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Abstract—In this study, the focus is on close proximity Time-

to-Collision (TTC) prediction from an Autonomous Robot 

(AR)’s perception system, which is built with an X-band 

Doppler radar for relative speed estimation and infrared 

proximity sensors for direction and distance sensing from a 

moving obstacle. To compensate for the possibility of poor 

ranging performance, an Artificial Neural Network (ANN) 

approach is introduced to enhance prediction accuracy. A 

comparative performance analysis against conventional and 

Linear Regression (LR) methods was also conducted and 

results demonstrated that the predicted TTC with the ANN 

model trained with the Levenberg-Marquardt algorithm 

successfully reduced the average error to 0.155s, which was a 

considerable 50% reduction from the conventional method.   

 

Index Terms—artificial neural network, time-to-collision, 

doppler radar, autonomous robot 

 

I. INTRODUCTION 

Autonomous navigation with mobile robotics has been 

an active area of research since the past two decades [1]-

[3]. Collision avoidance strategy is one crucial feature in 

most Autonomous Robots (ARs) to ensure safe 

maneuvering, particularly in unknown or cluttered 

environments. Unlike many traditional collision avoidance 

methods which convert the distance from an obstacle into 

a binary decision, the Time-to-Collision (TTC) 

information allows for a more reliable judgement as it also 

indicates the probability of collision even when the 

obstacle is detected beyond the robot’s safety radius.  

TTC is calculated by dividing the difference between 

two distance measurements by the rate of change in that 

range. Ultrasonic sensors, infrared (IR) proximity sensors, 

cameras, laser rangefinders, and radars are examples of on-

board sensors that are often employed for distance 

measuring in mobile robotics [4]. Ultrasonic sensors 

calculate the distance from an object using the Time-of-

Flight (ToF) of the sonic wave, which is calculated from 

the moment it is released until the echo is returned. The 

accuracy of these sensors is not affected by colours and 

types of materials or environmental lighting, but due to 

their medium-sized Field of View (FoV) on the azimuth 

plane which is approximately 30°, an array of these 
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sensors in the form of a ring with overlapping FoVs is 

typically required to detect the obstacle’s direction [5]. In 

comparison, IR proximity sensors have a much smaller 

FoV and produce distance measurements at a much faster 

rate, but a large number of these sensors are needed to 

provide full coverage of the robot’s path. Plus, because 

they work on the principle of reflected light waves, their 

precision is affected by both ambient lighting and the 

reflectivity of the item. Laser rangefinders, on the other 

hand, can calculate the distance with far better precision 

utilizing the ToF measurement of pulsed light emitted 

from a laser beam, but they are usually much more 

expensive and may not be suitable for human coexisting 

environments due to eye-safety concerns. Laser 

rangefinders, like IR sensors, are vulnerable to visual 

disturbances, and both may have difficulties in estimating 

the relative speed between the robot and a moving obstacle 

[6]. 
Compared to cameras, laser- and IR-based sensors, 

immunity to environmental conditions and ambient 
lighting is a remarkable benefit of radar-based sensors. 
Continuous-wave Doppler radar for instance relies on 
Doppler effect to detect a moving object at a distance, and 
it is generally used to estimate the object’s speed without 
requiring the Line-of-Sight (LoS) visibility. X-Band 
Doppler radars are low-cost, specialized radars that 
operate at a frequency between 8 and 12Ghz. Their 
radiation power levels are typically low enough to avoid 
potential radiation hazards to the surrounding [7]. A 
comparative study in [8] has shown that the X-band-type 
radar is more suited for collision avoidance with ARs or 
unmanned vehicles due to its ability to provide good 
performance and angular accuracy in short-range moving 
obstacle detections. 

Despite their benefits, X-band Doppler radars are rarely 
used for TTC prediction due to their distance measurement 
inaccuracy [9]. In addition, its radiation which covers 
nearly 80% of its front view prevents it from determining 
the direction of the moving obstacle. While there have 
been advances in forecasting TTC using camera-based 
approaches, the computation for an obstacle approaching 
non-parallel to the subject’s LoS remains difficult [10]. To 
reduce the effects of motion blur which amplify when the 
obstacle is sufficiently close to the subject, a sensor fusion 
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approach combining an IR- or radar-based sensor and a 
camera can offer a solution but at the price of higher cost, 
complexity, and computational load [11], [12], and the 
majority of known methods are mostly devoted to tracking 
the position of obstacles and estimating the likelihood of 
imminent head-on collision situations, with a focus on 
pedestrian egocentric navigation systems [13], [14]. 

