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Abstract—This paper presents the modeling and Model 

Predictive Controller (MPC) design  for an omni-directional 

robot during a single actuator failure. A fault estimation 

method is used to identify the actuator failure, and thereby, 

the kinematic model of the mobile robot is reformulated  to 

account for the fault. The controllability of the modified 

model during a single actuator failure is verified using Lie 

algebra.  Finally, in the event of unforeseen combinations of 

single actuator failures, a Nonlinear MPC is designed for 

trajectory tracking and obstacle avoidance. Simulation 

results are used to demonstrate the robustness of the system 

to actuator failure.   

 

Index Terms—Omni-directional robot, Actuator failure, 

MPC 

I. INTRODUCTION 

Autonomous Mobile Robots (AMR) have achieved 

increasing attention among researchers in recent decades 

owing to their applications in domains, such as 

manufacturing, military, and space exploration [1]. The 

omni-directional robot [2] is an AMR that can navigate in 

any direction by altering the velocity and direction of each 

wheel while maintaining its orientation. For efficient 

performance of an omni-directional robot in a constrained 

workspace, motion control algorithms for obstacle 

avoidance and robustness towards actuator failures is of 

utmost importance [4]. In this context, we envisage the 

application of control theory to build the mathematical 

model of the omni-directional robot in the presence of 

actuation faults. 

Identification and isolation of actuation fault may be 

done using either hardware, or analytical redundancy [3]. 

In [4], [5] and [6], fault isolation is based on hardware 

redundancy whereas [7] addresses fault isolation 

employing an additional gear mechanism. Hardware 

redundancy and extra mechanisms to accommodate 

actuator failure are not always feasible due to cost 

constraints. This necessitates the deployment of a fault 

isolation approach based on analytical redundancy [8]. It 

is based on the idea that an actuator failure reformulates 

the system dynamics by introducing a fault parameter 

matrix, estimated using an Extended Kalman filter (EKF).  
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Figure 1. Overview of the proposed approach 
 

 

Figure 2. Omni-directional robot: kinematics 

An NMPC is applied on this modified model to account 

for the actuation fault. Due to its capability to handle 

constraints, flexibility to changes in system dynamics, and 

application to nonlinear systems, NMPC is an effective 

tool for fault isolation [8], [9]. 

II. PROBLEM FORMULATION 

The proposed approach is depicted in Fig. 1. In this 

work, a three-wheeled omni-directional robot is used in an 

application environment to follow the waypoints with and 

obstacle avoidance while we explore the case of single 

actuator failure during trajectory tracking. A fault 

estimation method is used to evaluate the fault parameter 

matrix at each time step, and thus the actuator failure is 

identified. When one of the actuators fails, a non-

holonomic constraint is introduced, and the kinematic 

model is modified to account for the fault. Lie algebra [10] 

is used to prove the controllability of the modified 

nonlinear kinematic model of the omni-directional robot. 

Furthermore, we propose using an NMPC, whose model is 

updated based on the actuator failure and determines the 
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optimum solution in the presence of various actuation 

faults. 

III. OMNI-DIRECTIONAL ROBOT 

This section presents the description and kinematic 

model of the omni-directional mobile robot. The modified 

model during the actuator failure and the corresponding 

controllability also discussed. For an omni-directional 

mobile robot, the three omni wheels, separated by 120°, 

perform independent and simultaneous translational and 

rotational motions. 

A. Kinematic Model 

Kinematic model describes the geometric relationship 

between input and the system characteristics [11]. The 

kinematic model of the three-wheel omni-directional robot 

[12], [13] can be obtained as follows: 

Global coordinate frame [Xw, Yw]: The pose of the 

robot in global coordinate frame (see Fig. 2) is represented 

as: 

  (1) 

Moving coordinate frame [Xm,Ym]: A moving 

coordinate frame, with same origin as the global 

coordinate frame, is attached to the robot. The pose of the 

robot in moving coordinate frame (see Fig. 2) is 

represented as: 

                                                        
(2)  

The transformation from global coordinate frame to 

moving coordinate frame is, , defined as below: 

                                (3) 

The translational velocity of the mobile robot in global 

coordinate frame is   and angular rate is [11]. 

