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Abstract—Kinematic redundant systems as part of machine 

tools reduce the dynamic requirements for feed axes and 

aim to increase the productivity. Yet, optimization of the 

system dynamic behaviour demands a deep understanding 

of how the dynamic coupling between the axes influences the 

tracking accuracy at the tool center point. This can be 

achieved through minimizing the discrepancies between the 

model output and physical measurements. One way is by 

optimizing the values of the dynamic coupling model 

parameters. In the present research, a heuristic algorithm, 

inspired by sailfish optimization algorithm, is developed to 

identify the stiffness and damping parameters of the 

investigated dynamic coupling model. Minimum RMS error 

is selected as the objective function parameter. Tests are 

conducted using different step and rectangular functions. 

Simulation results demonstrate the effectiveness of the 

proposed method to improve the model accuracy in 

simulating the vibrational response of kinematic redundant 

axes to jerk forces.  

 

Index Terms—kinematic redundancy, feed drive systems, 

sailfish optimization algorithm, jerk induced vibrations, 

dynamic coupling 

I. INTRODUCTION 

Kinematic redundancy [1-3] presents a solution in the 

industry to enhance productivity and positioning accuracy 

of machine tools. An example of kinematic redundancy is 

a feed drive system consisting of two serially coupled 

axes that are moving independently in the same 

coordinate. One positive outcome is that the state of the 

tool center point (TCP) at any instant is the summation of 

the individual axes motion parameters. Early attempts in 

[4] to synchronize and coordinate the motion between the 

basic and the redundant axis used a dynamic approach 

rather than a pure geometric approach. The structure 

limitations such as singularities and limited effective 
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workspace of the axis were overcome by using parallel 

redundant links [5] or in [6] by using hybrid kinematic 

structures.  

jerk induced vibration [7] is a main phenomenon that 

arises during high dynamic motions. The reactive jerk 

forces, induced by the high-speed motion of one axis, are 

transmitted to the other axis and act as disturbances, 

which leads to undesired vibrations of the axis table. This 

hinders the possibility to fully exploit the advantages of 

kinematic redundancy in feed drive systems. This issue 

was addressed in [8] by developing a dynamic coupling 

model. The magnitude and frequency of the transmitted 

jerk forces from one axis to another is controlled by the 

values of stiffness and damping elements in the dynamic 

coupling model. However, inconsistency remained 

between the model output and measurements. This 

problem was attributed in [9] to a deviation of parameter 

values in the dynamic coupling model from the real 

system. The values of mechanical stiffness, viscous 

damping, and mass in the model were approximately 

calculated in [10, 11] based on the material and 

dimensions of coupling plate, fasteners, and axes 

mechanical parameters. Therefore, nonlinear 

identification of the parameters’ values in the dynamic 

coupling model is of great interest. 

The current work applies a framework using sailfish 

optimization algorithm (SFO) to determine the optimum 

model parameters. The criteria to be selected in the 

objective function is minimum RMS error. It is defined as 

the root mean square difference between the model 

output (undesired carrier axis displacement) and 

measurements. The results from the algorithm are 

compared with those before optimization [12] and with 

results from two optimization algorithms from literature: 

ant colony optimization (ACO) and particle swarm 

optimization (PSO) algorithms. 
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II. SYSTEM DESCRIPTION 

The current investigation was carried out on the 

kinematic redundant feed drive system shown in Fig. 1. 

The tested system specifications were described in [10] 

and it consisted of two ball screw mechanisms driven by 

permanent magnet AC servo actuators. The carried axis 

was mounted collinearly to the table of the carrier axis 

forming a kinematic redundant structure that supported 

the Tool Center Point (TCP). The motion of the TCP at 

any instant was equal to the summation of the individual 

motions of carried and carrier axes.   

Fig. 2 shows a block diagram of the kinematic 

redundant system developed in Simulink. As both axes 

were allowed to move in one direction, the problem was 

reduced to a single degree of freedom system and the 

carried axis was excited in the direction of force. When 

the carried axis is commanded to move the TCP with a 

certain trajectory, a reaction force F1, equal in amplitude 

but opposite in the direction to the jerk force, is generated 

on the carried axis. The intermediate plate that holds the 

carried axis and is fixed to the nut of the carrier axis acted 

as a spring-damper system, and hence, it transmits a 

fraction of the induced forces to the carrier axis Ft1 

resulting in an undesired displacement.  

In this work, a set of experiments was formulated to 

test the dynamic reaction of the model under the 

influence of two main parameters: input command 

amplitude X and the velocity of an axis v. The levels of 

each motion parameter were selected in this work based 

on the effective workspace range of each axis and the 

maximum axes velocities, as shown in Table I. 