In this work, the focus is on close proximity TTC 

prediction from an AR’s perception system. The proposed 

TTC prediction method utilizes an X-band Doppler radar 

for relative speed estimation and IR proximity sensors for 

direction and distance sensing from a moving obstacle. To 

compensate for the possibility of poor ranging 

performance, an Artificial Neural Network (ANN) 

approach is introduced to enhance prediction accuracy. A 

comparative performance analysis against conventional 

and Linear Regression (LR) methods was also conducted 

and results showed that the predicted TTC with the ANN 

model successfully reduced the average error to 0.1s, 

which was a considerable 50% reduction from the 

conventional method.  

II. METHODOLOGY 

A. Autonomous Robot (AR) and Sensors 

In this work, an AR’s perception system for TTC 

prediction was developed using a single X-Band Doppler 

radar and five IR proximity sensors. The radar’s vertical 

and horizontal 3dB beam widths are 36°,  and 72°  
respectively, and its working voltage is 5±0.25V. Fig. 1 

illustrates the positions of the sensors with respect to the 

AR where the antenna patches of the radar were positioned 

facing the robot’s front side while the IR sensors were 

placed equidistant from each other at the robot’s front edge. 

This configuration would create a perception model with a 

detection area as depicted in Fig. 2 where the radiation 

pattern of the radar is represented by the yellow curve. The 

proximity sensors on the other hand have a narrow band as 

represented by the blue beams which were designed to 

have a good detection accuracy within 0.2-1.5m range. 

Fig. 3 illustrates the processing stages within the radar 

module where the Doppler shift which is the output from 

the mixer is generated when there is a difference in the 

received frequency, 𝑓𝑟 , and the transmitted frequency, 𝑓𝑡  
which is set at 10.525 GHz. As the amplitude is in 𝜇V, a 

signal conditioning amplifier is used to amplify the signal 

to a processable level.  

 

Figure 1. The AR’s prototype with on-board Doppler radar and 
proximity sensor. 

 

Figure 2. Illustration on the AR’s detection area on the azimuth plane. 

 

Figure 3. Doppler radar module description. The yellow squares 

denote the antenna patches. 

The amplified signal is then passed through a threshold 

detector to produce digital pulses which will be further 

processed by the microcontroller (MCU). As the velocity 

of motion is proportional to the frequency of Doppler shift, 

it can be calculated using the following Doppler equation 

𝑣 = (𝑐 × 𝑓𝑑) (2 × 𝑓𝑡 × cos 𝛼)⁄  where 𝑓𝑑   refers to the 

Doppler frequency, 𝑐  is the speed of light (i.e., 3 ×
108m/s), and 𝛼  is the angle between the target moving 

direction and the vertical axis of the module. Since this 

work only considers obstacles on the same level as the 

subject (i.e., on the ground), the angle can be assumed 

sufficiently small, so we will have cos 𝛼 → 1, and 

 

𝑣 =
𝑐 × 𝑓𝑑
2 × 𝑓𝑡

= (
𝑐

2𝑓𝑡
)

⏟  
𝛽

𝑓𝑑  

 

Hence 𝛽 is a constant (in m) which can be calculated as 

𝛽 = (3 × 108) (2 × 10.525 × 109) = 0.0143⁄ .  Thus, 𝑣 

(in cm/s) simplifies to 1.43𝑓𝑑. 

The proximity sensors are placed at 𝜃 =
0°, ±35°, ±70° where 𝜃 denotes the angle measured from 

the subject’s front view. The focus of this work is on 

predicting the TTC using the processed signals from the 

radar and proximity sensors as described above with an 

ANN approach for collision risk judgement purposes. 

(1)
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B. TTC Estimation 

With the perception model as described in the previous 

section, the TTC can only be measured once the obstacle 

has entered the subject’s detection area, and it can be 

theoretically calculated as follows: 

 

𝑇𝑇𝐶 =
𝑟

∆𝑉
=

𝑟

𝑉0 − 𝑉𝑠
 

 

where r is the actual Euclidean distance from the subject to 

the obstacle, ∆𝑉 is the relative speed between the subject 

and the obstacle, 𝑉𝑠 is the subject’s velocity and 𝑉0 is the 

obstacle’s velocity. The TTC can be estimated by using the 

speed estimated from the Doppler radar, 𝑣𝑟 , and distance 

estimated from the proximity sensor, �̂�, i.e. 

