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Abstract—For generating a translational motion of a robot in 

a horizontal plane or under microgravity, it is possible to 

utilize an impact force between the end-effector and a surface 

such as a wall and the ground. In this paper, we consider a 

legged robot consisting of four links that pushes a certain 

surface to obtain a translational momentum in a horizontal 

plane. The motion that maximizes the momentum is searched 

for, under the condition that the torque consumption during 

it is the same, by numerical optimization. The optimization 

results indicate that the motion with an impact force that is 

caused by hitting the surface is advantageous in increasing 

the translational momentum.  

 

Index Terms—motion planning, differential evolution, 

impact force 

 

I. INTRODUCTION 

Robots perform various tasks by acting on a target 

object or an environment such as the ground and walls with 

their end-effectors. For example, a legged robot can walk 

or jump by pressing its toes against the ground to achieve 

its locomotion. Those motions are highly dependent on the 

gravity, and large forces are necessary to support, 

accelerate or decelerate the robot in a vertical direction. 

For generating a vertical motion against gravity, it would 

be necessary to continuously push the ground for a certain 

duration, like a human walking or jumping [1-4].  

In a horizontal plane or under microgravity, robots may 

achieve their locomotion by different motions that cannot 

be performed under gravity [5-7]. Due to recent space 

projects, researchers are increasingly interested in the 

locomotion of robots under microgravity [8-10]. It would 

be possible to generate an impact force between the end-

effector and a surface to obtain a translational momentum 

of a robot. A novel way of locomotion could also be 

realized by choosing a robot mechanism that is specialized 
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for microgravity. However, these possibilities have not 

been explored sufficiently.  

Impact forces are usually reduced in motion control of 

robots [11,12], because they tend to cause mechanical 

damage. To mitigate the impact forces, several robot 

mechanisms have been proposed so far [13,14]. Although 

impact forces for the motions in a horizontal plane or under 

microgravity would be smaller than for a vertical motion 

under gravity, they can be reduced by attaching an elastic 

component on the end-effector that contacts with a surface.  

In order to save the power consumption of a robot or 

increase the number of tasks that a robot can accomplish, 

we can choose an efficient way of motion according to the 

tasks [15-18]. Unlike humans and other living creatures, 

we can also use the robot mechanisms such as the joints 

that do not limit joint angles. The question then arises: 

what is the best way of kicking out a surface by a robot 

with 360 degrees rotation joints especially in a horizontal 

plane and under microgravity?  

In this paper, we consider a four-link legged robot with 

360 degrees rotation joints that pushes a surface in a 

horizontal plane. This corresponds to a humanoid robot 

pushing a wall horizontally, or a hopping robot under 

microgravity. We perform numerical simulations for the 

above mentioned two ways of motion, the motion of 

continuously pushing a surface and the motion of hitting it 

with an impact force. Under the condition that the torque 

consumption during operation is the same, the obtained 

momenta for the motions are compared to confirm the 

advantage of the motion with an impact force. 

II. DYNAMICAL MODEL OF LEGGED ROBOT 

A. Legged Robot 

Fig. 1 shows a legged robot that was developed for 

experiments of jumping or pushing motion. The legged 

robot has four links and three joints, corresponding to the 
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structure of the human leg. Body 1, Body 2, Body 3, and 

Body 4 represent the foot, lower leg, thigh, and torso, 

respectively. The legged robot kicks out a wall with the tip 

of its Body 1 (toe).  

 

Figure 1.  Legged robot 

The model of contact force between the wall and the toe 

is important, because the translational momentum of the 

robot is obtained through the force. In the next subsection, 

we will present the equations of motion for the robot 

including the contact force.  

B. Equation of Motion 

The inertial coordinate system and the body coordinate 

system for each Body 𝑖 are introduced as shown in Fig. 2, 

where 𝑙𝑖  is the length of the body and 𝑠𝑖  is the distance 

from 𝑂𝑖  to the center of gravity 𝐺𝑖. The point 𝑃𝑖  of Body 𝑖 
is connected to the point 𝑂𝑖+1 of Body 𝑖 + 1 by a rotation 

joint. The equations of motion are given as follows.  

