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Abstract—The path planning of the mobile robots cannot be 

separated from the effectiveness of navigation and collision-

free motion. In addition, dynamic path planning of unknown 

environment has always been a challenge for mobile robots 

since lack of information for the surrounding environment. 

This paper proposes a Deep Reinforcement Learning (DRL) 

based collision free path planning architecture for mobile 

robots. As navigating the environment, the mobile robots can 

figure out the unknown environment through DRL and the 

predicted values of control parameters from DRL are used to 

inputs for the mobile robots in the next time step. In addition, 

the architecture does not need any supervision. The 

experimental results of the architecture is compared to well-

known approaches and shows that the architecture can be 

successfully applied to solve the complex navigation problem 

in the dynamic environments.  

 

Index Terms—deep reinforcement learning, autonomous 

navigation, collision free, path planning, mobile robot.  

 

I. INTRODUCTION 

One of the essential and important requisites for the 

mobile robots is secure navigation in a given environment. 

The course of the navigation from the starting position to 

the goal position is called path, and the path planning is to 

design an optimal path that the mobile robot can 

successfully travel without collision or failures. For the 

purpose of this, various path planning methods and control 

algorithms have been suggested [1], [2] and [3].  

In general, the navigation performance of the mobile 

robot is related to the generated path from the path planner 

and mainly relies on the information of the surrounding 

environment which the mobile robot can achieve. 

However, the mobile robot usually cannot acquire the 

necessary information of the surrounding environment as 

well as complete their learning in complicate environments 

[4] and [5]. Therefore, it is required a new path planning 

architecture which can make a valid path using sparse and 

insufficient surrounding information so that the mobile 

robot can quickly adapt to the environment and 

autonomously drive to the destination with no collision. 

Recently, machine learning and artificial intelligence 

based methods have been proposed [6], [7], [8] and [9].  In 
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particular, Deep Neural Networks (DNN) has drawn 

attention to researchers and there are various applications 

related to mobile robot’s path planning [10], [11], [12], 

[13], [14].  

In addition, to improve the navigation performance of 

mobile robots, several fusion algorithms such as DNN and 

PID(Proportional-Integral-Derivatives) were devised [15], 

[16]. Although the performance of these applications are 

not outstanding, the proposed methods had been 

successfully adopted to the mobile robot’s path planning. 

Unlike the other supervised learning methods such as 

regression and back propagation, the DNN based method 

has obvious advantages in path planning and requires less 

prior information about the environment as well.  

From this observation, this paper proposes Deep 

Reinforcement Learning based path planning architecture 

for the mobile robot. In this paper, Reinforcement 

Learning (RL) takes into account the problem of agents 

(software agent, autonomous robot itself, etc) learning how 

to achieve their goals or make decisions. Then, Deep 

Learning (DL) is used for the agents to decide what actions 

should be taken for optimizing the objective function such 

as cost, loss, or etc. In this paper, the proposed algorithm 

maps the current state from deep neural networks into the 

action of the deep reinforcement learning. Then, the state 

information is updated through the enhancement function 

for the next state. 

This paper starts with introducing the kinematic bicycle 

model of the car-like mobile robot in Section II, and 

describes the DL architecture in Section III. This paper 

presents the how the DL maps into RL in Section IV, and 

shows the experimental results in Section V. Finally, this 

paper verifies the effectiveness of the proposed 

architecture by comparing with other path planning 

algorithms in Section IV and draws the conclusions. 

II. KINEMATIC BICYCLE MODEL FOR CAR-LIKE 

MOBILE ROBOTS 

In this paper, the path planning problem is considered 

for the car-like mobile robot with four wheels which the 

front wheels are for steering and the rear wheels are fixed 

on the chassis as shown in Fig. 1.  
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In this paper, a general kinematic bicycle model is taken 

into account for the mobile robot. This section simply 

recalls the fundamental formulations from [1] and more 

details should be referred in [6] and [7]. 

A four-wheeled vehicle, which consists of the fixed rear 

wheels and front steering wheels, can be analogous to the 

general bicycle since the real wheel of the bicycle is fixed 

to the body and the front wheel is used to handle the 

direction. The pose of the vehicle is described by the 

coordinate frame B that the origin is located on the center 

of the rear axle as shown in Fig. 1.  

