
Deep Reinforcement Learning Based

Autonomous Driving with Collision Free for

Mobile Robots

Kiwon Yeom
Department of Human Intelligence and Robot Engineering, Sangmyung University, South Korea

Email: pragman@naver.com

Abstract—The path planning of the mobile robots cannot be

separated from the effectiveness of navigation and collision-

free motion. In addition, dynamic path planning of unknown

environment has always been a challenge for mobile robots

since lack of information for the surrounding environment.

This paper proposes a Deep Reinforcement Learning (DRL)

based collision free path planning architecture for mobile

robots. As navigating the environment, the mobile robots can

figure out the unknown environment through DRL and the

predicted values of control parameters from DRL are used to

inputs for the mobile robots in the next time step. In addition,

the architecture does not need any supervision. The

experimental results of the architecture is compared to well-

known approaches and shows that the architecture can be

successfully applied to solve the complex navigation problem

in the dynamic environments.

Index Terms—deep reinforcement learning, autonomous

navigation, collision free, path planning, mobile robot.

I. INTRODUCTION

One of the essential and important requisites for the

mobile robots is secure navigation in a given environment.

The course of the navigation from the starting position to

the goal position is called path, and the path planning is to

design an optimal path that the mobile robot can

successfully travel without collision or failures. For the

purpose of this, various path planning methods and control

algorithms have been suggested [1], [2] and [3].

In general, the navigation performance of the mobile

robot is related to the generated path from the path planner

and mainly relies on the information of the surrounding

environment which the mobile robot can achieve.

However, the mobile robot usually cannot acquire the

necessary information of the surrounding environment as

well as complete their learning in complicate environments

[4] and [5]. Therefore, it is required a new path planning

architecture which can make a valid path using sparse and

insufficient surrounding information so that the mobile

robot can quickly adapt to the environment and

autonomously drive to the destination with no collision.

Recently, machine learning and artificial intelligence

based methods have been proposed [6], [7], [8] and [9]. In

Manuscript received October 14, 2021; revised December 13, 2021.

Corresponding author: Kiwon Yeom, +82-41-550-5270

particular, Deep Neural Networks (DNN) has drawn

attention to researchers and there are various applications

related to mobile robot’s path planning [10], [11], [12],

[13], [14].

In addition, to improve the navigation performance of

mobile robots, several fusion algorithms such as DNN and

PID(Proportional-Integral-Derivatives) were devised [15],

[16]. Although the performance of these applications are

not outstanding, the proposed methods had been

successfully adopted to the mobile robot’s path planning.

Unlike the other supervised learning methods such as

regression and back propagation, the DNN based method

has obvious advantages in path planning and requires less

prior information about the environment as well.

From this observation, this paper proposes Deep

Reinforcement Learning based path planning architecture

for the mobile robot. In this paper, Reinforcement

Learning (RL) takes into account the problem of agents

(software agent, autonomous robot itself, etc) learning how

to achieve their goals or make decisions. Then, Deep

Learning (DL) is used for the agents to decide what actions

should be taken for optimizing the objective function such

as cost, loss, or etc. In this paper, the proposed algorithm

maps the current state from deep neural networks into the

action of the deep reinforcement learning. Then, the state

information is updated through the enhancement function

for the next state.

This paper starts with introducing the kinematic bicycle

model of the car-like mobile robot in Section II, and

describes the DL architecture in Section III. This paper

presents the how the DL maps into RL in Section IV, and

shows the experimental results in Section V. Finally, this

paper verifies the effectiveness of the proposed

architecture by comparing with other path planning

algorithms in Section IV and draws the conclusions.

II. KINEMATIC BICYCLE MODEL FOR CAR-LIKE

MOBILE ROBOTS

In this paper, the path planning problem is considered

for the car-like mobile robot with four wheels which the

front wheels are for steering and the rear wheels are fixed

on the chassis as shown in Fig. 1.

338

International Journal of Mechanical Engineering and Robotics Research Vol. 11, No. 5, May 2022

© 2022 Int. J. Mech. Eng. Rob. Res
doi: 10.18178/ijmerr.11.5.338-344

In this paper, a general kinematic bicycle model is taken

into account for the mobile robot. This section simply

recalls the fundamental formulations from [1] and more

details should be referred in [6] and [7].