[

𝑴1 𝟎 𝟎 𝟎
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] [

�̈�1

�̈�2

�̈�3

�̈�4
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𝑣

𝑸3
𝑣

𝑸4
𝑣]
 
 
 
+

[
 
 
 
𝑸1

𝑐

𝑸2
𝑐

𝑸3
𝑐

𝑸4
𝑐]
 
 
 
+

[
 
 
 
𝑸1

𝑒

𝑸2
𝑒

𝑸3
𝑒

𝑸4
𝑒]
 
 
 
 , (1) 

where 𝑴𝑖 is an inertia matrix of Body 𝑖 and is given as 

𝑴𝑖 = [

𝑚𝑖 0 −𝑚𝑖𝑠𝑖 cos∅𝑖

0 𝑚𝑖 −𝑚𝑖𝑠𝑖 sin ∅𝑖

−𝑚𝑖𝑠𝑖 cos ∅𝑖 −𝑚𝑖𝑠𝑖 sin ∅𝑖 𝐼𝑖 + 𝑚𝑖𝑠𝑖
2

]. (2) 

In the above equation, 𝑚𝑖  and 𝐼𝑖  are respectively the 

mass and the inertia of Body 𝑖. Its position and posture are 

denoted in a vector form as 𝒒𝑖 = [𝑥𝑖 𝑦𝑖 ∅𝑖]
𝑇 . 

In the right-hand side of (1), 𝑸𝑖
𝑣 represents the inertia 

force, and is given as  

 𝑸𝑖
𝑣 = [

−𝑚𝑖𝑠𝑖∅̇𝑖
2 sin ∅𝑖

𝑚𝑖𝑠𝑖∅̇𝑖
2 cos∅𝑖

0

]. (3) 

𝑸𝑖
𝑐 represents the constraint force due to the coupling of 

the bodies at the joint, and is given as 

 𝑸𝑖
𝑐 = −(

𝜕𝑪

𝜕𝒒𝑖
)

𝑇

𝝀, where 𝑪 =

[
 
 
 
 
 
𝒓1

𝑃 − 𝑹2

𝒓2
𝑃 − 𝑹3

𝒓3
𝑃 − 𝑹4

𝑦4

∅4 ]
 
 
 
 
 

= 𝟎. (4) 

 

 

Figure 2.  Body coordinate system (left) and inertial coordinate system 
(right). 

The first three components in 𝑪 express the constraints at 

the rotation joints, where 𝒓𝑖
𝑃 is the vector from 𝑂 of Σ0 to 

the point 𝑃𝑖 , and 𝑹𝑖 is a vector from 𝑂 of  Σ0 to 𝑂𝑖  of Σ𝑖 , 

as shown in Fig. 3. In addition, the x-direction motion and 

rotational motion of Body 4 are constrained for the robot 

in Fig. 1, to focus only on the motion perpendicular to the 

wall. The last two components in 𝑪 correspond to those 

constraints. 𝝀  in (4) is the vector which represents the 

reaction forces due to the constraints. 

 

Figure 3.  Constraint at the rotation joint. 

The external force 𝑸𝑖
𝑒 is composed of the term from the 

actuator torques and the term from the contact force 

between the toe and the wall. Let 𝝉 = [𝜏1 𝜏2 𝜏3]𝑇 , 

where 𝜏𝑖  is an applied torque at Joint 𝑖  . Then, the 

component from 𝝉 is expressed as 𝑯𝑖𝝉, where 

𝑯1 = [
0 0 0
0 0 0
1 0 0

] ,𝑯2 = [
0 0 0
0 0 0

−1 1 0
], 

 𝑯3 = [
0 0 0
0 0 0
0 −1 1

] , 𝑯4 = [
0 0 0
0 0 0
0 0 −1

]. (5) 

For 𝑖 = 2,3,4, the external force is expressed as 

 𝑸𝑖
𝑒 = 𝑯𝑖𝝉. (6) 

For Body 1, we represent the force 𝑸1
𝑒 as 

 𝑸1
𝑒 = 𝑯1𝝉 + 𝑾𝑁𝑓𝑁 + 𝑾𝑇𝑓𝑇 , (7) 
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 𝑾𝑁 = [0 1 0]𝑇 ,𝑾𝑇 = [1 0 0]𝑇 , (8) 

where 𝑓𝑁  and 𝑓𝑇  are the normal contact force and 

tangential force respectively. In this paper, 𝑓𝑁  is 

represented by a virtual spring from the Hooke contact 

model [19], and 𝑓𝑇 is expressed by a virtual damper. 