 

Figure 1. Bicycle model of a car-like mobile robot  

(figure curtesy of [12]). 

The kinematic bicycle model can be called the front 

wheel steering model since the orientation of the vehicle is 

decided by the steering angle of the front wheels with 

respect to the direction. In contrast, the rear wheels are 

linked together through an axle which is fixed to the 

vehicle and rotated with no motion of rotation such as roll, 

pitch and yaw. In addition, for the directional control of the 

vehicle, the plane which the front wheels contact can rotate 

with respect to the vertical axis from the ground as the 

handle is turned.  

Since the autonomous mobile robot can be usually 

described by the continuous-time nonlinear systems, in 

this paper the control mechanism for the mobile robot is 

approximated to the simplified control model for the 

general bicycle as shown in Fig. 2. 

 

 

Figure 2. Simplified kinematic bicycle model for the mobile robot 
(figure curtesy of [13]). 

In Fig. 1, the control parameters, which explains the 

status of the mobile robot, can be described by the 

generalized coordinates as follows 

 

   𝑞 = (𝑥, 𝑦, 𝜃) ∈ 𝐶  (1) 

 

where C ⊂ R2× S1. C represents the configuration space of 

the mobile robot and S1 means unit circle with a set of 

angles [0, 2π). 

For generating rolling motion of the mobile robot, the 

robot must rotate the wheels about central shafts (or axles). 

Each center point of the axle lies along their left or right 

wheel axis, and is commonly located on the center of 

individual axle.  

In Fig. 1, the dashed lines are represented along the 

direction which the wheels cannot move. In addition, the 

lines are intersected at a virtual point which is known as 

the ICR (Instantaneous Center of Rotation) that is the plane 

rotation center for the rotation of the mobile robot. Thus, 

the extension line of the reference point which is lies on 

the center of the mobile robot with orange color must be 

intersected at the ICR when the mobile robot makes a left 

or right turn.  

The mobile robot has angular velocity and it is 

represented with respect to the linear velocity 𝑣 as follows 

 

      �̇� =  
𝑣

𝑅𝐵
                (2) 

 
And by simple geometric operation, the turning radius 

is  

𝑅𝐵 =  𝐿 / tan𝛾                             (3) 

 

where L is the length between the front and rear wheel 

bases. This means that the turning circle increases as the 

length is larger. Since the steering angle γ is mechanically 

restricted, the maximum value of the steering angle can be 

found as 𝑅𝐵 is the minimum value. 

The lateral dynamics of bicycle model is as follows 

 �̇� = 𝑣𝑐𝑜𝑠(𝜓 + 𝛽)      (3) 

 
  �̇� = 𝑣𝑠𝑖𝑛(𝜓 + 𝛽)                          (4) 

 

�̇� =  
𝑣

𝑙𝑟
𝑠𝑖𝑛𝛽                                     (5) 

 
�̇� =  𝛼                                              (6) 

 

             𝛽 = 𝑡𝑎𝑛−1 (
𝑙𝑟

𝑙𝑓+𝑙𝑟
𝑡𝑎𝑛𝛿𝑓)                  (7) 

  
where x and y are the coordinates of the center of mass of 

the mobile robot which are represented in an inertial frame 

(X, Y). ψ is the heading angle of the mobile robot in an 

inertial frame and v is the speed of the center of mass of 

the mobile robot. lf and lr describe the distance from the 

center of the mass of the mobile robot to the front and rear 

axles, respectively.  
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β is the angle from the center of mass with respect to the 

longitudinal axis of the mobile robot. It is also the same as 

the angle of the current velocity v of the mobile robot.  

α is the acceleration of the center of mass for the mobile 

robot. The direction of the acceleration is the same as the 

one of velocity.  

In this lateral dynamics of bicycle model, the major 

control inputs are considered as the front and rear steering 

angles, namely, δf and δr. Since in this article the rear 

wheels are fixed to the chassis and assumed that there is no 

slip from rotation, the mobile robot has only one control 

parameter. In other words, the rear steering parameter 

should be zero (namely, δr = 0). 

It should be considered in terms of the inertia for more 

accurate dynamics of the mobile robot as shown in Fig. 3.  