 

 
(a) 

 

 
(b) 

Figure 1.  (a) the redundant structure assembly: 1, 7 two synchronous 
servomotors; 3,4 ball screws; 5 tool center point; 2, 6 flexible couplings, 

b) a simplified block diagram of the kinematic redundant feed drive 

system [10]. 

TABLE I.  CARRIED AXIS STEP COMMAND TESTS AND THEIR 

PARAMETER VALUES. 

 Step Command Tests 

Parameter A1 A2 A3 v1 v2 v3 

X (mm) 1 0.75 0.5 1 1 1 

v (mm/s) 500 500 500 500 400 250 

III. SAILFISH OPTIMIZATION ALGORITHM 

Sailfish optimization algorithm [12] is a recently 

developed heuristic algorithm to provide optimum 

solutions for complex stochastic problems. Its structure is 

developed based on the marine zoological behaviour of 

sailfish and sardine groups. When compared to other 

intelligent swarm algorithms, SFO showed competitive 

results in terms of exploration and exploitation phases. It 

also demonstrated high-speed convergence levels to reach 

global optimization, while avoiding local optima points. 

A description of sailfish optimization algorithm, used in 

this work, is presented as follows: 

A. Initiation Phase 

Sailfish and sardine positions are arbitrarily initiated 

according to the space area and constraints as: 
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Where X and Y represent the sailfish matrix and sardine 

matrix, respectively. i is the number of iteration loops. j 

refers to the number of the parameters of the dynamic 

coupling model in the matrix. Thus, X and Y matrices 

have the same number of columns (same number of 

parameters under investigation). In the initialization 

phase, sardine and sailfish agents are given random 

values for each parameter in the matrices for the search of 

the best fitness function in each iteration.  

B. Finding the Elite Sailfish and Injured Sardine 

The sailfish with the best fitness function is considered 

as the elite sailfish that is qualified for attack and injuring 

sardines. Furthermore, the elite sailfish does not update 

its position in the next iteration as far as the best solution 

has not been lost. On the other hand, the sardine with the 

best fitness function is called the injured sardine that is 

most exposed to be injured. 

C. Adjusting Sailfish Positions 

Equation (2) represents the modification method for 

positions based on the elite sailfish location and injured 

sardine. 
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Where Xi+1 is the updated position of the Sailfish at i+1 

iteration, Xelii is the actual elite sailfish, Yinji is the 
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actual injured Sardine, β is the random number (0 < β < 

1). (γ) is a coefficient calculated at each update using (3). 

    12   PD    (3) 

Where PD is the prey density and is calculated using (4).                    

      

sfs

sf

NN

N
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
1   (4) 

Where Nsf and Ns are the number of sailfish and sardine 

in each cycle, respectively. Adjusting Sardine Positions.  

D. Adjusting Sardine Positions 

Each sardine tends to escape and maneuver in 

accordance with (5):   

 APYXrY ii

eli

i 1           (5) 

Where r is a random number (0 < r < 1)., AP clarifies the 

sailfish attack power at each iteration and is determined 

based on (6) as follows: 

 )2(1  itrAAP                (6) 

A and ɛ are coefficients that represents the decaying of 

the sailfish's attack power. On the other hand, itr is the 

number of iteration cycle. If AP > 0.5, all sardine groups 

will update their positions and if AP < 0.5, only (a) 

number of sardines will update their positions according 

to (7). 

APNa s                                  (7) 

Each sardine will be killed if its fitness function is 

better than the sailfish’s. In other words, the sardine will 

be killed if it will be in a better position for the sailfish to 

easily reach and hunt. Consequently, the sailfish will 

occupy the space of sardine (elite sailfish) and the sardine 

will be removed from the school. The number of sardines 

will be reduced according to (8) as follows:  

Xi = Yi   if    fit (Yi) > fit (Xi)                (8) 

E. Work Procedure 

The present method relies on optimum selection of 

dynamic coupling model parameters by means of SFO 

and minimum RMS error as a fitness function. The 

procedure is explained in the following steps: 

(i) Sailfish and sardine matrices are generated with 

random values of each parameter in the dynamic 

coupling model according to each parameter 

constraints. 

(ii) In each iteration, the parameters of each agent are 

substituted in the model and the tested command is 

applied to carried axis model. The corresponding 

response signal of carrier axis signal is then recorded. 

(iii) For each agent in the iteration, RMS error values are 

determined. The agent (sailfish or sardine) with the 

best fitness function is selected as the best position. 

In case the agent is sailfish (elite sailfish), it will 

remain in its position until next iteration, however, if 

the agent is sardine (injured sardine) then the sailfish 

agents will relocate their positions towards it. 

