
An Obstacle Avoidance Two-Wheeled Self-

Balancing Robot

Ryuichi Tsutada, Trong-Thuc Hoang, and Cong-Kha Pham
Graduate School of Informatics and Engineering, University of Electro-Communications, Tokyo, Japan

e-mail: tsutada@vlsilab.ee.uec.ac.jp, thuc@vlsilab.ee.uec.ac.jp, phamck@uec.ac.jp

Index Terms—Two-Wheeled Self-Balancing Robot

(TWSBR), MPU-6500, Kalman Filter, PID controller, fuzzy

controller, obstacle avoidance, RISC-V, fixed-point

arithmetic

I. INTRODUCTION

An inverted pendulum is an inherently unstable system

and cannot be maintained in a balancing state without

control. There are several types of inverted pendulums,

such as truck-type inverted pendulums, wheel-type

inverted pendulums and rotary-type inverted pendulums. In

this paper, we focus on a two-wheeled self-balancing robot

(TWSBR) based on the wheel-type inverted pendulum.

TWSBR can be controlled by many different methods.

The most common method to control TWSBR is to use PID

controller [1]. In [2], state feedback control by Linear

Quadratic Regulator (LQR) is proposed. It is common that

microprocessors such as ARM Cortex-M4 [3], STM32 [4]

and AVR [5], [6] have been used to control TWSBR. Also,

obstacle avoidance of robots has been researched for many

years and many methods are adopted fuzzy inference. In

[7], obstacle avoidance by multiple ultrasonic sensors for

TWSBR is proposed.

Manuscript received July 21, 2021; revised November 1, 2021.

RISC-V is an open-source instruction set architecture

(ISA) and free to use, which is different from those

microprocessor’s ISA. In addition, RISC-V processors are

used for controlling robots [8], [9]. In this paper, we

propose a control and obstacle avoidance system of the

TWSBR based on a 32-bit RISC-V soft microprocessor.

The rest of the paper is organized as follows: Section II

pro- vides a system overview of the TWSBR. Section III

describes the control system of the TWSBR. Section IV

discusses the obstacle avoidance system of the TWSBR.

Section V proposes the method of the fixed-point

arithmetic. Section VI explains the implementation of the

software program. Finally, Section VII and VIII shows the

results and conclusion.

II. SYSTEM OVERVIEW

A. Self-Balancing Robot

Terasic’s Self-Balancing Robot (Fig. 1) is a type of the

TWSBR, which includes accelerometer, gyroscope, motor

driver and encoders like other robotic kits [10]. However,

it uses a FPGA board DE10-NANO with Cyclone V

5CSEBA6U2317 as a control board. Therefore, it has a

very high configurability and ideal for implementing and

experimenting with a new system. Fig. 2 shows a block

diagram of the control system of the robot.

Figure 1. Terasic’s self-balancing robot [10].

The Terasic’s Self-Balancing Robot equips a Cyclone

SoC FPGA, which means that the ARM processor is

embedded in the FPGA. Therefore, there are two processor

options available to control the Robot. One is to use the

ARM processor and the other is to implement a soft NIOS

II processor [11] in the FPGA. If user want to select ARM

to control the robot, the FPGA will boot from the Micro SD

1

International Journal of Mechanical Engineering and Robotics Research Vol. 11, No. 1, January 2022

© 2022 Int. J. Mech. Eng. Rob. Res
doi: 10.18178/ijmerr.11.1.1-7

Abstract—This paper introduces a Two-Wheeled Self-

Balancing Robot (TWSBR) which is controlled to avoid

obstacles. The TWSBR is a type of the inverted pendulum

and is treated as an inherently unstable nonlinear system.

Therefore, a continuous appropriate control is required to

maintain the inverted state. The TWSBR consists of two DC

motors with encoders and 6-axis sensor (accelerometer and

gyroscope). All peripherals are connected to a 32-bit RISC-V

soft microprocessor implemented on an FPGA, and all

control circuits for the peripherals are also implemented on

the same FPGA. An attitude control system of the TWSBR is

provided through 3 Proportional-Integral- Differential (PID)

controllers with a sensor fusion-based on a Kalman Filter,

which is implemented on the 32-bit RISC-V soft

microprocessor. The obstacle avoidance system of the

TWSBR is based on a fuzzy control using multiple ultrasonic

sensors. The 32-bit RISC-V soft microprocessor includes a

32-bit fixed-point (Q16.16) arithmetic instructions of

addition, subtraction, multiplication, maximum and

minimum as a custom instruction set architecture (ISA)

extensions for calculation of a speed improvement. The

software program is written in C language and compiled by

the GNU GCC cross-compiler for the RISC-V ISA.


