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Abstract—Q Learning is a form of reinforcement learning 

for path finding problems that does not require a model of 

the environment. It allows the agent to explore the given 

environment and the learning is achieved by maximizing the 

rewards for the set of actions it takes. In the recent times, Q 

Learning approaches have proven to be successful in 

various applications ranging from navigation systems to 

video games. This paper proposes a Q learning based 

method that supports path planning for robots. The paper 

also discusses the choice of parameter values and suggests 

optimized parameters when using such a method. The 

performance of the most popular path finding algorithms 

such as A* and Dijkstra algorithm have been compared to 

the Q learning approach and were able to outperform Q 

learning with respect to computation time and resulting 

path length.   

 

Index Terms—reinforcement learning, Q learning, robot 

navigation, path planning, path finding, shortest path  

 

I. INTRODUCTION 

Path planning is a fundamental and critical task of 

moving robots. The main objective of path finding is to 

find a safe trajectory for the mobile robot to move it from 

the starting point to the ending point without any 

collision with obstacles. Finding paths with minimal time 

and energy consumption is always desired [1]. 

With emerging needs and growth of technology, robots 

have been employed for a large variety of applications 

ranging from aerial photography, bomb disposal, mining, 

nuclear applications to performing medical interventions. 

Depending on the environment, path finding can be 

categorized into 1) Global path planning; in a static and 

structured environment where the robot already knows 

the location of obstacles and a model of the environment; 

2) Local path planning; in dynamic environments, where 

the robot explores the given environment by taking 

actions and then uses the information for path planning 

[2]. Dijkstra algorithm and A* algorithm are the two most 

popular algorithms for path planning in static 

environments which compute an optimal global path 

since the position of the obstacles is pre-known [1]. 

While the supervised learning algorithms and sequential 

search-based navigation approaches are relatively easy to 
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implement and are effective to find an optimal path in 

static environments, most of the approaches fail in real 

world applications. Studies indicate that external 

influences such as noise or closely spacing of obstacles 

would also have a negative impact on the performance of 

such algorithms [1]. 

To tackle complexities and the unpredictable nature of 

the environments, heuristic path planning methods have 

emerged which emulate human like behavior-based 

characteristics. Literature indicates that approaches based 

on Artificial Neural Network (ANN), Genetic Algorithms 

(GA), Particle Swarm Optimization (PSO), Ant Colony 

Optimization (ACO), Wavelet, Fuzzy Logic (FL) have 

been frequently used to tackle such scenarios [3]. 

Reinforcement Learning (RL) is one such heuristic 

approach developed by mimicking the learning behavior 

of animals and humans – by interactions. It is about 

learning what to do and how to proceed to obtain 

maximum rewards from the environment. Another 

important aspect of RL is that it considers the whole 

problem of the environment and thus addresses how the 

local paths planned at every step could fit into the larger 

picture of the path planning. So the actions at every step 

may not only influence the rewards at that step, but also a 

set of subsequent rewards that would be obtained in 

future iterations by taking that step [4]. In its simplest 

form, RL can be treated as a sequence of Markov 

decision processes which capture the key aspects of a 

learning agent, i.e., reward, action, and goal. The 

performance of a RL algorithm hugely depends on two 

factors used in the strategy of the algorithm known as 1) 

exploration and 2) exploitation. Exploration refers to 

selecting an action with a probability value greater than 

zero in every state to learn about the environment. 

Exploitation is using the current knowledge of the agent 

to achieve good performance by selecting particular (e.g., 

greedy) actions [5]. 

Q learning is a promising off-policy variant of RL, 

where the value functions can be updated by hypothetical 

actions. This is the major difference when compared to 

RL, where the value functions can only be updated based 

on experience [6]. In recent times, algorithms based on Q 

learning have been successfully used for short-term and 

long-term planning and decision-making processes in 

autonomous navigation tasks with minimal assumptions. 
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The algorithm in this paper uses a greedy policy, which 

means that the expected highest reward for a given action 

is chosen at every step. 

The paper is structured as follows: A description of the 

problem and the suggested optimization method 

including chosen parameters will be given in Section II. 

Section III presents the results and a related discussion. 

Conclusions are presented in Section IV. 