 𝑓𝑁 = {
       0      (𝑔𝑁 ≥ 0)

    −𝐾𝑔𝑁   (𝑔𝑁 < 0)
  ,  (9) 

 𝑓𝑇 = {
       0      (𝑔𝑁 ≥ 0)

    −𝜇𝑓𝑁sign(�̇�𝑇)   (𝑔𝑁 < 0)
  , (10) 

where 𝐾  is the stiffness coefficient and 𝜇  is the friction 

coefficient. 𝑔𝑁 and 𝑔𝑇 are the normal and lateral direction 

distances between the toe of legged robot and the wall. The 

normal and tangential forces act only when the toe 

penetrates the wall. 

III. OPTIMIZATION OF KICKING MOTION 

In this paper, we search for an optimal motion of the 

legged robot for kicking out the wall. This section 

summarizes the method of calculating an optimized 

motion numerically. 

A. Formulation of Optimization Problem 

The torque 𝝉 is assumed to be applied for 𝑡 ∈ [0, 𝑡𝑓], 

and to be kept at zero after the time 𝑡𝑓, as shown in Fig. 4. 

The legged robot gains translational momentum in the y-

direction from the wall only while the toe contacts with the 

wall. In other words, the greater the velocity obtained 

when taking off the wall, the greater the movement in unit 

time. Therefore, we consider an optimization problem that 

maximizes the velocity of the center of gravity in the y-

direction at the instant of taking off. 

The optimization problem is formulated as follows. 

{

Maximize 𝜉(𝑿) = �̇�𝑦

w. r. t.   𝑿 = [𝝉𝑇 𝑡𝑓 ∅𝑖(0)]

s. t.   ∫ (𝜏1
2 + 𝜏2

2 + 𝜏3
2)𝑑𝑡

𝑡𝑓
0

= α 

(𝑖 = 1, 2, 3) (11) 

Denoting the position of gravity center of the robot 

along y axis as 𝐺𝑦 , evaluation function 𝜉 is given as its 

time derivative after taking off. The design variable 𝑿 

includes the torque 𝝉, the time 𝑡𝑓  and the initial angles 

∅𝑖(0) of Body 1 to 3. Those initial angles correspond to 

the initial posture of the robot. It should be noted that the 

torque consumption for 𝑡 ∈ [0, 𝑡𝑓] is constrained to be the 

same amount of 𝛼. 

Since a time history of a torque is infinite-dimensional, 

we express it approximately by using the Fourier series. 

 𝜏𝑖 = 𝑎1,𝑖 sin (
𝜋𝑡

𝑡𝑓
) + ⋯+ 𝑎ℎ,𝑖 sin (

ℎ𝜋𝑡

𝑡𝑓
) (12) 

Then, the design variables 𝜏𝑖(𝑡)  are replaced by the 

coefficients 𝑎𝑗,𝑖(𝑖 = 1, 2, 3, 𝑗 = 1,⋯ , ℎ) . In addition, 

since it is difficult to satisfy the condition of the torques 

exactly, an acceptable range 𝛽 is introduced. 

𝛽 = 𝑎𝑒−𝑛 + 𝑏,   (𝑎 =
(𝜌−1)𝜀

𝑒−1−𝑒−𝐿 , 𝑏 =
𝑒−1−𝜌𝑒−𝐿

𝑒−1−𝑒−𝐿 𝜀), (13) 

 

Figure 4.  Example of joint torque profile. 

 

Figure 5.  Acceptable range 𝛽 (𝛽 = 𝜌𝜀 for = 1 , 𝛽 = 𝜀 for 𝑛 = 𝐿). 

where 𝑛  and  𝐿  are the number of generations and the 

maximum number of generations respectively, and will be  

described in the next subsection. The range 𝛽 is narrowed 

down exponentially according to 𝑛, as shown in Fig. 5, 

where 𝜌(> 1) is a constant. 