(iv) The values of the agents are updated accordingly in 

the next iteration until the termination condition is 

reached (All sardines are killed, or number of 

iterations is reached). 

IV. RESULTS AND DISCUSSION 

Fig. 2 illustrates the displacement of carrier axis 

obtained from measurements, simulation model based on 

the calculated values in [10], ACO, PSO, and using SFO 

algorithm for A1 test. A noticeable difference is observed 

between the results using calculated values and 

measurements in terms of signal amplitude (peak to peak) 

and damping (logarithmic decrement) parameters. 

Compared to measurements, results using calculated 

values deliver the highest peak to peak amplitude error in 

the first cycle of displacement reaching 27 % for A1, as 

shown in Fig. 3. 

 

Figure 2.  carrier axis displacement results for A1 step command test. 

In comparison, simulation results from SFO algorithm 

deviates from measurement by only 4 %. The error values 

are 6% and 13% when using ACO and PSO algorithms, 

respectively. In case of tests A2 and A3, the results using 

calculated values showed significant deviation from 

measurements peaking at 59 % and 72 %, respectively. 

For those from ACO and PSO approaches, the peak-to-

peak error reached only 9 % and 18 %, while in case of 

SFO, the peak-to-peak error is reduced to only 5%. 

Reducing the step size from A1 to A3 resulted in a 

proportional increase in the peak-to-peak error between 

the calculated values approach and measurements. This 

could be attributed to the increase of signal-to-noise 

(SNR) ratio of carrier axis displacement measurements at 

the submillimeter level. For tests v1, v2, and v3, the 

results from SFO, ACO, and PSO approaches remained 

unchanged settling down at around 1 %, while calculated 

values show greater peak to peak errors of around 27 % 

for v1, 44 % for v2, and 33 % for v3. Simulation signals 

from PSO, ACO and calculated values approaches 

featured the same frequency as the measured signal 

frequency (around 48 Hz). It can be seen that the 

damping error between measurements and SFO, ACO, 

and PSO was merely 4 % for all tests, while this value 

was around 15 % in case of calculated values approach. 

This indicates that the model response using SFO 

algorithm is better representing the disturbance response 

of the carrier axis under the effect of moving the carried 

axis at different step sizes and velocities. 
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For validation of results, a rectangular pulse function 

T1 was tested on the carried axis. The test function starts 

at 0 mm amplitude with a rise time of 0.002 s to reach the 

maximum amplitude of 5 mm then return back to 0 mm 

with a dwell time of 0 s. Fig. 4 shows the results obtained 

from both measurements and simulation from the four 

approaches. It can be seen that the SFO approach signal 

follows the measured signal better than the signals from 

other approaches. 

 
(a) 

 

(b) 

Figure 3.  the difference between measurements and simulation outputs 
for all tested step functions in terms of a) peak to peak error, and b) 

damping deviation. 

 

Figure 4.  carrier axis displacement results for tests T1. 

The frequency components and their energy contents 

of simulation signals were also determined and compared 

with measurement using power spectrum density (PSD). 

Fig. 5 shows the power spectrum density results for test 

T1. By comparing signals and their power spectral 

densities, it is noticed that measurement signal for T1 has 

three components at 44 Hz, 156 Hz, and 244 Hz. 

Simulation results from the four approaches are found to 

have the same frequency components as measurements 

with an error margin at each frequency of around 9 %, 

2 %, and 5 %, respectively. 

 
(a) 

 
(b) 

Figure 5.  a) power spectrum density of simulation results and 
measurement and b) corresponding power spectral density error at each 

frequency. 

The energy content at the first frequency component 

showed a significant deviation in case of calculated 

values approach of 56 % from measurement. This value 

is around 46 % and 83 % for the second and third 

frequency components. In case of SFO and these values 

were 25 %, 12 %, and 18 %, which are lower than those 

of PSO and ACO. 

V. CONCLUSIONS 

Kinematic redundancy is a promising solution to 

increase the productivity of high-speed machine tools. 

However, induced vibrations in axis during high dynamic 

motions require deep understanding of how these 

vibrations are transmitted in the structure coupling 

between axes. Therefore, simulation model of the 

redundant axes requires parameter optimizing of the 

dynamic coupling model using sailfish optimization 

algorithm. The deviation between the model output and 

measurements has been compared by calculating peak-to-

peak error, frequency, and damping deviation for simple 

step functions. The identified parameter values in the case 

of SFO are found to reduce the discrepancies between 

simulation and experimental results. Validation of work 

was conducted on a rectangular function. Power spectra 

and frequency correlation were determined, and the 

results showed good potential of SFO in following the 

measurement signals. 
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