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Abstract—This paper presents research on development of a 

novel automatic quality inspection station for concrete 

products using a cobot equipped with a force sensing finger 

and embedded machine learning model. After a concrete 

product is made, it is cured for 28 days to gain full strength.  

Then, its quality is assessed.  However, it is highly desirable 

to quickly and accurately assess the product quality 

moments after it comes out of the mold as so called “green”, 

uncured, no-slump concrete to eliminate waste and improve 

quality. Currently, a human operator inspects the green 

concrete products by poking and visual inspection as they 

come out of the molds. This is a highly subjective and often 

inaccurate approach. Experimental results with the cobot 

showed 92.3% accuracy in predicting quality of concrete 

blocks compared to the human accuracy of 50%. The new 

inspection system can be a viable solution to predict quality 

of resulting cured concrete blocks from initial tests of green 

concrete products during production. The system can alert 

for production problems early on leading to reduced costs 

and increased product quality when cured.   

 

Index Terms—Cobot, concrete, mechatronics, robotics, ma- 

chine learning, UR10 

I. INTRODUCTION 

In this research, a novel automatic quality inspection 

station has been developed for uncured concrete products 

using a UR10 cobot [1] equipped with a force sensing 

finger and embedded machine learning model. 

Concrete products, such as pavers, are made using a 

machine that can press a concrete mixture into a mold.  

When the product comes out of the mold, it is uncured.  

The product is then cured typically for 28 days to reach 

its full strength.  Compression tests are applied to the 

cured products to assess their quality [2]–[6]. 

The main challenge is to predict the quality of cured 

concrete blocks using measurements taking from newly 

made green (uncured) no-slump concrete blocks 

moments after they come out of the machine.  There is a 

significant amount of research in predicting cured 

concrete quality. Use of non-destructive techniques on 

uncured no-slump concrete for prediction of cured 

strength has yet to be investigated.  This study proposes a 

novel approach using a cobot and machine learning 

model.  The new system can rapidly and accurately 

measure many green concrete products as they come out 

of the production line.  This can increase the quality of 
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the products and alert the facility quickly, if something 

starts to go wrong in the production before thousands of 

products are potentially wasted after 28 days of curing.  

Currently, a human operator stands by the machine to 

check quality by visually inspecting and poking the green 

concrete blocks. This approach is highly subjective as the 

decisions vary due to several factors.  Furthermore, 

he/she cannot measure many blocks as fast as the cobot 

can.  Also, the cobot can evaluate complex geometries of 

a more intricate product such as the inner walls of a 

cement block with holes or locking tabs.  It can reach into 

the holes, check vertical side walls or surfaces at any 

angle.  The current research tested flat surfaces for proof 

of concept. 

Several studies have implemented neural network 

models and Artificial Intelligence (AI) to predict the 

strength of cured concrete. Use of Ultrasonic Pulse 

Velocity (UPV) combined with Artificial Neural Network 

(ANN) models showed better accuracy with the ANN 

models [7]. Rebound hammer and UPV were used in 

combination for assessing cured concrete quality using 

ANN [8]–[11]. Ten to fifteen variables were incorporated 

into an ANN model to predict the compressive strength of 

self-compacting concrete after curing for 28 days [12]–

[14]. Compressive strength of recycled concrete was 

predicted using ANN model [15], [16]. In another study, 

researchers were able to decrease the number of variables 

for the ANN model to six while maintaining good 

accuracy for predicting green concrete strength [17]. 

Support Vector Machine (SVM) and ANN models were 

designed to predict the compressive strength of concrete 

[18]–[21]. 

The research involved development of an apparatus for 

collection of data to train Machine Learning Models 

(ML). The model has been incorporated into control 

software so that the cobot can evaluate blocks in real time 

against the ML model to determine good or bad quality 

blocks during production. Design of the inspection 

system along with the experiments conducted with quartz 

flour and concrete blocks are explained. Results from 

automatic quality inspection experiments with the cobot 

are compared to human operator predictions of the same 

blocks. 