The evaluation function is also replaced by 𝜉(̅𝑿) =

1/�̇�𝑦  to match the DE-based algorithm described in the 

next subsection. The optimization problem in (11) is 

rewritten as follows. 

{

Minimize 𝜉(̅𝑿) = 1/�̇�𝑦

w. r. t.   𝑿 = [𝑎𝑗,𝑖  𝑡𝑓 ∅𝑖(0)]

s. t.   𝐽𝑐 = |∫ (𝜏1
2 + 𝜏2

2 + 𝜏3
2)𝑑𝑡

𝑡𝑓
0

− α| ≤ 𝛽 

 (14) 

B. Algorithm Based on DE 

In this paper, the optimization problem in (14) is solved 

with an algorithm based on Differential Evolution (DE) 

[20] that is described below.  

(1) Generate each element of the 𝑁 initial individuals 

𝑿𝑘
(1)

 (𝑘 = 1,2,⋯ ,𝑁) with a uniform random number of 

[𝑎𝑚𝑖𝑛 , 𝑎𝑚𝑎𝑥].  
(2) Repeat the following operations a) to d) with 𝑛 =

1,2,⋯ , 𝐿, where 𝑛 is called the number of generartions. 

a) If the condition for the torque comsumption is 

satisfied, compute 𝜉̅(𝑿𝑘
(𝑛)

) by numerical simulation. If not, 

set 𝜉̅(𝑿𝑘
(𝑛)

) = ∞. Let the m-th individual 𝑿𝑚
(𝑛)

 for which  
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𝜉(̅𝑿𝑚
(𝑛)

)  is the smallest be the best individual 𝑿𝑏𝑒𝑠𝑡
(𝑛)

 

(𝑿𝑏𝑒𝑠𝑡
(𝑛)

= 𝑿𝑚
(𝑛)

). If 𝜉̅(𝑿𝑘
(𝑛)

) = ∞ for all 𝑘 = 1,2,⋯ ,𝑁, the 

m-th individual for which 𝐽𝑐  is the smallest is the best 

individual 𝑿𝑏𝑒𝑠𝑡
(𝑛)

 (𝑿𝑏𝑒𝑠𝑡
(𝑛)

= 𝑿𝑚
(𝑛)

).  

b) Set the value of base vector 𝑿𝑏𝑎𝑠𝑒
(𝑛)

 to be 𝑿𝑏𝑒𝑠𝑡
(𝑛)

. 

Also, two integers 𝑟1,𝑘 ,  𝑟2,𝑘  ( 𝑟1,𝑘 ≠ 𝑟2,𝑘 ≠ 𝑚)  are 

randomly chosen from among 𝑘 = 1,2,⋯ ,𝑁 to generate 

the displacement vector 𝑴𝑘
(𝑛)

 which is defined as follows.  

 𝑴𝑘
(𝑛)

= 𝑿base
(𝑛)

+ 𝐹 (𝑿𝑟1,𝑘

(𝑛)
− 𝑿𝑟2,𝑘

(𝑛)
), (15) 

where 𝐹(> 0) is the scale factor. 

c) Create a trial vector 𝑼𝑘
(𝑛)

. Each element of 𝑼𝑘
(𝑛)

,  

𝑈𝑙,𝑘
(𝑛)

 (𝑙 = 1,2,⋯ ,3ℎ + 4), is defined as follows. 

 𝑈𝑙,𝑘
(𝑛)

= {
𝑀𝑙,𝑘

(𝑛)
(𝑅𝑙,𝑘 ≤ 𝐶  or 𝑙 = 𝑙rand)

𝑋𝑙,𝑘
(𝑛)

(otherwise)
, (16) 

where 𝑙rand  is a randomly chosen integer from 𝑙 , 𝑅𝑙,𝑘 ∈
[0 1]  is a uniform random number, and 𝐶(> 0)  is a 

crossover rate. 

d) Compute 𝜉̅(𝑼𝑘
(𝑛)

). In this paper, if  𝜉(̅𝑿𝑘
(𝑛)

) ≠ ∞ 

or  𝜉̅(𝑼𝑘
(𝑛)

) ≠ ∞ , the surviving individual is selected 

according to (17). If 𝜉(̅𝑿𝑘
(𝑛)

) = ∞ and  𝜉(̅𝑼𝑘
(𝑛)

) = ∞, it is 

selected according to (18). 