 

𝜏𝑥 =
�̂�

𝑣𝑟
 

 

The next section provides an overview of the TTC 

prediction methods with ANN. 

C. TTC Prediction with ANN 

An overview of the ANN technique is depicted in Fig. 4 

where a feed-forward neural network was constructed with 

input neurons (denoted by the red square nodes) in the first 

layer, hidden neurons (denoted by the white nodes) in the 

middle layer, and a single neuron (represented by the blue 

node) in the output layer.  

The input neurons will be fed with the parameter 𝑥 =
(𝑥1, 𝑥2) where 𝑥1 = 𝜏𝑥 (the estimated TTC as described in 

(3)) and 𝑥2 = �̂�  (distance obtained from the proximity 

sensor). The ANN will return the predicted TTC at the 

output node as follows: 

τ𝑛𝑛 =∑𝑤1𝑖
2

𝑞

𝑖=1

𝑦𝑖 + 𝑤0  

 

where 𝑞  is the number of hidden neurons,  w1i
2  is the 

weight connecting the hidden neuron's output, 𝑦𝑖  and the 

output neuron, and 𝑤0 is the bias at the output layer. 

 

 

Figure 4. A three-layer ANN with multiple hidden neurons. 

 

To simulate the behavior of biological neurons, each 

neuron in the hidden layer is constructed with a 

logarithmic activation function as follows: 

 

ϕ(σ) =
1

1 + 𝑒−σ
 

 

Thus, in the hidden layer, the output of each neuron can 

be expressed as  

𝑦𝑖 = ϕ(∑𝑤𝑖𝑗
1

𝑛

𝑗=1

𝑥𝑗 + 𝑤0𝑖)  

 

where  𝑤0𝑖 represents the bias for the i-th hidden neuron, 

and 𝑤𝑖𝑗
1  refers to the weight connecting the input 𝑥𝑗 to the 

i-th hidden neuron. 

A standard approach to obtain the optimal structure of 

the ANN (i.e., 𝒘 ∈  ℝ𝑸  , Q=total number of network 

parameters) is via the error backpropagation technique. 

This technique which is an approximate steepest descent 

(SD) algorithm is used to train the network with the 

following update rule 

 
𝒘𝒌+𝟏 = 𝒘𝒌 − δ𝑔𝑘  

 

where δ ∈  (0,1] refers to the learning rate, and 𝑔𝑘 is the 

gradient evaluated at the previous guess 𝒘𝒌, i.e.  

 
𝑔𝑘 =: ∇𝐸(𝒘)|𝒘=𝒘𝒌  

 

with 𝐸(𝒘) being the performance index given by the sum-

of-squared error (SSE): 

 

𝐸(𝒘) =
1

2
∑‖𝑒𝑖‖

2;    𝑒𝑖 = 𝜏𝑎,𝑖  −  𝜏𝑛𝑛,𝑖  

𝑄

𝑖=1

 

 

where (𝜏𝑎,𝑖 , 𝜏𝑛𝑛,𝑖)  denotes the i-th actual-desired output 

pair. This work will compare three types of training 

algorithms; which are Gradient Descent with Momentum 

and Adaptive learning rate (GDMA)[15], Levenberg-

Marquardt (LM)[16], and  Bayesian Regularization 

(BR)[17]. 

D.  Design of Experiment 

The collision risk judgment for the subject is designed 

such that TTC can be accurately predicted when the 

obstacle is moving towards the subject in its heading 

direction, i.e., at 𝜃 = 0° ; and the obstacle is moving 

towards the subject with a trajectory non-parallel to the 

subject's heading direction.  For performance evaluation, a 

video camera with MATLAB software was used to 

measure the actual TTC, 𝜏𝑎.    

The number of datasets recorded for each 𝜃 was 180, 

which resulted in 900 datasets in total. To evaluate the 

generalization capability of the proposed ANN models, the 

datasets were partitioned into training and test sets with a 

9:1 ratio. The performance was evaluated based on the 

Root Mean Squared Error (RMSE), i.e. 