 

Figure 3. Velocity kinematic bicycle model with lateral forces. 

From Eq. 3 to Eq. 5 with respect to the inertia of the 

dynamic bicycle model can be defined in the same manner 

as those in the velocity kinematic bicycle model (refer [17], 

for more specific descriptions).  

The differential equations for the mobile robot with 

inertia are as follows 

 

    �̈� =
1

𝐽𝑧
(𝐹𝑦𝑓𝑙𝑓 − 𝐹𝑦𝑟𝑙𝑟)                                                                  (8) 

 

𝑣�̇� =  
1

𝑚
(𝐹𝑥𝑓 + 𝐹𝑥𝑟 + �̇�𝑣𝑦)                       (9) 

 

𝑣�̇� =  
1

𝑚
(𝐹𝑦𝑓 + 𝐹𝑦𝑟 − �̇�𝑣𝑥)                     (10) 

 

where �̈� describes the ratio of the yaw rotation. m and Jz 

represent the mass and yaw inertia of the mobile robot, 

respectively. Fy,f  and Fy,r describe the lateral forces of tires 

at the front and rear wheels, respectively. In addition, as 

mentioned before, the corresponding coordinate frame is 

aligned with the plane of the paired wheels. 

For the linear tire model, Fyi is defined as follows 

 

𝐹𝑦𝑖 =  −𝐾𝑦𝑖𝛽𝑖                              (11) 

 

where i ∈ {f, r}, αi is the tire slip angle and Cαi is the tire 

cornering stiffness. However, as mentioned in Section II, 

the tire parameters are considered in this article.  

The tire slip angles are estimated and assuming small 

angles and they can be approximated as follows 

 

𝛽𝑓 =  
𝑣𝑦+𝑙𝑓�̇�

𝑣𝑥
− 𝛿𝑓                           (12) 

 

𝛽𝑟 =  
𝑣𝑦+𝑙𝑟�̇�

𝑣𝑥
− 𝛿𝑟                            (13) 

 

III. DESIGN OF ARTIFICIAL NEURLA NETWORK 

The proposed DRL based controller consists of four 

elements such as sensing data, sideslip angles, vehicle 

controller, and DRL processor as shown in Fig. 4.  

DRL processor predicts parameters for vehicle control 

such as velocity ( 𝑣)  and steering angle ( 𝜃 ), and the 

generated values are used to handle the mobile robot by the 

vehicle controller.  

 

 

Figure 4. Block diagram of the DRL based mobile robot navigation. 

The path planner generates the course of the navigation 

from the start position to the goal position. 

In this paper, ANN comprises multiple layers with 

multiple neurons, which are divided into an input layer, a 

hidden layer, and an output layer as shown in Fig. 5. 

 

 

Figure 5. Demonstration of neural networks with four hidden layer 

The input vector is should be: 

 

𝑥 =  [𝑥1, 𝑥2, … , 𝑥𝑗 , … , 𝑥𝑚]      𝑗 =  1, 2, 3, . . . 𝑚     (14) 

 

And the output vector should be: 

 

𝑦 =  [𝑦1, 𝑦2, … , 𝑦𝑘 , … , 𝑦𝑛]      𝑘 =  1, 2, 3, . . . 𝑛      (15) 

 

The neuron input of the hidden layer is as follows 
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𝑙𝑗
[𝑖]

= 𝑓(𝑛𝑒𝑡𝑗
[𝑖]

)                            (16) 

 

𝑛𝑒𝑡𝑗
[𝑖]

=  ∑ (𝑤𝑖𝑗
[𝑖]

∙
𝑗−1
𝑖=1 𝑙𝑗

[𝑖−1]
+ 𝑏𝑗

[𝑖]
)           (17) 

 

𝑖 = 1,2, … , 𝑝,    𝑗 = 1,2, … , 𝑞 

 

where i is the number of neurons in layer ith and j is the 

number of layers, and 𝑤𝑖𝑗
[𝑖]

 is weights for the connecting 

nodes in the (j − 1)th layer with the nodes of jth layer, and b 

is the bias for all nodes in the jth layer. 