 𝑿𝑘
(𝑛+1)

= {
𝑼𝑘

(𝑛)
(ξ̅(𝑼𝑘

(𝑛)
) ≤ ξ̅(𝑿𝑘

(𝑛)
))

𝑿𝑘
(𝑛)

(ξ̅(𝑼𝑘
(𝑛)

) > ξ̅(𝑿𝑘
(𝑛)

))
 (17) 

 𝑿𝑘
(𝑛+1)

= {
𝑼𝑘

(𝑛)
(𝐽𝑐(𝑼𝑘

(𝑛)
) ≤ 𝐽𝑐(𝑿𝑘

(𝑛)
))

𝑿𝑘
(𝑛)

(𝐽𝑐(𝑼𝑘
(𝑛)

) > 𝐽𝑐(𝑿𝑘
(𝑛)

))
 (18) 

IV. NUMERICAL RESULTS 

A. Parameter Setting 

In this section, the design variable 𝑿  that minimizes 

𝜉(̅𝑿) will be obtained by the above mentioned algorithm 

with the following parameters; The lengths and weights of  

the bodies are chosen as 𝑙1 = 0.07 (m), 𝑙2 = 𝑙3 =
0.30 (m), 𝑙4 = 0.20 (m),𝑚1 = 0.40 (kg),𝑚2 = 𝑚3 =
1.58 (kg), and 𝑚4 = 1.42 (kg) . The inertia moment of 

each body is calculated under the assumption that each 

body is a uniform bar. The coefficients 𝐾 in (9) and 𝜇 in 

(10) are set to be  𝐾 = 170 × 105 (N/m)  and 𝜇 = 0.1 . 

Considering the output of the actuators in the experimental 

devise, 𝛼 in (11) is set to 𝛼 = 0.12. 𝜀  and 𝜌 in (13) are 

chosen as 𝜀 = 0.012  and 𝜌 = 10 . The torques are 

represented by (12) with ℎ = 10, and the range of random 

numbers [𝑎min, 𝑎max]is set to [−2.5, 2.5]. The number of 

individuals is 𝑁 = 200 , the number of maximum 

generation is 𝐿 = 200, the crossover rate is 𝐶 = 0.9, and 

the scale factor is 𝐹 = 0.6. 

For numerical calculation, we make the following 

assumptions; a) At the initial time 𝑡 = 0, the legged robot 

is stationary, and the point 𝑂1 of Body 1 is in contact with 

the wall. b) The legged robot is assumed to slide on a 

smooth horizontal surface, and the friction between them 

is ignored. c) Joint friction is not considered. d) The initial 

angles ∅𝑖(0) of Body 1 to 3 are constrained as follows. 

0 ≤ ∅1(0) ≤
𝜋

2
, −

𝜋

2
≤ ∅2(0) ≤ 0, 0 ≤ ∅3(0) ≤

𝜋

2
 (19) 

We consider two cases for numerical optimization, in 

order to compare two types of kicking motion: hitting the 

wall with an impact force and pushing the wall 

continuously. Although a motion such as repeatedly 

contacting the wall can be considered, the numerical 

optimization excludes it by evaluating �̇�𝑦  right after the 

toe first leaves the wall except at the initial time. To obtain 

the motion of pushing the wall continuously through 

numerical optimization, we introduce the following 

constraint. 

 ∅̇1 < 0 for 𝑡 > 0 (20) 

Numerical optimization was performed based on the 

algorithm in Sec. III in the following two cases: Case 1 

without the constraint (20) and Case 2 with the constraint 

(20). In Case 2, we use the penalty method to find an 

optimized solution that satisfies the constraint (20), that is, 

if (20) is not satisfied, we make the evaluation function 

much worse.  