A four-wheeled vehicle, which consists of the fixed rear

wheels and front steering wheels, can be analogous to the

general bicycle since the real wheel of the bicycle is fixed

to the body and the front wheel is used to handle the

direction. The pose of the vehicle is described by the

coordinate frame B that the origin is located on the center

of the rear axle as shown in Fig. 1.

Figure 1. Bicycle model of a car-like mobile robot

(figure curtesy of [12]).

The kinematic bicycle model can be called the front

wheel steering model since the orientation of the vehicle is

decided by the steering angle of the front wheels with

respect to the direction. In contrast, the rear wheels are

linked together through an axle which is fixed to the

vehicle and rotated with no motion of rotation such as roll,

pitch and yaw. In addition, for the directional control of the

vehicle, the plane which the front wheels contact can rotate

with respect to the vertical axis from the ground as the

handle is turned.

Since the autonomous mobile robot can be usually

described by the continuous-time nonlinear systems, in

this paper the control mechanism for the mobile robot is

approximated to the simplified control model for the

general bicycle as shown in Fig. 2.

Figure 2. Simplified kinematic bicycle model for the mobile robot
(figure curtesy of [13]).

In Fig. 1, the control parameters, which explains the

status of the mobile robot, can be described by the

generalized coordinates as follows

 𝑞 = (𝑥, 𝑦, 𝜃) ∈ 𝐶 (1)

where C ⊂ R2× S1. C represents the configuration space of

the mobile robot and S1 means unit circle with a set of

angles [0, 2π).

For generating rolling motion of the mobile robot, the

robot must rotate the wheels about central shafts (or axles).

Each center point of the axle lies along their left or right

wheel axis, and is commonly located on the center of

individual axle.

In Fig. 1, the dashed lines are represented along the

direction which the wheels cannot move. In addition, the

lines are intersected at a virtual point which is known as

the ICR (Instantaneous Center of Rotation) that is the plane

rotation center for the rotation of the mobile robot. Thus,

the extension line of the reference point which is lies on

the center of the mobile robot with orange color must be

intersected at the ICR when the mobile robot makes a left

or right turn.

The mobile robot has angular velocity and it is

represented with respect to the linear velocity 𝑣 as follows

 𝜃̇ =
𝑣

𝑅𝐵
 (2)

And by simple geometric operation, the turning radius

is

𝑅𝐵 = 𝐿 / tan𝛾 (3)

where L is the length between the front and rear wheel

bases. This means that the turning circle increases as the

length is larger. Since the steering angle γ is mechanically

restricted, the maximum value of the steering angle can be

found as 𝑅𝐵 is the minimum value.

The lateral dynamics of bicycle model is as follows

 𝑥̇ = 𝑣𝑐𝑜𝑠(𝜓 + 𝛽) (3)

 𝑦̇ = 𝑣𝑠𝑖𝑛(𝜓 + 𝛽) (4)

𝜓̇ =
𝑣

𝑙𝑟
𝑠𝑖𝑛𝛽 (5)

𝑣̇ = 𝛼 (6)

 𝛽 = 𝑡𝑎𝑛−1 (
𝑙𝑟

𝑙𝑓+𝑙𝑟
𝑡𝑎𝑛𝛿𝑓) (7)

where x and y are the coordinates of the center of mass of

the mobile robot which are represented in an inertial frame

(X, Y). ψ is the heading angle of the mobile robot in an

inertial frame and v is the speed of the center of mass of

the mobile robot. lf and lr describe the distance from the

center of the mass of the mobile robot to the front and rear

axles, respectively.

339

International Journal of Mechanical Engineering and Robotics Research Vol. 11, No. 5, May 2022

© 2022 Int. J. Mech. Eng. Rob. Res

β is the angle from the center of mass with respect to the

longitudinal axis of the mobile robot. It is also the same as

the angle of the current velocity v of the mobile robot.

α is the acceleration of the center of mass for the mobile

robot. The direction of the acceleration is the same as the

one of velocity.

In this lateral dynamics of bicycle model, the major

control inputs are considered as the front and rear steering

angles, namely, δf and δr. Since in this article the rear

wheels are fixed to the chassis and assumed that there is no

slip from rotation, the mobile robot has only one control

parameter. In other words, the rear steering parameter

should be zero (namely, δr = 0).