In this model, the transfer function of the input layer to 

the output layer uses the hyperbolic tangent transfer 

function (TANSIG), related to a bipolar sigmoid which has 

an output in the range of -1 to +1. The output layer uses 

linear transfer function (Purelin). For the learning, this 

paper uses Traingdx which is a network training function 

that updates weight and bias values according to gradient 

descent momentum and an adaptive learning rate. The 

performance is evaluated using Mean Squared Error 

(MSE), where the number of epoch is set to 1000 times and 

the accuracy is set to 0.0001. 

In this paper, a deep neural network consists of a fully 

connected and multilayered that all the nodes (or neurons) 

in one layer are connected to the neurons in the next layer 

as shown in Fig. 4. Since fully connected networks is 

structure agnostic, in this paper, there are no special 

assumptions needed to be made about the input.  

IV. MODEL OF REINFORCEMENT LEARNING 

In this section, the Reinforcement Learning (RL) is 

introduced for the proposed DRL based controller. Further 

readings of the reinforcement learning should be referred 

in [15]. Like the general RL, the proposed DRL has the 

same RL structure as shown in Fig. 6.  

 

Figure 6. The schematic diagram of the reinforcement learning model. 

Agent, which means the mobile robot in this paper, 

acquires the knowledge or information from a sequence of 

actions ( 𝑎𝑡 ) such as exploration of surrounding 

environment. Every time the agent executes an action, the 

agent get feedback which is the evaluation of the action. 

The evaluation is the reward for the agent and it is used 

as an indicator which describes the result with respect to 

the action. Therefore, the agent continuously tries to find 

the most impact action so as to get maximum reward. This 

process called ’trial and error’ and in turn the optimal 

sequence of actions which the cost (or loss) function 

becomes the minimum value can be achieved. The other 

words, the agent can get the highest reward value [18].  

Since the reward value indicates the quality of the action, 

the larger the value is, the better the performed action is. 

Otherwise it will be degenerated or has a poor impact.  

Therefore, the interaction process with the surrounding 

environment to acquire good rewards by the agent can be 

regarded as a Markov Decision Processing (MDP) [18]. 

In this paper, the main objective is for the mobile robot 

to navigate the unknown environment with collision free. 

Therefore, the policy of action can be avoiding the 

obstacles in the surrounding environment.  

At each timestamp 𝑡 , system parameters are given:  

sensing data 𝑠𝑡, a local goal position 𝑔𝑡 at the 2D cartesian 

coordinate system, the linear velocity 𝑣𝑡  and angular 

velocity 𝜔𝑡  of the mobile robot. The policy which the 

mobile robot can select to avoid obstacles provides an 

action command as follows 

 

π =(𝑎𝑡 , 𝑠𝑡) ∈ Π                             (18) 

 

where Π represents all sets of spatial states. In the policy 

set, it is required to obtain the strategy 𝜋 ∗ called the 

optimal policy. As long as the random variable set 

{Π1, Π2, Π3, … , Π𝑡}  satisfies the following equation, the 

set will have Markov attributes.  

 

𝑃𝑟(Π𝑡+1 = 𝑠′| Π𝑡 = 𝑠𝑡 ,  Π𝑡−1 = 𝑠𝑡−1, … ,  Π1 = 𝑠1) 
(19) 

=  𝑃𝑟(Π𝑡+1 = 𝑠′| Π𝑡 = 𝑠𝑡) 

 

Once the state s is determined, the actions before the 

state are not correlated to the actions after the state. In 

addition, the actions are independent of each other.  

MDP is defined as the tuple (Π, O, A, T, R, γ) as follows 

 

𝜆(𝑠′|𝑠, 𝑜, 𝑎, 𝑡, 𝑟, 𝛾)) 

(20) 

= 𝑃𝑟  (Π𝑡+1 = 𝑠′| Π𝑡 = 𝑠,  𝑂𝑡 = 𝑜, 𝐴𝑡 = 𝑎, 
                                  𝑇𝑡 = 𝑡, 𝑅𝑡 = 𝑟, 𝛾) 

 

Once the state s is determined, the actions before the 

state are not correlated to the actions after the state. In 

addition, the actions are independent of each other.  