For , the total velocity of wheel 1 is defined as: 

            (4) 

Where L is the radius of the mobile robot and  is the 

global angle of first wheel. The first two terms of (4) 

represent the translational part and third terms represents 

the angular part.  Similarly, the velocities of second and 

third wheel can be obtained. 

        (5) 

               

Where ( ) and ( ) are the global angle of the 

second and third wheel, respectively. Hence, the inverse 

kinematics in global frame can be represented as: 

                     (6) 

                                 (7) 

Forward kinematics of the mobile robot can be obtained 

as:
  

                                                              (8) 

Where, J=S-1.  

Equation (8) holds for  . For  

, it can be rewritten as:
 

    (9) 

Where r is the wheel radius and  is the 

angular velocity vector of the robot. To obtain the wheel 

velocities in local coordinate, use , where is 

given by (3). 

B. Faults in Omni-directional Robot 

Various faults occur in an omni-directional robot due to 

failure of sensors, batteries, and actuators, etc. [14]. We 

believe actuator failure to be a critical fault, as the wheel 

velocities may become unreliable for subsequent trajectory 

tracking. During normal operation (with no actuator 

failure), the wheels are controlled by three independent 

actuators, and there are no constraints between (x, y, θ). 

However, the failure of one of the actuators introduces a 

non-holonomic constraint, and hence the kinematic model 

cannot be stabilized by continuous static feedback [10]. In 

this work we present four modes of operation of the omni-

directional robot based on the actuator failure: Mode 0: No 

actuator failure; Mode 1: Failure of first actuator; Mode 2: 

Failure of second actuator; and Mode 3: Failure of third 

actuator. 

Modified kinematic model and controllability analysis 

during actuator failure: In this work, we use the Lie 

algebra concept to prove the controllability of the 

nonlinear system during actuator failure. Assume that 

owing to actuator failure, third wheel velocity ( ) is zero 

(Mode 3), and hence, the kinematic model is modified as 

follows [10]: 

                   (10) 

The states and inputs of the modified kinematic model 

for Mode 3 operations are  and    

respectively. Thus, (10) can be represented in matrix form:  
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     (11) 

                        �̇� ≝ 𝑋1𝜔1 + 𝑋2𝜔2                            (12) 

The Lie algebraic rank condition (LARC) [10] is used 

to prove the controllability of the nonlinear system in (12). 

If the Lie bracket of X1 and X2 is linearly independent of 

the other two directions, then the control inputs can find a 

motion along the new direction. Lie bracket of X1 and X2 

is defined as: 

        (13) 

The nonlinear system fulfills the LARC requirement 

because the new direction, X3, is linearly independent of 

X1 and X2. The linear independence of [X1 X2 X3] 

demonstrates that the nonlinear system (12) can be 

controlled even when actuator fails. This ensures that, even 

if actuator fails in one direction, the available control 

inputs may still generate motion in the other missing 

directions. Hence, 

               𝑠𝑝𝑎𝑛(𝑿1(𝑞), 𝑿2(𝑞), 𝑿3(𝑞)) 𝜖 ℝ3, 𝑞 𝜖 𝑆   (14) 

Where manifold S is defined as: 

                         𝑆 = {𝑞 ≝ (𝑥𝑤 , 𝑦𝑤 , ψ) ∈ ℝ𝟛}                 (15) 

IV. CONTROL DESIGN AND FAULT 

PARAMETER ESTIMATION

 

Subsequent to modeling the nonlinear system for the 

omni-directional robot, we design an MPC controller.
 
This 

section presents the
 
design of a nonlinear MPC controller 

for the case of single actuator failure by fault parameter 

estimation technique.
 

MPC for Nonlinear System:
 
The nonlinear

 
system

 
in (9) 

can be represented as:
 

                         𝒒(𝑘 + 1) = 𝑓(𝒒(𝑘), 𝒖(𝑘))                (16)
 

Where q(k) and u(k) denote the state and input vector at a 

time step, k, respectively. The control sequence
 
over the 

prediction horizon, Np

 
is given by:

 

              𝑼 = {𝒖(𝑘), 𝒖(𝑘 + 1), … , 𝒖(𝑘 + 𝑁𝑝 − 1)}    (17)
 

In MPC, a cost function is minimized over a finite 

prediction horizon, and only the first control input, u(k) of 

the control sequence, 𝑼
 
is applied to the system [9]. The 

standard cost function for the MPC [15]
 
is given as:

 

(18)

 

where r
 
is the vector representing the reference state. Q, R, 

and Qt

 
are the positive definite weighting matrices for the 

states, control inputs and terminal
 
state

 
respectively.