card and run the Linux by ARM processor to control the

robot. If user want to select NIOS II processor to control

the robot, the FPGA will boot from the configuration

device (EPCS). Then, after FPGA is configured, the NIOS

II processor will control the robot. Instead of using the

ARM processor and soft NIOS II processor, we proposed a

control system using a 32-bit RISC-V soft CPU as a

microprocessor.

Figure 2. Block diagram of the control board.

B. Microprocessor

VexRiscv [12] is a 32-bit RISC-V soft microprocessor

written in SpinalHDL [13] and its architecture is RV32IM.

SpinalHDL is Scala [14] based hardware description

language (HDL). Therefore, it can be implemented on

FPGA. VexRiscv can also add a custom instruction as a

plugin by SpinalHDL. Since VexRiscv does not have a

floating-point unit (FPU), We implemented custom

instructions of signed 32-bit fixed-point addition,

subtraction, multiplication, minimum and maximum,

where the sign part is 1-bit, the integer part is 15-bit, and

the fractional part is 16-bit (Q16.16). In this work, the clock

frequency of the whole system is set to 50 MHz, which is

the internal clock of the FPGA board.

C. Peripherals

The following peripherals are used in the robot:

1) Motors: The robot has two DC geared motors (AS-

LONG JGB37-520B). This motor has a speed reducer

which can reduce the rotation speed and increase the

torque. It is controlled by the motor driver device

TB6612FNG.

2) Encoders: The encoders on two DC motors is

capable of measuring the rotation speed of wheels.

3) MPU-6500 (Accelerometer and Gyroscope): The

MPU- 6500 is an inertial measurement unit (IMU)

equipped with an accelerometer and a gyroscope. It can

acquire 𝑥 , 𝑦 and 𝑧 -axis acceleration (𝑎𝑥, 𝑎𝑦 , 𝑎𝑧) and

angular velocity (𝜔𝑥, 𝜔𝑦 , 𝜔𝑧) as signed 16-bit integers.

Then, the tilt angle of the robot 𝜓, its angular velocity 𝜓̇

and its yaw angular velocity 𝜙̇ is expressed as follows:

ψ = tan−1 (
𝑎𝑥

𝑎𝑧

) ; ψ̇ = ω𝑦; ϕ̇ = ω𝑧 (1)

4) Battery and A/D Converter: This robot has a 12 V

lithium battery package. Since a certain level of the

voltage is required for proper motor control of the robot, a

12-bit A/D Converter (LTC2308) is used to obtain the

whole system voltage.

5) IR Receiver: The IR receiver is used to receive and

process signals which are sent from the IR remote

controller. This allows to give the commands to the robot

to run, rotate, and stop.

6) Ultrasonic Sensor: The ultrasonic sensor module

(HC- SR04) is used to detect the distance of the obstacle

in front of the robot. For obstacle avoidance, 3 ultrasonic

sensor modules were installed in front of the robot and at

45 degrees to the left and right.

7) UART: The UART is a type of serial

communication circuit. It is used to transmit and receive

data between the PC and the robot.

III. CONTROL SYSTEM

This section describes how to control the robot.

A. PID Controller

The PID controller is the most classical and common

method. We consider to design 3 PID controllers to control

balance, speed, and turn of the robot [15]. These controllers

can output PWM values from −100 to 100. Fig. 3 shows the

block diagram of 3 PID controllers. The PWM values for

left and right motors (PWMleft, PWMright) are calculated

as follows:

PWMleft = −PWMbalance − PWMspeed + PWMturn (2)

PWMright = −PWMbalance − PWMspeed − PWMturn (3)


1) Balance Controller (PD): The balance controller is

expressed as follows:

PWMbalance = 𝐾𝑝ψ + 𝐾𝑑ω𝑦 (4)

where, ψ is the tilt angle and ω𝑦 is the angular velocity of

𝑦-axis component.