II. MEASUREMENT SYSTEM 

The measurement system was inspired by 

nondestructive testing and how the operators check for 
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concrete quality. A 0.5 inch diameter aluminum finger 

was manufactured to replicate an operator’s finger 

touching the concrete surface (Fig. 1a). A FUTEK LCM 

100 miniature inline load cell [22] was used as the force 

sensor as the finger pressed on the surface. The sensor 

and finger are attached to a ball screw which moved the 

assembly up/down as a motor rotated the screw. The 

motor was controlled using a micro step driver and 

Arduino Uno microcontroller. A template (Fig. 1b) is 

placed on the block so that force measurements can be 

taken consistently at three locations (left, middle and 

right) on each block. 

 

  
(a) Apparatus with load 

cell and motor 

(b) Template to measure 

forces at three locations 

Figure 1.  Finger apparatus and template. 

The finger apparatus is programmed to first touch the 

surface of the block then penetrate the concrete 0.5 mm to 

measure the compressive forces. Each block has a slightly 

different height. To land the finger on the surface a 

microswitch was used as shown in Fig. 2a. The switch is 

held on the surface of the block in the path of the finger. 

As the finger moves down, it clicks the switch and stops 

on the surface. The switch is removed by the operator 

while the finger pauses for two seconds. Finally, it moves 

0.5 mm into the concrete for force measurement (Fig. 2b. 

 
(a) Switch is placed on the surface of the block to 
land the finger on the surface 

 
(b) Compressive force reading before and after 

the finger is pressed into the block 

Figure 2.   Finger apparatus details. 

III. AUTOMATIC INSPECTION SYSTEM WITH COBOT 

A. Inspection of Samples 

Inspection of the concrete samples with the cobot was 

conducted in a similar fashion as the finger apparatus 

experiments in Section II. Fig. 3 shows the end-effector 

of the cobot where a microswitch, load cell and the finger 

were attached to the cobot wrist with an aluminum 

bracket. 

 

Figure 3.  UR10 cobot end-effector with microswitch, load cell and 

finger. 

First, the cobot lowers the switch until it touches the 

surface of the concrete block. When the switch clicks, the 

cobot stops and saves the vertical position of the fingertip. 

Then, the cobot moves the finger over to the position 

where the microswitch touched the concrete surface. The 

finger is pressed vertically into the surface 0.5 mm, cobot 

is paused and sensor readings are recorded. The process 

is repeated for the left, center, and right force 

measurements for each block. Finally, the data are sent to 

the machine learning model to determine the quality of 

the concrete sample. 

B. Machine Learning for Classification 

This research involves a classification problem where 

force measurements from concrete blocks are used to 

determine if a given block is good or bad quality. K-

Nearest Neighbor (KNN) algorithm has been used in the 

cobot experiments. This is a simple machine learning 

algorithm that is easy to implement and can solve 

classification problems [23], [24]. 

The algorithm can determine a discrete output by 

selecting the nearest points and tallying their outputs. The 

output with the highest number of occurrences will be 

assigned to the unknown data point. A common method 

to determine the nearest neighbors is through Euclidian 

distance, where the minimal distance between the test and 

training data is calculated. The “K” value determines how 

many points are taken into consideration, which is 

dependent on the sample size and accuracy desired. Fig. 4 

displays a data set trained using the KNN model with 

different “K” values and two outputs. The model is able 

to create regions that represent how the model would 

choose the outputs. The output regions of blue and red 
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begin to differ as “K” is changed, which can impact the 

accuracy of the classification model. Also, the 

neighboring data points and inputs can be weighted 

differently. A common weighting method is multiplying 

the input by the inverse or squared inverse of the distance 

(1/d, 1/d2) [25]. 

First, the cobot lowers the switch until it touches the 

surface of the concrete block. When the switch clicks, the 

cobot stops and saves the vertical position of the fingertip. 

Then, the cobot moves the finger over to the position 

where the microswitch touched the concrete surface. The 

finger is pressed vertically into the surface 0.5 mm, cobot 

is paused and sensor readings are recorded. The process 

is repeated for the left, center, and right force 

measurements for each block. Finally, the data are sent to 

the machine learning model to determine the quality of 

the concrete sample. 

