𝜑) 

significantly affect the whole model of the vehicle, and 

that’s why, we study here the effect of feeding an updated 

plant model to the MPC based on the actual values of the 

feedback states returned from the vehicle at each control 

loop, so that the MPC may adapt to these dynamic changes 

to substitute for the effect of linearization over a wide 

range of vehicle states. To achieve this, a MATLAB 

function is developed, at each control loop, this function 

acquires the current values for the longitudinal speed and 

yaw angle (�̇�(𝑘) 𝑎𝑛𝑑 𝜑(𝑘)) from the vehicle’s feedback, 

together with, the previous control action from the 

controller (δf(k-1)), the function then computes the new 

continuous state-space matrices (At, Bt, Ct and Dt) from Eq. 

(9-11) and discretize them according to Eq. (15) to obtain 

an updated discrete model for the vehicle and passes it to 

the MPC to be used in the next control loop. 

During simulation, we studied the effect of this function 

as an adaptive component and compared the results with 

those of a same MPC that uses constant state-space 

matrices all over the path. 

IV.  SIMULATION AND RESULTS 

The proposed controller is built in MATLAB and 

Simulink, and the vehicle is chosen from CarSim 

simulation software. Fig. 2 shows the overall system block 

diagram. The AMPC is compared with an MPC that 

ignores the changing parameters of the vehicle’s model 

and a Stanley lateral controller for some predefined paths 

that are chosen to represent known maneuvers of driving 

and testing scenarios which are: double lane change (DLC) 

[26], S-road (single lane change) and curved-road. Each 

path is defined as an [n x 3] matrix where the path is 

discretized into (n) points, each point is given by (X, Y and 

φ) coordinates in the global frame of reference. An 

interpolation function is developed to acquire the actual 

longitudinal position (X) returned from the vehicle at each 

loop and returns the corresponding lateral position and 

yaw angle (Y and φ); these values are used as the set points 

for the controller as shown in Fig. 2. As the vehicle’s speed 

increases, these maneuvers become more challenging to 

track. In Table III below, the speeds at which the controller 

is tested are given, together with the vehicle parameters’ 

values.  

TABLE III. VALUES FOR VEHICLE PARAMETERS. 

 m (kg) IZ (kg.m2) lf (m) lr (m) vx (m/s) 

 1110 1343 1.04 1.56 10, 15 & 19 

Simulation results shown in Fig. 3-8 represent the 

vehicle’s lateral position (Y) with respect to its 

longitudinal position (X) in case of each controller plotted 

together with the reference path’s coordinates of each 
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maneuver at 15m/s and 19m/s. Also, Table 4-6 shows the 

RMS values of both the lateral position and the yaw angle 

errors for each controller at different speeds for the S-road, 

curved road and the double lane change maneuvers 

respectively. 

While trying to tune MPC parameters we reached best 

results at: 1) 0.1s for step time, 2) a prediction horizon of 

14 steps, 3) a control horizon of 3 steps and 4) a constraint 

for the front wheel angle of about ± 68° which is close to 

a real car’s value. 

 

Figure 3. Lateral position for S-Road at 15 m/s. 

 

Figure 4. Lateral position for S-Road at 19 m/s. 

TABLE IV. RMS VALUES FOR LATERAL AND YAW ANGLE ERRORS FOR 

S-ROAD 

Controller AMPC MPC Stanley 

RMS value 𝑒𝑦 

(m) 

𝑒𝜑 

(deg) 

𝑒𝑦 

(m) 

𝑒𝜑 

(deg) 

𝑒𝑦 

(m) 

𝑒𝜑 

(deg) 

10 m/s 0.054 1.2 0.085 1.33 0.03 1.06 

15 m/s 0.066 1.02 0.11 2.23 0.08 1.24 

19 m/s 0.118 1.57 0.2 6.44 0.2 2 

 

 

Figure 5. Lateral position for curved road at 15 m/s. 

 

Figure 6. Lateral position for Curved Road at 19 m/s. 

TABLE V. RMS VALUES FOR LATERAL AND YAW ANGLE ERRORS FOR 

CURVED ROAD. 

Controller AMPC MPC Stanley 

RMS value 𝑒𝑦 

(m) 

𝑒𝜑 

(deg) 

𝑒𝑦 

(m) 

𝑒𝜑 

(deg) 

𝑒𝑦 

(m) 

𝑒𝜑 

(deg) 

10 m/s 0.08 1.86 0.12 1.92 0.05 1.5 

15 m/s 0.1 1.88 0.15 2.89 0.16 1.2 

19 m/s 0.16 2.47 0.89 10.7 0.32 2.74 
 

 

Figure 7. Lateral position for double lane change at 15 m/s. 

 

Figure 8. Lateral position for double lane change at 15 m/s. 

TABLE VI. RMS VALUES FOR LATERAL AND YAW ANGLE ERRORS FOR 

DLC. 

Controller AMPC MPC Stanley 

RMS value 𝑒𝑦 

(m) 

𝑒𝜑 

(deg) 

𝑒𝑦 

(m) 

𝑒𝜑 

(deg) 

𝑒𝑦 

(m) 

𝑒𝜑 

(deg) 

10 m/s 0.08 1.86 0.12 1.92 0.05 1.52 

15 m/s 0.1 1.85 0.15 2.68 0.15 2.06 

19 m/s 0.16 2.35 9.47 0.53 0.2 2.59 
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V. CONCLUSION 

In this paper we made the MPC adaptive to the changing 

dynamics of the vehicle’s model accompanied with the 

instantaneous states that are fed back from it, this is 

achieved by updating the plant model in each control loop. 

The results show that the proposed approach is capable of 

tracking sharp maneuvers at relatively high speeds (up to 

≈ 68 km/hr.) when compared to an MPC which uses a fixed 

plant model all over the path and it surpasses the Stanley 

controller specially at speeds higher than 10 m/s.  

The effect of the proposed controller is shown through 

CarSim-MATLAB/Simulink co-simulations where the 

controller is implemented in MATLAB/Simulink and the 

plant used is a vehicle chosen from CarSim. 

The real implementation of this controller in a car to 

replace human steering is a future interest. We would like 

also to extend our research so that a model-learning layer 

is added so that the MPC learns the model parameters 

without declaring them manually and to use runtime 

changing MPC parameters.  
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