It should be considered in terms of the inertia for more

accurate dynamics of the mobile robot as shown in Fig. 3.

Figure 3. Velocity kinematic bicycle model with lateral forces.

From Eq. 3 to Eq. 5 with respect to the inertia of the

dynamic bicycle model can be defined in the same manner

as those in the velocity kinematic bicycle model (refer [17],

for more specific descriptions).

The differential equations for the mobile robot with

inertia are as follows

 𝜓̈ =
1

𝐽𝑧
(𝐹𝑦𝑓𝑙𝑓 − 𝐹𝑦𝑟𝑙𝑟) (8)

𝑣𝑥̇ =
1

𝑚
(𝐹𝑥𝑓 + 𝐹𝑥𝑟 + 𝜓̇𝑣𝑦) (9)

𝑣𝑦̇ =
1

𝑚
(𝐹𝑦𝑓 + 𝐹𝑦𝑟 − 𝜓̇𝑣𝑥) (10)

where 𝜓̈ describes the ratio of the yaw rotation. m and Jz

represent the mass and yaw inertia of the mobile robot,

respectively. Fy,f and Fy,r describe the lateral forces of tires

at the front and rear wheels, respectively. In addition, as

mentioned before, the corresponding coordinate frame is

aligned with the plane of the paired wheels.

For the linear tire model, Fyi is defined as follows

𝐹𝑦𝑖 = −𝐾𝑦𝑖𝛽𝑖 (11)

where i ∈ {f, r}, αi is the tire slip angle and Cαi is the tire

cornering stiffness. However, as mentioned in Section II,

the tire parameters are considered in this article.

The tire slip angles are estimated and assuming small

angles and they can be approximated as follows

𝛽𝑓 =
𝑣𝑦+𝑙𝑓𝜓̇

𝑣𝑥
− 𝛿𝑓 (12)

𝛽𝑟 =
𝑣𝑦+𝑙𝑟𝜓̇

𝑣𝑥
− 𝛿𝑟 (13)

III. DESIGN OF ARTIFICIAL NEURLA NETWORK

The proposed DRL based controller consists of four

elements such as sensing data, sideslip angles, vehicle

controller, and DRL processor as shown in Fig. 4.

DRL processor predicts parameters for vehicle control

such as velocity (𝑣) and steering angle (𝜃), and the

generated values are used to handle the mobile robot by the

vehicle controller.

Figure 4. Block diagram of the DRL based mobile robot navigation.

The path planner generates the course of the navigation

from the start position to the goal position.

In this paper, ANN comprises multiple layers with

multiple neurons, which are divided into an input layer, a

hidden layer, and an output layer as shown in Fig. 5.

Figure 5. Demonstration of neural networks with four hidden layer

The input vector is should be:

𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑗 , … , 𝑥𝑚] 𝑗 = 1, 2, 3, . . . 𝑚 (14)

And the output vector should be:

𝑦 = [𝑦1, 𝑦2, … , 𝑦𝑘 , … , 𝑦𝑛] 𝑘 = 1, 2, 3, . . . 𝑛 (15)

The neuron input of the hidden layer is as follows

340

International Journal of Mechanical Engineering and Robotics Research Vol. 11, No. 5, May 2022

© 2022 Int. J. Mech. Eng. Rob. Res

𝑙𝑗
[𝑖]

= 𝑓(𝑛𝑒𝑡𝑗
[𝑖]

) (16)

𝑛𝑒𝑡𝑗
[𝑖]

= ∑ (𝑤𝑖𝑗
[𝑖]

∙
𝑗−1
𝑖=1 𝑙𝑗

[𝑖−1]
+ 𝑏𝑗

[𝑖]
) (17)

𝑖 = 1,2, … , 𝑝, 𝑗 = 1,2, … , 𝑞

where i is the number of neurons in layer ith and j is the

number of layers, and 𝑤𝑖𝑗
[𝑖]

 is weights for the connecting

nodes in the (j − 1)th layer with the nodes of jth layer, and b

is the bias for all nodes in the jth layer.