 

Figure 4.  Trained data set for KNN model with different “K” values 

(K=1, K=3, K=5, K=7) [24]. 

C. Control Software 

The control system consists of two pieces of software: 

(1) cobot motion program, and (2) program running on 

PC. The cobot executes motion commands. The program 

on the PC handles communications with the Data 

Acquisition Board (DAQ) and the cobot. It also contains 

the Machine Learning (ML) model to predict the quality 

of the block when the cobot finishes the force 

measurements. The user interface shown in Fig. 5 

contains two lights. If the ML predicts a good block, the 

green light turns on. Otherwise, the red light turns on for 

a bad quality block. The testing area refers to the type of 

block and actual quality currently being tested. The block 

quality predicted by the ML model as well as the settings 

describing the actual block type and quality are recorded 

to data files. 

 

Figure 5.  User interface for the control software. 

IV. EXPERIMENTS AND RESULTS 

Quartz flour has material characteristics similar to 

cement. However, unlike cement, it does not cure. It is 

often used as cement substitute in the aggregate mixture 

during mold design and preliminary testing of concrete 

products machinery. Since it does not cure, the sample 

blocks can be broken up and put back into the original 

mixture for reuse. Consequently, it was decided to use 

both quartz flour and real cement in the experiments. 

A. Preparation of the Blocks 

The quartz flour blocks were prepared by hand mixing 

the appropriate water, aggregates and quartz flour 

proportions. The recipe is a typical blend used in industry 

for this type of product. Each ingredient was measured 

using a scale. A total of 2-3 blocks were made from each 

mixing to prevent evaporation of water while the samples 

were waiting to be tested. The mixture was transferred 

into a 3 x 5 inch tapered nonstick mold with 2 inch depth. 

Each sample was compacted with a hammer and an 

aluminum block with similar dimensions as the mold. 

The resultant compaction level is measured throughout 

the process on all 4 sides of the block with calipers from 

the edge of the mold to the surface of the block. 

Compaction is complete when a certain level is reached, 

which is dependent on the desired block quality as 

explained later. 

The concrete blocks were prepared similarly to the 

quartz flour blocks. The main differences were the 

compaction technique and the mold, as shown in Fig. 6. 

The concrete blocks were compressed using an Instron 

tensile tester because it required a much larger force to 

compact concrete. The tester was first lowered onto the 

aluminum block surface until it touched the surface. Then, 

it moved down through the required compaction distance 

automatically depending on the desired quality of the 

concrete block. A 2.5 x 5 inch tapered steel mold with 0.5 

inch steel plates was built as the mold. 

 

  
(a) Steel mold to make 

concrete blocks 
(b) Instron machine used 

in compaction of 

concrete blocks 

Figure 6.  Steel mold and machine used in making concrete blocks. 

B. Experiments with the Force Sensing Finger 

Apparatus 

The purpose of these experiments was to determine if 

there was a relationship between compressive force 

values and the com- paction level of concrete blocks. A 

total of 16 blocks were tested with different compaction 

levels of 15 mm, 20 mm, and 25 mm. The levels refer to 

the depth at which the sample was compacted when 

measured from the block’s surface to the top edge of the 
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mold. The results in Fig 7a indicate that blocks with 

greater compaction on average show higher compressive 

force (4.8N) compared to less compacted blocks (2.1, 

1.1N), which is expected. Looking at the range of 

individual force values in Fig. 7b, there is overlap 

between 15 mm (0.5N-2N), 20 mm (0.9N-4N), and 25 

mm compactions (2.9N-6.5N). For example, a force 

measurement of 1.1N may come from 15 mm or 20 mm 

compaction level. 
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(b) Force ranges for three levels of compaction 

Figure 7.  Relationship between compaction levels and compressive 
force measurements. 

C. Data Collection for Machine Learning Models 

These experiments were conducted to collect data so 

that two machine learning models could be trained for 

quartz blocks and for the concrete blocks. 