II.  DESCRIPTION OF THE OPTIMIZATION PROBLEM 

A. Problem Model 

The problem model using the conventional algorithm-

based approaches involves decomposing the given 

environment to a grid graph. The starting and the ending 

point need to be defined. The static locations of the 

obstacles need to be specified on the grid. The distances 

such as Manhattan distance or Chebyshev distance are 

used to compute the path of the robot on the grid. The 

objective function is based on minimizing distance and 

maximizing a reward value at each step [1][7]. The 

implementation and results of the classical path finding 

approaches are discussed in Section III of the paper. 

For evaluating the Q learning in this paper, the 

environment has been simulated as discrete, non-

overlapping grid, each grid position representing a state 

that the agent could take. The robot can move either in a 

straight line or diagonally to left, right, up, or down, a 

grid position can hence have eight possible neighbors 

which a robot can transit to. Fig. 1 shows a sample 20x20 

grid, the yellow positions indicate the spaces into which 

the robot can navigate, and the dark positions represent 

the obstacles in the environment. In general, from the 

starting position SP to the ending position EP, several 

valid paths (at least one) are possible. 

 

Figure 1.  Robot environment. 

Following [3][8][9][10][11] used for solving similar 

path planning problems, each decision step is modelled as 

a Markov Decision Process (MDP) and the resulting 

combination of all steps behave as a Markov Chain 

[8][10]. 

The MDP at every step can be represented by the 

quintuple set of {S, A, Pa, Ra, 𝛾, 𝜋}, where: 

• S denotes the set of all possible states s, 

• A denotes the set of all possible actions a, 

• Pa (s, s’) is the probability that action a in state s at 

time t, will lead to a state s’ at time t+1, 

• Ra (s, s’) is the immediate reward after the agent 

moves from state s to state s’, 

• γ is the discount factor with 0 < γ < 1, 

• π (at | st) denotes the policy of the agent depending 

on the action a and state s at time t,  

The state and action spaces are finite and belong to the 

set of real numbers. The policy function π is a mapping 

from the state space to the action space. The set of these 

state-action pairs are stored in a table, so that the 

algorithm can learn from the consequence of previous 

actions in the future (exploitation) [5]. 

The robot interacts with the environment: From a 

given state s and a time t it chooses an action a from the 

possible set of actions based on a policy π to move to a 

state s’ and receives a reward. Since the robot is limited 

at every time t by the set of actions and states from which 

it can select, these are two main constraints in the 

optimization problem, which will be further discussed in 

the coming sections. 

B. Optimization Method 

The main optimization objective is to choose a policy π 

that will maximize the rewards at the current step and 

also the expected sum of rewards from the future steps. 

The state value action function Qπ(s, a) measures the sum 

of the rewards from state s after taking an action a 

following a policy π. The common idea in 

[3][8][9][10][11] involves the robot acting autonomously 

in a given environment and updating the policy in a way 

that Qπ(s, a)→ Q*(s, a), where Q*(s, a) represents the 

maximal reward that can be obtained by following a 

policy at that given state.  

Q*(s, a) = max Qπ(s, a) 

The update equation for Q learning at every time step t 

can then be formulated as: 

Qt(s , a) = Qt-1(s, a) + α[ R(s, a) + γ max Q’ (s’, a’)  – Qt-1(s, 

a)]  

where: 

• Qt (s, a) denotes the updated new Q value in the 

table,  

• Qt-1(s, a) denotes the previously recorded Q 

value, 

• α denotes the learning rate, 

• R(s, a) denotes the immediate reward obtained,  

• γ denotes the discount factor, 

• max Q’ (s’, a’) denotes the maximum expected 

reward,  

• Q’ (s’, a’) = E[ Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 

+ γ4Rt+5 + ……] 

 

The algorithm gives the importance to the actions 

which can yield a maximum immediate reward, as the 

future rewards are discounted exponentially by a factor of 

γ (0 < γ <1). 

374

International Journal of Mechanical Engineering and Robotics Research Vol. 11, No. 6, June 2022

© 2022 Int. J. Mech. Eng. Rob. Res



Algorithm: Q Learning 
 

 

Choose parameters α ∈ (0,1], γ ∈ (0,1); 

Initialize Q(s, a), for all s ∈ S, a ∈ 

A(s) arbitrarily; Initialize the current 

state s (starting position); Loop for 

every iteration: 

Choose an action a, by using the 

greedy policy ɛ; Observe the reward r 

∈ 𝑅(s,a); 

Observe the current transitioned state s’; 

Update the Q value in the table using the equation 

Qt(s , a) = Qt-1(s, a) + α[ R(s, a) + γ max Q’ (s’, a’) – Qt-1(s, 

a)] 

Repeat until the s is the end position 
 

 

 

The robot can use extensive exploration or a greedy 

strategy to maximize the reward values at every step. 