In this model, the transfer function of the input layer to

the output layer uses the hyperbolic tangent transfer

function (TANSIG), related to a bipolar sigmoid which has

an output in the range of -1 to +1. The output layer uses

linear transfer function (Purelin). For the learning, this

paper uses Traingdx which is a network training function

that updates weight and bias values according to gradient

descent momentum and an adaptive learning rate. The

performance is evaluated using Mean Squared Error

(MSE), where the number of epoch is set to 1000 times and

the accuracy is set to 0.0001.

In this paper, a deep neural network consists of a fully

connected and multilayered that all the nodes (or neurons)

in one layer are connected to the neurons in the next layer

as shown in Fig. 4. Since fully connected networks is

structure agnostic, in this paper, there are no special

assumptions needed to be made about the input.

IV. MODEL OF REINFORCEMENT LEARNING

In this section, the Reinforcement Learning (RL) is

introduced for the proposed DRL based controller. Further

readings of the reinforcement learning should be referred

in [15]. Like the general RL, the proposed DRL has the

same RL structure as shown in Fig. 6.

Figure 6. The schematic diagram of the reinforcement learning model.

Agent, which means the mobile robot in this paper,

acquires the knowledge or information from a sequence of

actions (𝑎𝑡) such as exploration of surrounding

environment. Every time the agent executes an action, the

agent get feedback which is the evaluation of the action.

The evaluation is the reward for the agent and it is used

as an indicator which describes the result with respect to

the action. Therefore, the agent continuously tries to find

the most impact action so as to get maximum reward. This

process called ’trial and error’ and in turn the optimal

sequence of actions which the cost (or loss) function

becomes the minimum value can be achieved. The other

words, the agent can get the highest reward value [18].

Since the reward value indicates the quality of the action,

the larger the value is, the better the performed action is.

Otherwise it will be degenerated or has a poor impact.

Therefore, the interaction process with the surrounding

environment to acquire good rewards by the agent can be

regarded as a Markov Decision Processing (MDP) [18].

In this paper, the main objective is for the mobile robot

to navigate the unknown environment with collision free.

Therefore, the policy of action can be avoiding the

obstacles in the surrounding environment.

At each timestamp 𝑡 , system parameters are given:

sensing data 𝑠𝑡, a local goal position 𝑔𝑡 at the 2D cartesian

coordinate system, the linear velocity 𝑣𝑡 and angular

velocity 𝜔𝑡 of the mobile robot. The policy which the

mobile robot can select to avoid obstacles provides an

action command as follows

π =(𝑎𝑡 , 𝑠𝑡) ∈ Π (18)

where Π represents all sets of spatial states. In the policy

set, it is required to obtain the strategy 𝜋 ∗ called the

optimal policy. As long as the random variable set

{Π1, Π2, Π3, … , Π𝑡} satisfies the following equation, the

set will have Markov attributes.

𝑃𝑟(Π𝑡+1 = 𝑠′| Π𝑡 = 𝑠𝑡 , Π𝑡−1 = 𝑠𝑡−1, … , Π1 = 𝑠1)
(19)

= 𝑃𝑟(Π𝑡+1 = 𝑠′| Π𝑡 = 𝑠𝑡)

Once the state s is determined, the actions before the

state are not correlated to the actions after the state. In

addition, the actions are independent of each other.

MDP is defined as the tuple (Π, O, A, T, R, γ) as follows

𝜆(𝑠′|𝑠, 𝑜, 𝑎, 𝑡, 𝑟, 𝛾))

(20)

= 𝑃𝑟 (Π𝑡+1 = 𝑠′| Π𝑡 = 𝑠, 𝑂𝑡 = 𝑜, 𝐴𝑡 = 𝑎,
 𝑇𝑡 = 𝑡, 𝑅𝑡 = 𝑟, 𝛾)

Once the state s is determined, the actions before the

state are not correlated to the actions after the state. In

addition, the actions are independent of each other.

MDP is defined as the tuple (Π, O, A, T, R, γ) as follows

𝜆(𝑠′|𝑠, 𝑜, 𝑎, 𝑡, 𝑟, 𝛾))

(21)

= 𝑃𝑟 (Π𝑡+1 = 𝑠′| Π𝑡 = 𝑠, 𝑂𝑡 = 𝑜, 𝐴𝑡 = 𝑎,
 𝑇𝑡 = 𝑡, 𝑅𝑡 = 𝑟, 𝛾)

where the state set S, the action set A, the reward function

R, the state transition function T, and the observation

function 𝑂(𝑜|𝑠′, 𝑎). The agent cannot determine the state

set S but has to rely on observation function 𝑂(𝑜|𝑠′, 𝑎).