1) Experiments with Quartz Flour Blocks: Sixty quartz 

flour blocks were made and tested using the finger 

apparatus in Fig. 1. As the blocks were made, compaction 

was adjusted so that 90% of the blocks would be good 

quality. The remaining 10% were made to be bad quality. 

Twelve random samples (20% of the entire set) were held 

out of the model and used as testing set to determine the 

prediction accuracy of the ML model. The remaining 

80% of the data were used in training the model. 

Fig. 8a shows one view of the collected data where 

center and left force measurements were plotted for the 

good (red mark) and bad (blue mark) blocks. It can be 

seen that there is not a clear separation between the good 

and bad blocks. Fig. 8b is another view of the same data 

where left force reading was plotted against the left force 

reading, which creates a 45 degree line but shows that 

there is no clear separation. The results verify the 

importance of implementing a machine learning model 

and the use of multiple inputs to accurately predict block 

quality. 

2) Experiments with Concrete Blocks: The same 

procedure and testing parameters were carried out for 

concrete blocks to collect data for the ML model. The 

only difference was that the cobot was used to collect the 

data instead of the finger sensor apparatus. This was 

necessary due to the need to apply higher forces as 

concrete blocks were more rigid. 
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(a) Force data (scatter) 
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(b) Force data (left-left) 

Figure 8.  Quartz block force measurements. 

The results are displayed in Fig. 9, where the red and 

blue marks represent good and bad concrete blocks, 

respectively. The data set had similar overlaps as the 

quartz flour data set. 
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(a) Force data (scatter) 
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(b) Force data (left-left) 

Figure 9.  Concrete block force measurements. 
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D. Experiments with Human Operators 

The purpose of the operator experiments was to 

determine a baseline accuracy of experienced human 

operators in terms of predicting concrete quality. The 

results can then be compared to the machine learning 

model developed to assess the effectiveness of the model. 

A total of 60 blocks were tested for both quartz flour 

and actual concrete blocks. Six operators were asked to 

predict the quality of 10 blocks at a time. Nine of the 

blocks were good quality while 1 was bad quality to 

replicate the yields at typical production facilities. The 

operators were asked to determine quality based only on 

poking the blocks. The operators were asked to close 

their eyes as they conducted the tests to eliminate any 

visual cues. The blocks were covered until the operators 

were in place to poke the blocks. Each block was 

numbered 1-10 and all operators had a different order in 

which they felt the blocks.  

 

Figure 10.  Setup for human operator experiments. 

Fig. 10 displays the setup before each operator arrived. 

The operators were able to poke a good and bad block 

located at a separate place on the table before the 

experiments started to recognize the differences in quality 

and feel.  The operators achieved 70% average accuracy 

on prediction quality (42/60). The accuracy ranged in 50-

80% between all operators. Without knowledge of the 

recipe beforehand or visual cues, it was difficult for them 

to have high accuracy in predicting the block quality. A 

production facility would expect higher accuracy to 

reduce the amount of bad material going to customers or 

avoid throwing away good quality blocks, especially 

when facilities produce thousands of blocks daily. 

The accuracy of predicting good and bad quality 

concrete blocks was less than the quartz flour blocks.  

Only 50% (30/60) of the blocks were identified correctly. 

The range of accuracy was 20-60%, with only 67% of the 

bad blocks (4/6) identified correctly.  Lower prediction 

results were mainly due to the higher compaction of the 

concrete blocks compare to the quartz ones.  However, 

this level of compaction is a better replication of actual 

compression real concrete undergoes at production 

facilities. It is clear that relying on a human poke test for 

quality inspection is not an ideal situation. 

E. Experiments with Cobot 

In this set of experiments, the cobot system was used 

to automatically measure forces and predict the quality of 

the block using the machine learning model built into the 

control software.  The ML models were trained using the 

experimental data collected earlier as explained in 

Section IV-C. 