MDP is defined as the tuple (Π, O, A, T, R, γ) as follows 

 

𝜆(𝑠′|𝑠, 𝑜, 𝑎, 𝑡, 𝑟, 𝛾)) 

(21) 

= 𝑃𝑟  (Π𝑡+1 = 𝑠′| Π𝑡 = 𝑠,  𝑂𝑡 = 𝑜, 𝐴𝑡 = 𝑎, 
                                  𝑇𝑡 = 𝑡, 𝑅𝑡 = 𝑟, 𝛾) 

 

where the state set S, the action set A, the reward function 

R, the state transition function T, and the observation 

function 𝑂(𝑜|𝑠′, 𝑎). The agent cannot determine the state 

set S but has to rely on observation function 𝑂(𝑜|𝑠′, 𝑎). 

After each state transition, the robot receives an immediate 

reward 𝑅(𝑜|𝑠, 𝑎) [19]. 

The state of the environment changes based on the 

robot’s actions 𝑎 ∈  𝐴, which are in this paper the velocity 

and steering angle commands(𝑣, 𝜃), and the probability of 

transition 𝑇(𝑠′ |𝑠, 𝑎). The output of sequential decisions 

341

International Journal of Mechanical Engineering and Robotics Research Vol. 11, No. 5, May 2022

© 2022 Int. J. Mech. Eng. Rob. Res



can be considered as a trajectory l from the start (previous) 

position 𝑝0  to the goal (current) position 𝑝𝑔 , where 𝑡𝑔 is 

the travel time to the current position. The objective of the 

control is to minimize the actual traveling time without any 

collision with obstacles. Therefore, the objective function 

can be written as follows 

 

𝑎𝑟𝑔 𝑚𝑖𝑛
𝜋𝛩

𝛹 [𝑡𝑔|𝑎𝑡 =  𝜋𝜃(𝑜𝑡),    
 

𝑝𝑡  =  𝑝𝑡−1  +  𝑎𝑡  ·  ∆𝑡]             (22) 

 

where Θ is model parameters. 

In the MDP problem, a policy 𝜋(𝑎|𝑠) specifies the 

probability of mapping state s to action 𝑎  and the 

stochastic policy 𝜋(𝑎𝑡|𝑜𝑡) can be evaluated by 𝑉𝜋 which 

is the state value function as follows 

 

𝑉∗(𝑠𝑡 , 𝑎𝑡)  = 𝑚𝑎𝑥
𝜋

𝛹𝑉𝜋(𝑠, 𝑎)                 (23) 

 

The reward function in this paper considers task 

completion (𝑅𝑔), the collision(𝑅𝑐), and the progress (𝑅𝑝) 

towards the goal position: 

 

𝑅(𝑠, 𝑎) =  𝑅𝑔(𝑠, 𝑎) + 𝑅𝑓𝑖𝑛(𝑠, 𝑎) 

+𝑅𝑐(𝑠, 𝑎)  +  𝑅𝑝(𝑠, 𝑎)       (24) 

 

If the mobile robot reaches its goal, it is rewarded by 

𝑅𝑔(𝑠, 𝑎) as follows 

 

𝑅𝑔(𝑠, 𝑎) =  {
   ζ if the goal is achieved

−ζ if a collison accures      
0            otherwise            

         (25) 

 

𝑅𝑔(𝑠, 𝑎)  becomes a large positive value if the mobile 

robot arrives at a location within a 0.5m radius of the final 

goal.  

 

𝑅𝑝𝑡(𝑠, 𝑎) =  {
−ς if the distance < steering radius

 
0                       otherwise                

   

 

𝑅𝑝𝑡(𝑠, 𝑎) becomes a large negative value if the distance 

between the robot and the nearest obstacle is less than 

steering radius since the collision can be occurred. 

𝑅𝑐(𝑠, 𝑎) is a fixed negative reward for the mobile robot to 

finish an episode as fast as possible. The fourth reward 

component is used to speed up the training process as 

follows 

 

𝑅𝑝(𝑠, 𝑎) =  𝜂 ∙ 𝐷(𝑠, 𝑎)                    (26) 

 

where 𝐷(𝑠, 𝑎)  is the cost function according to the 

distance between the mobile robot and the subgoal position 

at time 𝑡 and η is a scaling factor in the range of 0 to 1. 