After each state transition, the robot receives an immediate

reward 𝑅(𝑜|𝑠, 𝑎) [19].

The state of the environment changes based on the

robot’s actions 𝑎 ∈ 𝐴, which are in this paper the velocity

and steering angle commands(𝑣, 𝜃), and the probability of

transition 𝑇(𝑠′ |𝑠, 𝑎). The output of sequential decisions

341

International Journal of Mechanical Engineering and Robotics Research Vol. 11, No. 5, May 2022

© 2022 Int. J. Mech. Eng. Rob. Res

can be considered as a trajectory l from the start (previous)

position 𝑝0 to the goal (current) position 𝑝𝑔 , where 𝑡𝑔 is

the travel time to the current position. The objective of the

control is to minimize the actual traveling time without any

collision with obstacles. Therefore, the objective function

can be written as follows

𝑎𝑟𝑔 𝑚𝑖𝑛
𝜋𝛩

𝛹 [𝑡𝑔|𝑎𝑡 = 𝜋𝜃(𝑜𝑡),

𝑝𝑡 = 𝑝𝑡−1 + 𝑎𝑡 · ∆𝑡] (22)

where Θ is model parameters.

In the MDP problem, a policy 𝜋(𝑎|𝑠) specifies the

probability of mapping state s to action 𝑎 and the

stochastic policy 𝜋(𝑎𝑡|𝑜𝑡) can be evaluated by 𝑉𝜋 which

is the state value function as follows

𝑉∗(𝑠𝑡 , 𝑎𝑡) = 𝑚𝑎𝑥
𝜋

𝛹𝑉𝜋(𝑠, 𝑎) (23)

The reward function in this paper considers task

completion (𝑅𝑔), the collision(𝑅𝑐), and the progress (𝑅𝑝)

towards the goal position:

𝑅(𝑠, 𝑎) = 𝑅𝑔(𝑠, 𝑎) + 𝑅𝑓𝑖𝑛(𝑠, 𝑎)

+𝑅𝑐(𝑠, 𝑎) + 𝑅𝑝(𝑠, 𝑎) (24)

If the mobile robot reaches its goal, it is rewarded by

𝑅𝑔(𝑠, 𝑎) as follows

𝑅𝑔(𝑠, 𝑎) = {
 ζ if the goal is achieved

−ζ if a collison accures
0 otherwise

 (25)

𝑅𝑔(𝑠, 𝑎) becomes a large positive value if the mobile

robot arrives at a location within a 0.5m radius of the final

goal.

𝑅𝑝𝑡(𝑠, 𝑎) = {
−ς if the distance < steering radius

0 otherwise

𝑅𝑝𝑡(𝑠, 𝑎) becomes a large negative value if the distance

between the robot and the nearest obstacle is less than

steering radius since the collision can be occurred.

𝑅𝑐(𝑠, 𝑎) is a fixed negative reward for the mobile robot to

finish an episode as fast as possible. The fourth reward

component is used to speed up the training process as

follows

𝑅𝑝(𝑠, 𝑎) = 𝜂 ∙ 𝐷(𝑠, 𝑎) (26)

where 𝐷(𝑠, 𝑎) is the cost function according to the

distance between the mobile robot and the subgoal position

at time 𝑡 and η is a scaling factor in the range of 0 to 1.

V. EXPERIMENTAL ENVIRONMENTS

In order to verify the performance of the proposed

method, this paper constructed a 2D grid map model and

the simulation environment in Python with Tensorflow

libray.

The simulation program was developed using Python

programming language. The computer configuration: 4-

core Intel i5 7400 CPU@3.20 GHz, 16G memory,

Windows 10 operating system.

As shown in Fig. 7, the chassis of the mobile robot

applied a car-like design with 4 wheels. Since the axle of

the rear wheels is fixed to the body, the rear wheels can

only rotate back and forth without pitch, roll and yaw.