2) Speed Controller (PI): The speed controller is

expressed as follows:

PWMspeed = 𝐾𝑝𝐸𝑡 + 𝐾𝑖((∑𝐸𝑡) + 𝑣) (5)

𝐸𝑡 = 0.8𝐸𝑡−1 + 0.2(𝐶right − 𝐶left) (6)


where, 𝑣 is the target speed and 𝐶right , 𝐶left are the

encoder values at the right and left motor. (6) means first-
order low pass filter. Note that it is necessary to implement
a saturation process since ∑𝐸𝑡 can diverge in practice.

3) Turn Controller (PD): The turn controller is

expressed as follows:

2

International Journal of Mechanical Engineering and Robotics Research Vol. 11, No. 1, January 2022

© 2022 Int. J. Mech. Eng. Rob. Res

PWMturn = 𝐾𝑝(𝐶left + 𝐶right + 𝑢) − 𝐾𝑑ω𝑧 (7)

where, 𝑢 is the target turn speed and ω𝑧 is the angular
velocity of 𝑧-axis component.

Figure 3. The block diagram of 3 PID controllers.

B. Kalman Filter

The sensor values obtained from the MPU-6500 contain

a lot of noise, and it is not possible to control the system

using those values. Therefore, we need to correct the sensor

values. Following equations are a definition of discrete-

time Kalman Filter.

𝑥𝑘 = 𝐴𝑥̂𝑘−1 + 𝐵𝑢𝑘 (8)

𝑃𝑘 = 𝐴𝑃𝑘−1𝐴⊤ + 𝑄 (9)

𝐾𝑘 = 𝑃𝑘𝐻⊤(𝐻𝑃𝑘𝐻⊤ + 𝑅)
−1

(10)

𝑥̂𝑘 = 𝑥𝑘 + 𝐾𝑘(𝑧𝑘 − 𝐻𝑥𝑘) (11)

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘 (12)

 

where,

𝑥𝑘: A priori state estimate; 𝑥̂𝑘: A posteriori state estimate;

𝑃𝑘: A priori covariance matrix;

𝑃𝑘: A posteriori covariance matrix;

𝑄 , 𝑅: Covariance matrices; 𝐾𝑘: Kalman gain;

𝑧𝑘: Observed value; 𝐼: Identity matrix; 𝑘 = 1, 2, 3, … .

In particular, gyroscope has a certain amount of error

called as bias. We consider a state-space model with the tilt

angle ψ and the bias of the gyroscope 𝑦-component ω𝑦,bias

and apply Kalman filter [16].

𝑥𝑘 = [
1 −𝑡𝑠

0 1
] 𝑥̂𝑘−1 + [

𝑡𝑠

0
] 𝜔𝑦

(𝑘)
 (13)

𝑃𝑘 = 𝑃𝑘−1 − [
𝑝01

(𝑘−1)
+ 𝑝10

(𝑘−1)
𝑝11

(𝑘−1)

𝑝11
(𝑘−1)

0
] 𝑡𝑠 + 𝑄 (14)

𝐾𝑘 =
1

𝑝
00

(𝑘)
+ 𝑅

[
𝑝

00

(𝑘)

𝑝
10

(𝑘)
] (15)

𝑥̂𝑘 = 𝑥𝑘 + 𝐾𝑘(ψobs
(𝑘)

− ψ
𝑘

) (16)

𝑃𝑘 = 𝑃𝑘 − 𝐾𝑘[𝑝
00

(𝑘)
𝑝

01

(𝑘)] (17)



where,

𝑥̂𝑘 = [
ψ̂𝑘

ω̂𝑦,bias
(𝑘)] ; 𝑥𝑘 = [

ψ
𝑘

ω𝑦,bias
(𝑘)] ; 𝑃𝑘 = [

𝑝00
(𝑘)

𝑝01
(𝑘)

𝑝10
(𝑘)

𝑝11
(𝑘)

] . (18)

ψobs is derived by Eq 1 and used for correcting values.

𝑡𝑠 is the sampling time. The remaining parameters are set

as follows: 𝑡𝑠 = 10 ms; 𝑄𝑘 =
diag(0.00003, 0.00001); 𝑅𝑘 = 0.5; 𝑥̂0 = [0, 0]⊤; 𝑃0 =
diag(1, 1).

IV. OBSTACLE AVOIDANCE SYSTEM

This section describes the method of obstacle avoidance

of the robot based on Mamdani’s fuzzy inference system

[17].