V. EXPERIMENTAL ENVIRONMENTS 

In order to verify the performance of the proposed 

method, this paper constructed a 2D grid map model and 

the simulation environment in Python with Tensorflow 

libray.  

The simulation program was developed using Python 

programming language. The computer configuration: 4-

core Intel i5 7400 CPU@3.20 GHz, 16G memory, 

Windows 10 operating system.  

As shown in Fig. 7, the chassis of the mobile robot 

applied a car-like design with 4 wheels. Since the axle of 

the rear wheels is fixed to the body, the rear wheels can 

only rotate back and forth without pitch, roll and yaw.  

The directional control of the front wheels is based on a 

simplified Ackerman steering geometry. In addition, the 

front wheels are forced to maintain parallel alignment at 

all times by an axle. The axle pivots about its center on a 

vertical steering rod, which is connected to a steering 

servo-motor through a rack and pinion system. The servo-

motor is controlled by a microcontroller (Raspberry Pi 3 

with Quad Core 1.2GHz) using a pulse-width modulation 

(PWM) signal and is capable of steering angles of −45°≤ δ 

≤ 45° about front wheels. 

VI. RESULTS AND DISCUSSIONS 

To train the neural network and generate a policy to 

follow a global path without collisions, we sampled the 

start and goal positions randomly across the free space 

with short distance at the beginning stage and later 

increased the distance including several obstacles. After 

training, we performed experiments to evaluate the policy 

learned in terms of the success rate, which means that the 

mobile robot reached the goal position without any 

collisions and completion time. The performance was 

compared with dynamic window approach in ROS.  

 

 

Figure 7. The autonomous car-like mobile robot platform. 

A path from (0,0) to (200, 200) is used to validate the 

proposed DRL algorithm. In this simulation, Dynamic 

Window Approach (DWA), which is an online collision 

avoidance strategy for mobile robots, is also used for the 

purpose of the performance comparison [19].  

As shown in Fig. 8, both DWA and DRL algorithms 

reached the destination without any collisions. 
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Figure 8. Experimental results of different path planning algorithms. 

In addition, all methods effectively avoided obstacles 

under the different and more complex conditions as shown 

in Fig. 9.  

 

Figure 9. Path tracking in complex environments. 

Comparing DWA, it was found that the proposed 

method efficiently reduced the number of path steps about 

21.3% on average after 10 tests.  

 

Figure 10. Path convergence curve. 

As shown in Fig. 10, the proposed algorithm has 

improvement over DWA in terms of success rate to reach 

the goal position. 

 

Figure 11. Success rate. 

For each environment in Fig. 11, 400 runs were 

performed with DWA and the proposed algorithm. in each 

testing environments. The success rates for the scenario 1 

are lower than other scenarios. The reason we believe is 

that enough information was not retrieved due to short 

learning epoch. However, after tuning the epoch the DWA 

and the proposed algorithm successfully reached the goal 

position over 85% for the scenario 2. As shown in Fig. 12, 

The success rate of the scenario 3 is conspicuously lower 

than that of other scenarios due to the space complexity. 

The proposed DRL based algorithm has better 

performance for all scenarios with respect to average 

execution time and path length. 

 

 

Figure 12. Performance evaluation with average of 400 runs. 

The path length of DWA has 10% longer on average 

than the proposed algorithm. However, the proposed 

algorithm has more time to complete navigation tasks, 

which shows the mobile robot controlled much cautiously 

about unknown environment as shown in Fig. 12. 

VII. CONCLUSIONS 

This article introduced a Deep Reinforcement Learning 

(DRL) based path planning architecture which was used 

for trajectory following of a car-like mobile robot. This 

paper described the bicycle kinematic model for the 

mobile robot, DRL controller for tracking a car-like mobile 

robot. The framework that combines the DRL processor 

and vehicle controller with the deep neural network was 

described. In order to demonstrate the feasibility of the 

proposed method in path planning without collisions, the 

controller was applied to the different environment to 

reach the goal position.  

Experimental results showed that the proposed DRL 

controller has good performance and make path planning 

results more practical. Generally, the DRL controller 

reduced the tracking errors and path length about 20% 

compared to the DWA controller in this article. For the 

future work, the study of effectiveness of the DRL 

controller should be performed in more complex 

environments with other control strategies. 
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