B. Results and Discussion 

The motions obtained by numerical optimization in 

Case 1 and Case 2 are shown in Fig. 6. The position and 

posture of the robot are drawn for both cases every  

0.02 (s) from 0 (s) to 0.1 (s) and at 0.2 (s) in the figure, 

where the black dots indicate the position of the center of 

gravity. The torques for the motions are shown in Fig. 7, 

where the red, blue and green lines correspond to 𝜏1, 𝜏2, 

and 𝜏3 respectively. The time histories of normal force 𝑓𝑁 

caused at the contact point are also shown in Fig. 8. 

In Case 1, the legged robot makes almost one rotation 

of Body 1 counterclockwise around Joint 1 as shown in Fig. 

6 (a), and then hits the wall around 𝑡 = 0.087 (s) to obtain 

a translational momentum through a large impact force 

shown in Fig. 8 (a). The velocity of center of gravity �̇�𝑦, 

that is, 𝜉(𝑿) , is 1.544 (m/s)  immediately after the toe 

leaves the wall at 𝑡 = 0.0874 (s), and the height of robot 

𝐺𝑦 reaches 0.63 (m) at  𝑡 = 0.2 (s). 
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Figure 6.  Position and posture obtained by numerical optimization. 

 

Figure 7.  Joint torques for the optimized motion. 

 

Figure 8.  Normal contact force for the optimized motion. 

In Case 2, the legged robot rotates Body 1 clockwise and 

pushes the wall continuously with the toe from the initial 

time, as shown in Fig. 6 (b). The contact force 𝑓𝑁 is also 

caused continuously as shown in Fig. 8 (b) until the robot 

takes off at 𝑡 = 0.0659 (s) . The velocity of center of 

gravity �̇�𝑦, that is, 𝜉(𝑿), is 0.436 (m/s) after the take off, 

and the height of robot 𝐺𝑦 reaches 0.51 (m) at 𝑡 = 0.2 (s). 

From these results, the velocities �̇�𝑦 obtained from the  

same amount of torque consumption are largely different 

in Case 1 and Case 2; the velocity in Case 1 is about 3.5 

times greater than that in Case 2. It would indicate that the 

motion of hitting the wall with an impact force in Case 1 

is advantageous in generating a large translational 

momentum in a horizontal plane or under microgravity. 

From the time histories of joint torques in Fig. 7, almost 

all the allowable torque consumption is utilized to rotate 

Body 1 by 𝜏1 in both cases. In Case 1, the torque 𝜏1 can 

generate a large rotational energy of Body 1, because the 

toe does not contact with the wall until the hitting and the 

rotation of Body 1 is easily accelerated. The energy 

accumulated until the hitting causes a large translational 

momentum through the elastic collision with the wall. On 

the other hand, in Case 2, the rotational acceleration of 

Body 1 is quite reduced due to the contact force from the 

wall. Even though the contact force is kept applied for a 

longer time, the total amount of translational momentum 

obtained from the contact force is smaller than in Case 1. 

Moreover, the vibratory behavior of the contact force in 

Case 2 is caused from the elasticity of the contact model. 

The motion of hitting a surface with an impact force 

would be one promising strategy for kicking in a horizontal 

plane or under microgravity. Although a large impact force 

may cause mechanical damage to the robot, the peak of the 

force could be mitigated by utilizing an elastic component 

attached on the toe. Moreover, the impact force at each 

joint can be estimated by 𝑸𝑖
𝑐  in the dynamic model 

presented in Sec. II. It should be noted that the postures of 

robot in both cases are almost stretched out, that is, close 

to singular configurations. The amount of contact force 

that can be obtained from the energy and joint torques of 

robot would depend on the posture. A more detailed 

analysis will be performed as a future work. 

V. CONCLUSION 

In this paper, we searched for an optimal kicking motion 

of a legged robot in a horizontal plane by numerical 

optimization. The optimization results obtained by a DE-

based algorithm showed that the translational momentum 

caused by hitting a surface with an impact force is much 

larger than the one by pushing it continuously, under the 

constraint that the torque consumption during the motion 

is constant. Accumulating the energy in an internal motion 

of the legged robot and transferring the energy to a 

translational momentum through a collision with a surface 

would be one of effective kicking motion strategies in a 

horizontal plane or under microgravity. 
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