A. Fuzzy Logic Controller

The fuzzy logic controller (FLC) receives the distance

data between the robot and obstacles obtained from the left,

front, and right ultrasonic sensors (𝑑𝑙 , 𝑑𝑑, 𝑑𝑟), then outputs

the azimuth angle of the robot ϕ. Fig. 4 shows the block

diagram of the FLC.

Figure 4. Fuzzy Logic Controller (FLC).

B. Fuzzy Membership Functions

The range of inputs (𝑑𝑙 , 𝑑𝑑 , 𝑑𝑟) is limited from 0 m to

1 m and divided into linguistic variables {“Near”, “Far”}.

The range of output (ϕ) is limited from −90° to 90° and

divided into linguistic variables {“Left”, “Front”, “Right”}.

Fig. 5, 6 shows the fuzzy membership functions of inputs

and output.

Figure 5. Fuzzy membership functions of inputs (𝒅𝒍, 𝒅𝒅, 𝒅𝒓).

Figure 6. Fuzzy membership functions of output (ϕ).

C. Fuzzy Rules

Table I shows the fuzzy rules of the controller. For

example, the rule No.1 means that if the inputs 𝑑𝑙 is “Near”,

𝑑𝑑 is “Near”, and 𝑑𝑟 is “Far”, then the output ϕ is “Right”.

3

International Journal of Mechanical Engineering and Robotics Research Vol. 11, No. 1, January 2022

© 2022 Int. J. Mech. Eng. Rob. Res

TABLE I. FUZZY RULES

Rule No. 𝒅𝒍 𝒅𝒅 𝒅𝒓 𝛟

1 Near Near Far Right

2 Near Far Far Right

3 Far Near Near Left

4 Far Far Near Left

5 Far Far Far Front

6 Far Near Far Right

D. Defuzzification

There are many defuzzification methods: center of

gravity (CoG), first of maximum (FoM), mean of

maximum (MoM), last of maximum (LoM) and so on. In

this paper, we adopt MoM method expressed as following

equation.

MoM =
FoM + LoM

2
(19)

E. Simulation Results

Fig. 7 shows the simulation results of the fuzzy

controller by MATLAB Fuzzy Logic Toolbox.

Figure 7. The simulation results of the controller.

V. FIXED-POINT ARITHMETIC

Fixed-point arithmetic is used for calculating Kalman

filter, PID controller and Fuzzy logic controller.

A. Custom Instructions

We implemented custom instructions of Addition,

subtraction, multiplication, minimum and maximum for

fixed-point arithmetic. Table II shows encodings of the

instructions. Since these instructions are binary operation,

encodings are expressed as R-Format.

TABLE II. R-FORMAT ENCODING

 funct7 rs2 rs1 funct

3

rd opcode

Addition 000001

0

rs2 rs1 000 rd 000101

1

Subtraction 000001
0

rs2 rs1 001 rd 000101
1

Multiplicatio

n

000001

0

rs2 rs1 010 rd 000101

1

Minimum 000001
0

rs2 rs1 100 rd 000101
1

Maximum 000001

0

rs2 rs1 101 rd 000101

1

1) Addition and Subtraction: The calculation diagrams

of addition (𝐶 = 𝐴 + 𝐵) and subsection (𝐶 = 𝐴 − 𝐵) are

shown in Fig. 8 (a). 𝑐𝑙𝑖𝑝𝑎𝑑𝑑 and 𝑐𝑙𝑖𝑝𝑠𝑢𝑏 are clipping

(saturation) functions which can be expressed below. Note

that these numerical values are 2’s complement.

𝑐𝑙𝑖𝑝add = {

0x80000000 (𝑎 = 0, 𝑜𝑓add = 1)

𝑟𝑒𝑠 (𝑜𝑓add = 0)
0x7FFFFFFF (𝑎 = 1, 𝑜𝑓add = 1)

(20)

𝑐𝑙𝑖𝑝sub = {

0x80000000 (𝑎 = 0, 𝑜𝑓sub = 1)

𝑟𝑒𝑠 (𝑜𝑓sub = 0)

0x7FFFFFFF (𝑎 = 1, 𝑜𝑓sub = 1)
(21)



where, 𝑜𝑓add and 𝑜𝑓sub are the combinational logic for
overflow detection:

𝑜𝑓add = ¬(𝑎 ⊕ 𝑏) ∧ (𝑎 ⊕ 𝑠+) (22)

𝑜𝑓sub = (𝑎 ⊕ 𝑏) ∧ (𝑎 ⊕ 𝑠−) (23)


where, 𝑎, 𝑏 and 𝑠± are the most significant bit (MSB) of

𝐴, 𝐵, 𝐴 ± 𝐵. Symbols of ¬, ∧ and ⊕ are the operator of
NOT, AND, and exclusive OR, respectively.