The directional control of the front wheels is based on a

simplified Ackerman steering geometry. In addition, the

front wheels are forced to maintain parallel alignment at

all times by an axle. The axle pivots about its center on a

vertical steering rod, which is connected to a steering

servo-motor through a rack and pinion system. The servo-

motor is controlled by a microcontroller (Raspberry Pi 3

with Quad Core 1.2GHz) using a pulse-width modulation

(PWM) signal and is capable of steering angles of −45°≤ δ

≤ 45° about front wheels.

VI. RESULTS AND DISCUSSIONS

To train the neural network and generate a policy to

follow a global path without collisions, we sampled the

start and goal positions randomly across the free space

with short distance at the beginning stage and later

increased the distance including several obstacles. After

training, we performed experiments to evaluate the policy

learned in terms of the success rate, which means that the

mobile robot reached the goal position without any

collisions and completion time. The performance was

compared with dynamic window approach in ROS.

Figure 7. The autonomous car-like mobile robot platform.

A path from (0,0) to (200, 200) is used to validate the

proposed DRL algorithm. In this simulation, Dynamic

Window Approach (DWA), which is an online collision

avoidance strategy for mobile robots, is also used for the

purpose of the performance comparison [19].

As shown in Fig. 8, both DWA and DRL algorithms

reached the destination without any collisions.

342

International Journal of Mechanical Engineering and Robotics Research Vol. 11, No. 5, May 2022

© 2022 Int. J. Mech. Eng. Rob. Res

Figure 8. Experimental results of different path planning algorithms.

In addition, all methods effectively avoided obstacles

under the different and more complex conditions as shown

in Fig. 9.

Figure 9. Path tracking in complex environments.

Comparing DWA, it was found that the proposed

method efficiently reduced the number of path steps about

21.3% on average after 10 tests.

Figure 10. Path convergence curve.

As shown in Fig. 10, the proposed algorithm has

improvement over DWA in terms of success rate to reach

the goal position.

Figure 11. Success rate.

For each environment in Fig. 11, 400 runs were

performed with DWA and the proposed algorithm. in each

testing environments. The success rates for the scenario 1

are lower than other scenarios. The reason we believe is

that enough information was not retrieved due to short

learning epoch. However, after tuning the epoch the DWA

and the proposed algorithm successfully reached the goal

position over 85% for the scenario 2. As shown in Fig. 12,

The success rate of the scenario 3 is conspicuously lower

than that of other scenarios due to the space complexity.

The proposed DRL based algorithm has better

performance for all scenarios with respect to average

execution time and path length.

Figure 12. Performance evaluation with average of 400 runs.

The path length of DWA has 10% longer on average

than the proposed algorithm. However, the proposed

algorithm has more time to complete navigation tasks,

which shows the mobile robot controlled much cautiously

about unknown environment as shown in Fig. 12.

VII. CONCLUSIONS

This article introduced a Deep Reinforcement Learning

(DRL) based path planning architecture which was used

for trajectory following of a car-like mobile robot. This

paper described the bicycle kinematic model for the

mobile robot, DRL controller for tracking a car-like mobile

robot. The framework that combines the DRL processor

and vehicle controller with the deep neural network was

described. In order to demonstrate the feasibility of the

proposed method in path planning without collisions, the

controller was applied to the different environment to

reach the goal position.

Experimental results showed that the proposed DRL

controller has good performance and make path planning

results more practical. Generally, the DRL controller

reduced the tracking errors and path length about 20%

compared to the DWA controller in this article. For the

future work, the study of effectiveness of the DRL

controller should be performed in more complex

environments with other control strategies.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

343

International Journal of Mechanical Engineering and Robotics Research Vol. 11, No. 5, May 2022

© 2022 Int. J. Mech. Eng. Rob. Res

AUTHOR CONTRIBUTIONS

The author had conducted the research and had

approved the final version.

REFERENCES

[1] N. H. Amer, H. Zamzuri, K. Hudha, and Z. Kadir. “Modelling and
control strategies in path tracking control for autonomous ground

vehicles: A review of state of the art and challenges,” Journal of

Advanced Robot and System, vol. 86, pp. 225-254, 2017.
[2] C. Shen, Y. Shi, and B. Buckham, “Trajectory tracking control of

an autonomous underwater vehicle using Lyapunov-based model

predictive control,” IEEE Transactions on Industrial Electronics,
vol. 65, no 7, pp. 5796-5805, 2017.