1) Automatic Inspection of Quartz Flour Blocks with 

Cobot: Two experiments were conducted with the cobot 

to determine the accuracy at which the cobot could 

predict good and bad quality blocks. The first experiment 

had 20 blocks with 18 good and 2 bad ones replicating 

90% yield similar to typical production facilities.  One 

block at a time was placed on the table.  The cobot 

measured forces at the left, center, and right positions 

(Fig. 1b).  The second experiment involved testing 10 

good and 10 bad quality blocks. The goal was to 

determine the accuracy at which bad blocks could be 

identified. Previous data sets did not consist of a large 

amount of bad quality blocks because the experiment 

aimed to replicate yields at production facilities. 

TABLE I.  QUALITY INSPECTION RESULTS FOR QUARTZ FLOUR 

BLOCKS. 
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experiments. The force values as well as the prediction and actual quality were sent to a separate 

spreadsheet. The second experiment involved testing 10 good and 10 bad quality blocks. The 

goal was to determine the accuracy at which bad blocks are identified. Previous data sets did not 

consist of a large amount of bad quality blocks because the models aimed to replicate yields at 

production facilities.  

A summary of both experiments is compared to the operator quartz flour experiments. The first 

experiment displayed a 90% accuracy (18/20) when predicting quartz flour blocks. The two bad 

blocks in the experiment were identified correctly, which is on par with the human operator 

experiments. Overall, the inspection system shows promise, as there is a prediction accuracy 

increase of 20% when testing at typical yields. The second experiment showed 85% accuracy 

(17/20) and is still above the operator accuracy (70%). The model also held 80% accuracy (8/10) 

when predicting bad blocks, which is encouraging even with limited data for bad quality blocks 

incorporated into the machine learning model. Combining both experiments as well as the 

training data set, the quality inspection system was able to predict the quality of quartz flour 

blocks at 88.5% (46/52), which is a significant increase from the operator baseline of 66.7%.  

Table 4: Quality inspection results for quartz flour blocks  
 Prediction of Good Blocks Prediction of Bad Blocks 
 Cobot Operator Cobot Operator 

Test 1 16/18 (88.9%) 

36/54 (66.7%) 

2/2 (100%) 

6/6 (100%) Test 2 9/10 (90%) 8/10 (80%) 

Training Set 10/11 (90.9%) 1/1 (100%) 

Totals 89.7% 66.7% 84.6% 100.0% 

 

4.3.2 Automatic Inspection with Cobot for Concrete Pavers 

The final cobot experiment involved the validation of predicting bad and good quality concrete 

pavers. The two experiments referenced in the previous section were used to test the accuracy of 

the inspection system. The results were compared to the operator experiments to determine if the 

 
 

2) Automatic Inspection of Concrete Blocks with Cobot: 

The same experimental approach as in the quartz block 

case was repeated but using concrete blocks.  The results 

were compared to the operator experiments to determine 

if the system could improve upon operator predictions 

(Table II). 

TABLE II.  QUALITY INSPECTION RESULTS FOR CONCRETE BLOCKS. 
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system could improve upon operator predictions. Table 5 displays the results of both tests 

conducted with the cobot and operator tests, separated by good and bad quality blocks. Test 1 

and 2 with the cobot were able to predict the quality of concrete at 95% (19/20) and 90% (18/20) 

accuracies, which is an improvement from an operator baseline accuracy of 50% (30/60). The 

cobot predicted all the good quality blocks while the cobot was able to identify 77% of the bad 

blocks (10/13), an increase from operator prediction accuracy (67%). The combination of all 

training and test sets for the cobot predicted concrete blocks at an accuracy of 92.3% (48/52), 

resulting in an increase of 42.3% from operator predictions (50%). Overall, the cobot 

outperformed operator predictions and showed its reliability and consistency in accurately 

predicting a large amount of quarts flour and concrete pavers. The results are encouraging as the 

compaction differences between good and bad quality concrete blocks are in the ranges found at 

actual production facilities.  