 

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)
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RMSE = √
1

𝑁
∑𝑒𝑖

2

𝑁

𝑖=1

;   𝑒𝑖 = τ𝑖 − τ𝑑𝑖 (18) 

 

With 𝑁 representing the total number of test data. To 

measure how strong the relationship between the predicted 

and actual TTCs is, another performance metric which is 

the coefficient of determination, i.e. 

 

𝑅2 = 1 −
𝐸𝑠𝑠
𝐸𝑡

(19) 

 

was used where 𝐸𝑠𝑠 is the sum-of-squared error, and 𝐸𝑡 is 

the total sum-of-squared. In order to identify the 

effectiveness of the proposed ANN model, the 

performance was also compared with the LR method, 

which is a special case of ANN without the hidden layer. 

III. RESULTS 

This section presents the performance evaluations on 

the TTC prediction method with ANN which will then be 

compared against the results from LR method as well as 

the conventional method as in (3).  With regard to the ANN, 

two types of input features were considered, i.e., 𝑥 = 𝑥1 
where 𝑥1 = 𝜏𝑥 and 𝑥 = (𝑥1, 𝑥2) where 𝑥2 = �̂�. Figs. 5 and 

6 depict the corresponding RMSE and 𝑅2 from the TTC 

predictions based on the ANN method. The RMSE and 

𝑅2resulting from the GDMA-, LM- and BR-based models 

are represented by the yellow, maroon and blue lines 

respectively. The lowest value among all recorded RMSE 

for each 𝑥  is denoted by the labeled marker. From the 

figures, the GDMA-based models do not show any clear 

trend across 𝑥  as well as across the number of hidden 

neurons (i.e., 𝑞). The LM- and BR-based models on the 

other hand illustrate the increase in performance when 𝑞 

gets larger. It is also evident that both LM- and BR-based 

models outperformed the  GDMA-based model for each 𝑥. 

 

 

Figure 5. RMSE against the hidden layer size, q for each training 

algorithm. The lowest RMSE for each type of 𝑥 is denoted by the 

labelled marker. 

 

Figure 6. Coefficient of determination, 𝑅2, against the hidden layer 

size, q for each training algorithm. The highest value of  𝑅2 for each 

type of x is denoted by the labeled marker. 

Comparing the performance between different input 

features, a notable trend can be observed from LM and BR 

methods where the average error when 𝑥 = (𝑥1, 𝑥2)  is 

relatively lower than those when 𝑥 = 𝑥1 . When both 

parameters (i.e., 𝜏𝑥   and �̂�) are considered as the ANN's 

input features, a considerable error reduction can be 

achieved with the LM-based prediction giving the best 

performance as represented by the red plots where 𝑅2 is 

0.9852 and RMSE is only 0.155s. 

Table I records the lowest RMSE and its corresponding 

𝑞 and 𝑅2 for each method considered. From both Figs. 5-

6 and Table I, the most significant error reduction can be 

obtained when 𝑥 = (𝑥1, 𝑥2)  via the LM-based model 

which is 50%, followed by BR- and GDMA-based models. 

This signifies that both data from the radar and proximity 

sensors are equally crucial to enhance the accuracy of the 

prediction. 

TABLE I.   NUMERICAL RESULTS FROM THE TTC PREDICTION 

METHODS WITH LR, ANN, AND THE CONVENTIONAL METHOD. FOR THE 

LR- AND ANN-BASED PREDICTION METHODS, THE RECORDED VALUES 

REFER TO THE LOWEST RMSE AND ITS CORRESPONDING Q AND  
𝑅2 FOR EACH 𝑥 

 Input, 𝒙 

 𝒙 = 𝒙𝟏 𝒙 = (𝒙𝟏, 𝒙𝟐) 

Method q RMSE 𝑹𝟐 q RMSE 𝑹𝟐 

Conventional - 0.3103 0.95 - - - 

LR - 0.2698 0.946 - 0.2644 0.9577 

ANN (GDMA) 13 0.2175 0.97 5 0.1740 0.9812 
ANN (LM) 18 0.1896 0.98 16 0.1553 0.9852 

ANN (BR) 19 0.1885 0.98 19 0.1555 0.9851 

 