[3] X. Yu, W. He, H. Li, and J. Sun, “Adaptive fuzzy full-state and

OutputFeedback control for uncertain robots with output constraint,”
IEEE Transaction on Systems, Man, and Cybernetics, 2020.

[4] A. V. Duka, “Neural network based inverse kinematics solution for

trajectory tracking of a robotic arm,” Procedia Technol., vol. 12, no.
1, pp. 20-27, Jan. 2014.

[5] W. Gao, D. Hsu, W. S. Lee, S. Shen, and K. Subramanian,

“Intention-net: Integrating planning and deep learning for goal-
directed autonomous navigation,” in Proc. CoRL, 2017.

[6] K. W, Yeom, “Kinematic and dynamic controller design for

autonomous driving of car-like mobile robot,” International
Journal of Mechanical Engineering and Robotics Research, 2018.

[7] C. Urmson, J. Anhalt, D. Bagnell, C Baker, and R. Bittner, et al.,

“Autonomous driving in urban environments: Boss and the urban
challenge,” Journal of Field Robotics, vol. 25, no. 8, pp. 425–466,

2008.

[8] N. H. Amer, H. Zamzuri, K. Hudha, and Z. Kadir, “Modelling and
control strategies in path tracking control for autonomous ground

vehicles: a review of state of the art and challenges,” Journal of

Intelligent & Robotic Systems, vol. 86, no. 2, pp. 225-254, 2017.
[9] B. Karlik, A. V. Olgac, “Performance analysis of various activation

functions in generalized MLP architectures of neural networks,” Int.

J. Artif. Intell. Expert Syst., vol. 1, no. 4, pp. 111-122. 2011.
[10] S. Bansal, V. Tolani, S. Gupta, J. Malik, and C. Tomlin,

“Combining optimal control and learning for visual navigation in
novel environments,” In CoRL, 2019.

[11] K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep

reinforcement learning in a handful of trials using probabilistic
dynamics models,” arXiv preprint arXiv:1805.12114, 2018.

[12] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Debiak, C.

Dennison, D. Farhi, Q. Fischer, S. Hashme, C. Hesse, et al. Dota 2

with large scale deep reinforcement learning. arXiv preprint
arXiv:1912.06680, 2019.

[13] Z. Lin, Y. J. Zhang, and Y. F. Li, “Path planning for indoor mobile

robot based on deep learning," Optik 219 (2020): 165096, 2020.
[14] S. M. Sombolestan, A. Rasooli, and S. Khodaygan, “Optimal path-

planning for mobile robots to find a hidden target in an unknown

environment based on machine learning,” J Ambient Intell Human
Comput, vol. 10, pp. 1841-1850, 2019.

[15] Zafar, M. Nayab, and J. C. Mohanta, "Methodology for path

planning and optimization of mobile robots: A review," Procedia
Computer Science, vol. 133, pp. 141-152, 2018.

[16] W. Farag, “Complex trajectory tracking using PID control for

autonomous driving,” Int. J. ITS Res. vol. 18, pp. 356–366, 2020.
[17] W. Liu, C. Chen, G. Knoll, “Gaussian process based model

predictive control for overtaking in autonomous driving,” Frontiers

in Neurorobotics, vol. 15, 2021.
[18] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D.

Quillen, E. Holly, M. Kalakrishnan, V. Vanhoucke, et al. “Qt-opt:

Scalable deep reinforcement learning for vision based robotic
manipulation,” In CoRL, 2018.

[19] A. Özdemir, V. Sezer, “A hybrid obstacle avoidance method:

follow the gap with dynamic window approach,” in Proc. 2017
First IEEE International Conference on Robotic Computing (IRC),

2017.

Copyright © 2022 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any
medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Kiwon Yeom is a professor in the department

of human intelligence and robot engineering,
Sangmyung University, South Korea. He is

interested in intelligent robot control and
swarm robot control. He is now pursing the

intelligent control algorithm for the identical

and multiple robots to be used in the disaster
situation.

344

International Journal of Mechanical Engineering and Robotics Research Vol. 11, No. 5, May 2022

© 2022 Int. J. Mech. Eng. Rob. Res

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