Table 5: Quality inspection results for concrete blocks  
 Prediction of Good Blocks Prediction of Bad Blocks 
 Cobot Operator Cobot Operator 

Test 1 18/18 (100%) 

26/54 (48.1%) 

1/2 (50%) 

4/6 (66.7%) Test 2 10/10 (100%) 8/10 (80%) 

Training Set 10/11 (90.9%) 1/1 (100%) 

Totals 97.4% 48.1% 76.9% 66.7% 

 

4.3.3 Compressive Strength of Concrete and Comparison to Cobot Predictions 

A total of 20 compressive tests were conducted on concrete blocks used in the machine learning 

model. The goal was to determine if the compressive force measurements on green concrete 

correlated to the compressive strength after curing for 28 days. The blocks underwent testing in 

accordance with ASTM C140 standards. Each block was labeled accordingly to correlate the 

strength data to the compressive force measurements. 18 blocks were good quality while the 

other two were considered bad quality.  

 
 

In tests 1 and 2, the cobot was given a total of 28 good 

and 12 bad blocks.  Overall prediction accuracy was 95% 

((28+9)/(28+12), which is a significant improvement 

from an operator baseline accuracy of 50% ((26+4)/60).  

When all test and training sets are combined, the cobot 

predicted quality of the concrete blocks at an accuracy of 

92.3% (48/52), resulting in an increase of 42.3% from 

operator predictions (50%). Overall, the results are very 

encouraging. The cobot outperformed operator 

predictions and showed its reliability and consistency in 

accurately predicting the block quality. 

3) Compressive Strength of Concrete and Comparison 

to Cobot Predictions: A total of 20 compressive strength 

tests were conducted on concrete blocks used in the 

machine learning model. The goal was to determine if the 

compressive force measurements on green concrete 

correlated to the compressive strength after curing the 

same blocks for 28 days.  

Each block was numbered. First, all blocks were tested 

using the cobot and identified as good or bad by the ML 
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model.  Then, the blocks were cured for 28 days.  Next, 

they underwent strength testing in accordance with 

ASTM C140 standards [5].  18 blocks were good quality 

while the other two were considered bad quality. 

The results of all cured concrete blocks are displayed 

in Fig. 11. The good and bad blocks are represented by 

red and blue bars, respectively. The black line indicates 

the average compressive strength of cured good quality 

blocks, which was 2,500 psi.  This was significantly 

higher than the average strength of 640 psi for the cured 

bad blocks. The results show clear separation between 

good and bad concrete blocks.  Block numbers 3 and 4 

were determined to be bad after curing and strength 

testing.  These exact blocks were also identified as bad 

ones by the cobot when they were first made and tested 

(green, uncured blocks) 28 days ago. 
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Figure 11.  Compressive strength of concrete blocks after curing them 
for 28 days. 

V. CONCLUSIONS 

In this research, a novel quality inspection system was 

developed using a cobot with machine learning model. 

When a concrete product comes out of the mold, it is 

uncured.  The product is then cured typically for 28 days 

to reach its full strength. The research goal was to predict 

the quality of cured concrete blocks using measurements 

taking from newly made green (uncured) no-slump 

concrete blocks. There is a significant amount of research 

in predicting cured concrete quality but use of non-

destructive techniques on uncured concrete for prediction 

of cured strength needs to be investigated.  The 

developed system replicates the poke test by human 

operators at concrete production facilities as concrete 

products just come out of the mold. The cobot can inspect 

many products rapidly and accurately. It can evaluate 

complex geometries of a more intricate product such as 

the inner walls of a cement block with holes or locking 

tabs. Inspection solely by human operators has shown to 

be an unreliable and inaccurate way to determine 

concrete quality.  

A motorized experimental apparatus with a load cell 

and finger was developed for testing.  Force measurement 

data were collected from 60 quartz flour and concrete 

blocks to build a machine learning model (ML) for each 

type of product. The K-Nearest Neighbor model (KNN) 

was used to classify the blocks into good or bad quality.  

In addition, experiments were conducted with human 

operators predicting the quality of the same blocks using 

poking tests while keeping their eyes closed. 

Experimental results with the cobot showed 88.5% 

accuracy with quartz flour blocks compared to 70% by 

human operators. The cobot accuracy was 92.3% 

compared to the human accuracy of 50% when concrete 

blocks were tested. 