 

The constraints of the state and the control input of the 

system are given by: 𝒒(𝑘) ∈  𝕏  and 𝒖(𝑘) ∈  𝕌. Similarly, 

the constraints of the terminal state, 𝕏𝑡 , over a set is 

denoted as: 𝒒(𝑘 + 𝑁𝑝) ∈  𝕏𝑡  Where the set 𝕏 includes the 

entire state space and set  𝕌  consists of all the possible 

values of control input. The optimization problem solved 

over the finite horizon is given by: 

 

      𝒒(𝑘 + 𝑖) 𝜖 𝕏;   𝒖(𝑘 + 𝑖) 𝜖 𝕌;    𝒒(𝑘 + 𝑁𝑝) 𝜖 𝕏𝑡      (19) 

The superscript * denotes the optimized value. The 

optimization problem (19) can be solved by a dynamic 

programming approach [16]. At each time step, k, MPC 

generates an optimized input, u*(k) by solving the 

optimization problem given in (19). 

A. Modified MPC during Actuator Failure 

To model the actuation fault, the nonlinear system 

dynamics of the omni-directional robot given in (16) is 

modified [9], [17] as below:  

𝒒(𝑘 + 1) = 𝑓(𝒒(𝑘), 𝜸(𝑘)𝒖(𝑘))                  (20) 

Where γ(k) is the fault parameter matrix at time step, k. 

The value of γ(k) at each time step is estimated by 

identifying the actuator failure (refer subsection 1V-B). 

γ(k) is a diagonal matrix as shown below: 

                  𝜸(𝑘) = 𝑑𝑖𝑎𝑔(𝛾𝒋(𝑘) | 𝑗 = 1,2,3)                   (21) 

Where γj(k) represents the failure of jth actuator. Since we 

are not considering the partial failure of the actuator, γj(k) 

can be either 0 or 1. γj(k) =1 represents a healthy actuator 

and γj(k) =0 represents a faulty actuator. Hence γ(k) is a 

3x3 identity matrix for a perfect omni-directional robot 

(Mode 0). The optimization problem for the nonlinear 

MPC owing to actuator failure can be reformulated as: 

           (22) 

𝒒(𝑘 + 𝑖) 𝜖 𝕏;   𝒖(𝑘 + 𝑖) 𝜖 𝕌;   𝒒(𝑘 + 𝑁𝑝) 𝜖  𝕏𝑡 

 

Where the cost function, J(U,x(k)) is as shown in (18). 

B. Estimation of Fault Parameter Matrix 

Since the system under consideration is nonlinear, an 

EKF [19] based state estimator is employed to identify the 

actuator failure and thus to estimate the fault parameter 

matrix. EKF: The nonlinear model of the omni-directional 

robot in EKF [14] can be represented as: 

     𝒒(𝑘 + 1) = 𝑓(𝒒(𝑘), 𝒖(𝑘), 𝒘(𝑘))                 (23) 

𝒚(𝑘) = ℎ(𝒒(𝑘), 𝒗(𝑘))             
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Where, q(k) is the state vector, u(k) is the input vector, y(k) 

is the output vector, 𝑓(∙) and ℎ(∙) are nonlinear functions 

of state vector, and w(k) and v(k) are process and 

measurement disturbance vector used in the Kalman model 

respectively [14]. 

  

Figure 3. Estimation of fault parameter matrix 

Estimation of Fault Parameter Matrix: In this work, 

we employ a bank of EKFs to estimate the fault parameter, 

each using a distinct model [20] as shown in Fig. 3.  