However, too much exploration could have a negative 

impact on the learning speed and time taken for planning 

the successive steps. Strategically, these could be used as 

the regularization parameters to prevent excessive 

exploration [12]. 

C. Parameter Selection 

Learning Rate (α): The learning rate parameter α needs 

to be carefully selected to avoid a too quick convergence 

and thus to allow optimal learning rates in the 

environment. Selecting the α close to zero (α > 0 and α 

<<1) causes the learning to occur very slowly, which 

means that the algorithm will tend to be inefficient in 

navigation tasks where quick response rates are desired. 

Choosing α close to 1 causes the learning process to be 

very quick and the paths may not be optimal [4]. 

Discount factor (γ): The discount factor γ determines 

the importance of the consequences of the future actions 

and rewards. Choosing γ close to zero will make the 

algorithm short-sighted, allowing only local path planning 

with less regard to how these paths would fit into the 

overall solution. Choosing γ close to 1 makes the 

algorithm strive for higher long-term rewards and the 

chosen local paths can be far from optimal. γ values 

above 1 are excluded, as the agent can never converge to 

a solution as future rewards become infinite [13]. 

Q value initialization: The initial Q values can have a 

significant impact on the convergence of the algorithm. 

The initialized value (Qi) when compared to a Q value in 

the future (Q∞) will make the states already visited either 

more or less attractive. If Qi < Q∞ it would make the 

agent explore less in the beginning as the unvisited states 

are less unattractive than the current state, which slows 

down the learning process. If Qi > Q∞, the robot exhibits 

a systemic exploration behavior, as the unvisited states 

are more attractive than the visited ones [14]. 

Policy (ɛ): The policy selection is crucial in balancing 

the trade-off between exploration and exploitation. 

Choosing a greedy policy ɛ will enable the robot to always 

select the action with the highest estimated reward. This 

policy ensures that sufficient iterations are carried out. As 

a consequence, each action will be tried out multiple times, 

thus arriving at an optimal action. A disadvantage of 

choosing a greedy ɛ policy is that the algorithm favors the 

random and known actions equally. To counteract this, a 

softmax based ɛ policy has been used recently. A softmax 

policy assigns a weight to each of the actions based on 

their action-value estimate; hence, bad random actions 

are unfavorable and will be avoided [15] [16]. 

III. RESULTS & DISCUSSION 

A. Q Learning  

Two environments of different grid sizes 20x20 and 

10x10 with different sets of obstacles have been setup in 

MATLAB to test the performance of the Q learning 

algorithm. For a given (x, y) on the grid the state no. can 

be expressed as: 

state no. = (x-1) * rowsize + y 

where x is the grid position in the x direction; y is the grid 

position in the y direction; rowsize is the length of the 

row. 

All the obstacles have the dimension of one grid cell 

and hence can be arranged in walls, corners, or complex 

labyrinths. These simulations were only performed with 

static obstacles. On a 10x10 grid with obstacles not 

spaced very closely, as shown in Fig. 2, the algorithm 

converges in the optimal case to a final path within 32 

iterations across 10 instances of the same simulation. For 

the next simulation, a labyrinth styled 20x20 grid as 

shown in Fig. 3, has been used, the algorithm converged 

after 62 iterations with a final step size of 26. 

On a 20x20 grid, with the values of the Q initialized to 

zero (Qi < Q∞) the average number of explored steps in 

the first five iterations were 302, compared to  335 when 

Q values were initialized with values from a normal 

distribution over 10 instances. The behavior remained 

consistent across different grid sizes, with the algorithm 

taking an average of 26 steps in the first five iterations, 

compared to 41 steps when initialized with non-zero 

random values. 

 

Figure 2.  10x10 grid simulation results. 
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Figure 3.  20x20 grid simulation results. 

As described in Section 2, choosing a reward discount 

factor (γ >1) resulted in an infinite expected reward and 

the algorithm did not converge to a solution. The 

simulation has been performed over 10 instances and at 

every single instance the algorithm exhibited non-

convergence as shown in Fig. 4(a). Fig. 4(b) shows the 

final path attained for a discount factor of γ = 0.1. Since 

the future rewards are far more discounted, the final path 

is far less optimal compared to that in Fig. 3(c). 