Additionally, twenty blocks were numbered and tested 

with the cobot when they were newly made.  Then, they 

were cured for 28 days and tested again for compressive 

strength following ASTM C140 standards.  The green 

blocks that were identified as bad quality by the cobot 

also tested to be inferior quality bad blocks compared to 

all other blocks after curing them for 28 days.  This 

correlation and the overall significantly high accuracy 

predictions of the cobot compared to the human operators 

are encouraging results.  The new inspection system can 

be a viable solution to predict quality of resulting cured 

concrete blocks from initial tests of green concrete 

products during production.  The system can alert for 

production problems early on leading to reduced costs 

and increased product quality when cured. 

CONFLICT OF INTEREST 

The authors declare no conflict of interest. 

AUTHOR CONTRIBUTIONS 

A. Burke designed and built the force measurement 

apparatus and conducted all experiments.  H. Gurocak 

developed the control software, machine learning model 

and supervised the research project.  Both authors 

contributed to the manuscript. 

ACKNOWLEDGMENT 

Authors would like to acknowledge Stacy Gildersleeve, 

PE from Columbia Machine Inc. and Impact Washington 

for supporting and funding this research project. 

REFERENCES 

[1] Universal Robots. UR10 cobot. [Online]. Available: 

https://www.universal-robots.com 

[2] M. S. Shetty, Concrete Technology: Theory and Practice, ND: 
Chand and Company Limited, 2019. 

[3] H. Wong, M. Zobel, N. Buenfeld et al., “Influence of the 
interfacial transition zone and microcracking on the diffusivity, 

permeability and sorptivity of cement-based materials after 

drying,” Magazine of Concrete Research, vol. 61, no. 8, pp. 571–
589, 2009. 

[4] ASTM C39 / C39M-21, “Standard test method for compressive 
strength of cylindrical concrete specimens,” ASTM International, 

2021. 

[5] ASTM C140 / C140M-20a, “Standard test methods for sampling 
and testing concrete masonry units and related units,” ASTM 

International, 2021. 
[6] ASTM C1716 / C1716M-20, “Standard specification for 

compression testing machine requirements for concrete masonry 

units, related units, and prisms,” ASTM International, 2020. 

[7] M. A. Kewalramani and R. Gupta, “Concrete compressive 

strength prediction using ultrasonic pulse velocity through 
artificial neural net- works,” Automation in Construction, vol. 15, 

no. 3, pp. 374–379, 2006. 



 

 
 

 

 

  
 

 

 

 
 

 

 

  

 

          
  

   

 
 

   
 

  

 

 

  

 

 

 
 

 

 
 

   
 

  

 
 

 

 

 
 

 
 

 

 
 

 

 
 

 

 

    

 
  

 

 
 

 
 

 

337

International Journal of Mechanical Engineering and Robotics Research Vol. 11, No. 5, May 2022

© 2022 Int. J. Mech. Eng. Rob. Res

[8] P. G. Asteris and V. G. Mokos, “Concrete compressive strength 

using artificial neural networks,” Neural Computing and 

Applications, vol. 32, no. 15, pp. 11 807–11 826, 2020. 
[9] A. Demir, “Prediction of hybrid fiber-added concrete strength 

using artificial neural networks,” Computers and Concrete, vol. 
15, no. 4, pp. 503–514, 2015. 

[10] R. Madandoust, R. Ghavidel, and N. Nariman-Zadeh, 

“Evolutionary design of generalized gmdh-type neural network 
for prediction of concrete compressive strength using UPV,” 

Computational Materials Science, vol. 49, no. 3, pp. 556–567, 
2010. 

[11] M. Shariati, N. H. Ramli-Sulong, M. M. Arabnejad et al., 

“Assessing the strength of reinforced concrete structures through 
ultrasonic pulse velocity and Schmidt rebound hammer tests,” 

Scientific Research and Essays, vol. 6, no. 1, pp. 213–220, 2011. 
[12] M. Nehdi, H. El Chabib, and M. H. El Naggar, “Predicting 

performance of self-compacting concrete mixtures using 

artificial neural networks,” Materials Journal, vol. 98, no. 5, pp. 
394–401, 2001. 