In order to observe the performance difference between 

the TTC prediction using the conventional method and the 

best methods from LR and ANN, the squared error, which 

is used to penalize the large error or outliers is plotted 

against 𝜃  as shown in Fig. 7. Despite the improvement 

seen from the LR-based prediction (i.e., via comparison 

between the top and middle plots), a number of outlier 

errors can still be seen particularly when 𝜃 = 70°; and 𝜃 =
35°. Interestingly, most errors were greatly suppressed via 

the ANN method as depicted in the bottom plot. A similar 
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trend follows when the squared error is plotted against the 

actual TTC as visualized in Fig. 8 where the errors from 

the ANN method are kept close to zero across all 𝜏𝑎. 

 

Figure 7. Squared error against angle, 𝜃 from the TTC prediction with 

the conventional method (top) and the best methods from LR (middle) 
and ANN (bottom). 

 

Figure 8. Squared error against actual TTC, 𝜏𝑎, from the TTC 

prediction with the conventional method (top) and the best methods 
from LR (middle) and ANN (bottom). 

Table II presents the average error magnitude for each 

method according to actual TTC intervals where lower 

TTC values correspond to a higher probability of collisions. 

Although there is no significant trend that can be observed 

when the errors are evaluated across the intervals, the 

ANN method consistently outperforms the other two 

methods for each interval where the average error for the 

most crucial interval (i.e. (0.8,2]) is only 0.1651s, which is 

64.4% reduction from the conventional TTC prediction 

method.  

TABLE II.  AVERAGE ERROR MAGNITUDE FOR EACH METHOD 

ACROSS ACTUAL TTC INTERVALS 

 Actual TTC, 𝝉𝒂 intervals (s) 

Method (𝟎. 𝟖, 𝟐] (𝟐, 𝟑] (𝟑, 𝟒] (𝟒, 𝟓] 

Conventional 0.4647 0.3749 0.2575 0.2545 

LR 0.2837 0.1306 0.1300 0.0557 

ANN  0.1651 0.1117 0.0543 0.0337 

 

IV. CONCLUSION AND FUTURE WORKS 

This study has established a TTC prediction method for 

an AR using a Doppler radar and proximity sensors 

suitable for collision avoidance with an incoming obstacle. 

The comparative analysis has demonstrated that the ANN 

model trained with the LM algorithm is able to 

significantly reduce the error compared to those trained 

with BR and GDMA as well as models based on LR and 

conventional methods.  

To further enhance the collision risk judgement 

technique, future work will focus on applying other 

machine learning methods such as Gaussian process 

models and projecting the TTC rate to determine the 

direction of multiple moving obstacles. An intelligent 

image sensor can also be included in the perception system 

to alert the subject on obstacles with the highest risk of 

impact during conflict occurrences. 

CONFLICT OF INTEREST 

The authors declare no conflict of interest. 

AUTHOR CONTRIBUTIONS 

All authors conducted the research, I. Arrouch, 

conducted the experiments; I. Arrouch and N. S. Ahmad 

analyzed the data; I. Arrouch wrote the paper; N. S. Ahmad, 

P. Goh, and J. M. Saleh validated the results; N. S. Ahmad 

supervised the project; all authors had approved the final 

version.  

ACKNOWLEDGMENT 

The authors would like to thank Universiti Sains 

Malaysia for the financial support under Research 

University (RUI) Grant (1001/PELECT/8014104). 

REFERENCES 

[1] A. Loganathan, N. S. Ahmad, and P. Goh, “Self-adaptive filtering 

approach for improved indoor localization of a mobile node with 
Zigbee-based RSSI and odometry,” Sensors, vol. 19, no. 21, 4748, 

2019. 

[2] J. H. Teo, A. Loganathan, P. Goh, and N. S. Ahmad, “Autonomous 

mobile robot navigation via RFID signal strength sensing,” 

International Journal of Mechanical Engineering and Robotics 

Research, pp. 1140–1144, 01 2020. 

[3] N. S. Ahmad, “Robust H∞ -fuzzy logic control for enhanced 

tracking performance of a wheeled mobile robot in the presence of 

uncertain nonlinear perturbations,” Sensors, vol. 20, no. 13, pp. 1–

27, 2020. 
[4] F. Rosique, P. J. Navarro, C. S. Fern ández, and A. Padilla, “A 
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