The average time of convergence over 10 iterations 

with γ = 0.9 was evaluated with different learning rates 

over the two different grid sizes. In both cases, as shown 

in Table I, the time of convergence decreases with an 

increase in α. In the simulations with α = 0.1, the 

algorithm has not yielded to an optimal global path. 

 

 

Figure 4.  Results for different γ values. 

TABLE I.  TIME OF CONVERGENCE FOR DIFFERENT LEARNING RATES  

Grid 
Size 

(α = 0.1) (α = 0.5) (α = 0.9) 

10x10 14.9 sec 10.8 sec 7.4 sec 

20x20 97.1 sec 52.3 sec 23.2 sec 

B. Path Finding with A* and Dijkstra Algorithms 

In the following, the classical path finding approaches 

A* and Dijkstra are compared on the same environments 

(example grids with static obstacles) with the previously 

explained Q learning algorithms. The average 

convergence time and the final number of steps (path 

length) over 10 instances were considered the primary 

evaluation criteria in the comparison.  

 

 

Figure 5.  Comparison of paths resulting from Q learning, A* 
algorithm, and Dijkstra algorithm. 

TABLE II.  PERFORMANCE EVALUATION ON A 10X10 GRID  

Grid 

Size(10x10) 
Q - 

learning 

A* algorithm Dijkstra 

algorithm 

Time 9.1 sec 1.85 sec 1.21 sec 

Steps 18 7 9 

TABLE III.  TIME OF CONVERGENCE FOR DIFFERENT LEARNING RATES  

Grid 

Size(20x20) 
Q - 

learning 

A* algorithm Dijkstra 

algorithm 

Time 14.8 sec 2.46 sec 1.71 sec 

Steps 35 6 7 

 

In a static environment, with different grid sizes and 

placement of obstacles, the performances of the A* and 

Dijkstra algorithms are superior to the Q learning 

approach proposed in the paper. A* algorithm, which is 

an expansion of Dijkstra’s algorithm, presented the 

shortest path (7 steps on a 10x10 grid and 6 steps on a 

20x20 grid) in every instance. A* is successful in 

decreasing the total number of states by presenting a 

heuristic estimation of the cost from the current state 

(including start position) to the end goal state (end 

position). Dijkstra’s algorithm on the other hand, due to 

the static nature of the environment in which the 

simulations were conducted, needs the shortest times for 

computing the path (1.21 sec on a 10x10 grid and 1.71 

sec on a 20x20 grid). The algorithm implementation was 

relatively simple and memory efficient compared to that 

of Q learning. 
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IV. CONCLUSIONS 

The Q learning algorithm proposed in the paper solves 

a Markov Decision Process at every step by learning the 

optimal state-action value function or Q-function for 

solving a static path planning problem. The learning 

process is close to that of living beings, as it is based on 

the rewards or the consequence of actions that it takes at 

every decision step. The algorithm is adaptive and does 

not need large labeled datasets or the models of the 

environment to be pre-known and can make intelligent 

decisions in uncertain conditions. The algorithm also 

allows off-policy learning and is convergent. However, 

the algorithm is not memory efficient and is 

computationally intensive compared to the classical path 

finding approaches such as Dijkstra’s and A*. Given a 

static and a known environment, it is preferable to use a 

classical path finding approach as it is faster and performs 

effectively. Such classical path planning algorithms either 

converge to a solution or confirm that a solution is 

unachievable. Hybrid based approaches such as D*, short 

for dynamic A*, can cope with such shortcomings of 

classical path planners and the unpredictability of the 

dynamic environments. 

During this study, the following outlook has emerged: 

Several variations in Q learning such as hyper Q learning, 

Bayesian Q learning, relative Q learning have recently 

been proposed to improve the convergence time, 

maximize the performance, and reduce the number of 

steps to reach the optimal Q-value. The algorithm is also 

limited in its application to discrete spaces, and powerful 

function approximators need to be applied to extend its 

use to continuous environments. Here, Deep Q learning 

approaches can address the issue of the application of Q 

learning to continuous environments, which is an 

important step towards solving many real-world problems. 

Evaluating the performance of such algorithms in 

comparison to the hybrid classical path-based approaches 

is one of the future research scopes that will continue this 

research. 
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