[13] M. A. Getahun, S. M. Shitote, and Z. C. A. Gariy, “Artificial 
neural network based modelling approach for strength prediction 

of concrete incorporating agricultural and construction wastes,” 

Construction and Building Materials, vol. 190, pp. 517–525, 
2018. 

[14] K. O. Akande, T. O. Owolabi, and S. Twahaetal, “Performance 
comparison of SVM and ANN in predicting compressive 

strength of concrete,” in Proc. IOSR Journal of Computer 

Engineering, vol. 16, no. 5, pp. 88–94, 2014. 
[15] B. A. Omran, Q. Chen, and R. Jin, “Prediction of compressive 

strength of green concrete using artificial neural networks,” T. 
Sulbaran, 2014. 

[16] J. Pacheco, J. De Brito, C. Chastre et al., “Experimental 

investigation on the variability of the main mechanical properties 
of concrete produced with coarse recycled concrete aggregates,” 

Construction and Building Materials, vol. 201, pp. 110–120, 

2019. 

[17] J. Sobhani, M. Najimi, A. R. Pourkhorshidi et al., “Prediction of 

the compressive strength of no-slump concrete: A comparative 
study of regression, neural network and anfis models,” 

Construction and Building Materials, vol. 24, no. 5, pp. 709–718, 
2010. 

[18] J. Sobhani, M. Khanzadi, and A. Movahedian, “Support vector 

machine for prediction of the compressive strength of no-slump 
concrete,” Computers and Concrete, vol. 11, no. 4, pp. 337–350, 

2013. 
[19] J. Y. Park, Y. G. Yoon, and T. K. Oh, “Prediction of concrete 

strength with p-, s-, r-wave velocities by support vector machine 

(SVM) and artificial neural network (ANN),” Applied Sciences, 

vol. 9, no. 19, p. 4053, 2019. 

[20] O. Altay, M. Ulas, and K. E. Alyamac, “Prediction of the fresh 
performance of steel fiber reinforced self-compacting concrete 

using quadratic SVM and weighted KNN models,” IEEE Access, 
vol. 8, pp. 92 647–92 658, 2020. 

[21] A. L. Bonifacio, J. C. Mendes, M. C. Farage et al., “Application 

of support vector machine and finite element method to predict 
the mechanical properties of concrete,” Latin American Journal 

of Solids and Structures, vol. 16, 2019. 
[22] FUTEK. LCM100 load cell. [Online]. Available: 

https://www.futek.com/store/load-cells 

[23] Z. Zhang, “Introduction to machine learning: K-nearest 
neighbors,” Annals of Translational Medicine, vol. 4, pp. 1–7, 

2016. 
[24] T. Srivatava. Introduction to K-Nearest Neighbors: A powerful 

machine learning algorithm (with implementation in Python & 

R). [Online]. Available: 
https://www.analyticsvidhya.com/blog/2018/03/introduction-k-

neighbors-algorithm-clustering/ 
[25] O. Harrison. Machine learning basics with the K-Nearest 

Neighbor algorithm. [Online]. Available: 

https://towardsdatascience.com/machine-learning-basics-with-
the-k-nearest-neighbors-algorithm-6a6e71d01761 

 

Copyright © 2022

 

by the authors. This is an open access article 

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any 
medium, provided

 

that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

 
 

 

Aaron Burke

 

received his B.S. degree in Mechanical Engineering from 
Oregon Institute of Technology in 2017 and M.S. degree in Mechanical 

Engineering from Washington State University Vancouver in 2021.  He 

currently works as Project Engineer at Delta Connects.  His research 

interests are robotics

 

and

 

automation.  He is a member

 

of ASME.

 

 

Hakan Gurocak

 

is Professor and

 

Director of Professional and 

Corporate Education at Washington State University Vancouver. 
Previously, he served as the founding Director of the School of 

Engineering and Computer Science

 

at Washington State University 

Vancouver for 18 years. His research interests include haptics,

 

robotics 
and automation.  He is a member of ASEE and IEEE.

 

 
 

 

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