KF-0 estimates the output, �̂�0(𝑘) for the normal 

operating region (Mode 0), whereas, KF-j, j=1,2,3 

estimates the output, �̂�𝑗(𝑘)  for actuator failure modes, 

Mode j. The models of omni-directional robot for Kalman 

gain estimation under different actuator failure conditions 

were as detailed in Section III-A. The model for KF-0 is 

the standard nonlinear model of the omni-directional robot 

as in (23) whereas, the model for KF-j is the modified 

model with 𝜔𝑗 = 0 in (23), which refers to the failure of jth 

actuator. At each instant of time, residual vector (𝒓𝑗(𝑘 +

1)) can be obtained as: 

                𝒓𝑗(𝑘 + 1) = 𝒚(𝑘 + 1) − �̂�𝑗(𝑘 + 1)            (24) 

Where y(k) is the measurement vector and �̂�𝑗(𝑘)  is the 

Kalman filter estimate at kth instant.  

Fault parameter identification module as shown in Fig. 

3 includes a hypothesis testing algorithm [18], [20], which 

utilizes the residuals obtained in (24) to assess the 

conditional probability and thus to estimate the fault 

parameter.  

The probability that the jth actuator fails, 𝑝𝛿𝑗 
assuming 

same fault probability for all actuators [14] is: 

𝑝𝛿𝑗 
(𝑘 + 1) =

𝑝(𝑦=𝑦(𝑘+1) | 𝛿𝑗,�⃗� (𝑘))∙𝑝𝛿𝑗 
(𝑘)

∑ 𝑝(𝑦=𝑦(𝑘+1) | 𝛿𝑖,�⃗� (𝑘))∙𝑝𝛿𝑖 
(𝑘)3

𝑖=0

         (25) 

Where 𝑦 (𝑘) is the sequence of final measurements defined 

as 𝑦 (𝑘) = [𝑦0, 𝑦1, . . . 𝑦𝑘]  and 𝑝(𝑦 = 𝑦(𝑘 +
1) | 𝛿𝑗, 𝑦 (𝑘)) refers the probability that the system can 

attain measurement data 𝑦 = 𝑦(𝑘 + 1) provided jth 

actuator fails, 𝛿𝑗  and last measurement in sequence is 

𝑦 (𝑘). 
At the instant of actuator failure (let jth actuator fail), the 

corresponding Kalman filter estimate of measurement 

vector (�̂�𝑗(𝑘)) and the actual measurement vector (y(k)) 

are very close to each other, resulting in a nearly zero 

residual vector (𝑟𝑗(𝑘)). As a result, the equivalent Kalman 

filter has a high conditional probability ( 𝑝𝛿𝑗 
(𝑘) ), 

suggesting the best fit with the real system. The 

conditional probability indicates the relative correctness of 

the various models of the Kalman filter. Based on this, the 

fault parameter estimation module identifies the mode of 

operation (Mode j), and the corresponding fault parameter 

(𝛾𝑗(𝑘)) is modified as zero, and the same is updated in 

NMPC as in (22).          

 

Figure 4. Trajectory tracking of the omni-directional robot under actuator failure 

V. EXPERIMENTAL VALIDATION AND CONCLUSION 

In this section, we have presented a set of results to show 

the efficacy of the proposed approach. Fig. 4 shows the 

trajectory tracking of the omni-directional robot under 

actuator failure. The red cross marks in the same figure 

indicates the waypoints (numbered 1 to 5), which define 

the reference path, and the green line indicates the path of 

the robot. The wheel speed trajectory during different 

modes of operation is shown in Fig. 5 (a) to Fig. 5 (d). Fig. 

5 (a) shows the case where there is no actuator failure, 

whereas Fig. 5 (b), Fig. 5 (c), and Fig. 5 (d) shows the case 

where first, second and third actuator fails respectively at 

some instant of time. To obtain the simulation results 

under actuator failure, a fault is induced at t=10s, and 

hence the wheel speed of the failed actuator drops to zero. 

The fault is identified by the EKF at t=15s since the 

corresponding residual reaches zero and conditional 

probability reaches maximum. The speed of the other 

wheels modifies accordingly for further trajectory tracking. 

The trajectory tracking with obstacle avoidance [4] 

together with actuator failure is shown in Fig. 6. The 

simulation results presented in this section validate the 
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usefulness of the proposed approach. For the future work, 

we would like to derive necessary theory for formation 

control of omni-directional mobile robots in an application 

environment. 

 

Figure 5. Wheel speed trajectory 

 

Figure 6. Trajectory tracking of omni-directional robot with obstacles 
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