Figure 8. (a) The calculation diagrams of addition and subtraction, (b)

The calculation diagrams of multiplication.

2) Multiplication: The calculation diagram of

multiplication is shown in Fig. 8 (b). 𝑐𝑙𝑖𝑝𝑚𝑢𝑙 is a clipping

function which can be expressed below. Note that 𝑟𝑒𝑠 is

64-bit data and the output result 𝐶 is a 32-bit fixed-point.

𝑐𝑙𝑖𝑝mul = {

0x80000000 (𝑎 ⊕ 𝑏 = 1, 𝑟𝑒𝑠[63: 48] ≠ 0)

𝑟𝑒𝑠[47: 16] + 𝑟𝑒𝑠[15] (𝑎 ⊕ 𝑏 = 0)

0x7FFFFFFF (𝑎 ⊕ 𝑏 = 0, 𝑟𝑒𝑠[63: 48] ≠ 0)

(24)

3) Minimum and Maximum: The maximum and

minimum instructions are intended to get rid of conditional

branches, which are expressed as follows:

𝑚𝑖𝑛(𝐴, 𝐵) = {
𝐵 (𝐴 > 𝐵)

𝐴 (𝐴 < 𝐵)
(25)

 𝑚𝑎𝑥(𝐴, 𝐵) = {
𝐴 (𝐴 > 𝐵)

𝐵 (𝐴 < 𝐵)
(26)



This is effective in pipelined processors.

4

International Journal of Mechanical Engineering and Robotics Research Vol. 11, No. 1, January 2022

© 2022 Int. J. Mech. Eng. Rob. Res

B. Divison

In this work, division was calculated by libfixmath [18],

which is a 32-bit fixed-point arithmetic library for C

language.

C. Trigonometric Arithmetic (Arctan)

It is common to use a standard library such as “math.h”

to calculate trigonometric functions in C language.

However, it is implemented using a floating-point

arithmetic. We implement a fixed-point version of arctan

function based on COordinate Rotation DIgital Computer

(CORDIC) [19] since only arctan is used for trigonometric

calculations in this work.

VI. SOFTWARE IMPLEMENTATION

Fig. 9 shows the flow chart of the software program.

This main loop program is implemented by a timer

interrupt at 10 ms cycles. The control program is written in

C language and compiled by GNU GCC cross-compiler for

RISC-V ISA [20]. In this work, the compiler optimization

option (-O3) was used. In addition to that, we used the “insn”

pseudo-instruction via inline assembly when calling

custom instructions in C language.

Figure 9. Flow chart of the software program.

VII. EXPERIMENT AND RESULTS

A. Systhesis Results

Table III shows the synthesis results of the FPGA board

(DE10-NANO, Cyclone V 5CSEBA6U2317) by Quartus

Prime.

TABLE III. SYNTHESIS RESULTS

Logic utilization (in ALMs) 2,521

Total registers 4,672

Total block memory bits 661,760

Total DSP Blocks 3

Maximum frequency [MHz] 63.22

B. Calculation Speed

Table IV shows the comparison of calculation speed of

addition, subtraction and multiplication between libfixmath

and our custom instructions. In this work, all types of our

custom instructions are faster than software

implementation by libfixmath. All custom instructions are

same calculation time since their calculation part are

processed by a clock cycle. Table V shows the comparison

of the number of the instructions of PID Controller,

Kalman Filter and Fuzzy Controller. Table VI shows the

comparison of the calculation speed of PID Controller,

Kalman Filter and Fuzzy Controller between libfixmath

and our custom instructions.

TABLE IV. CALCULATION SPEED COMPARISON:
ADDITION, SUBTRACTION, MULTIPLICATION, MINIMUM, MAXIMUM

 libfixmath [𝛍𝐬] Custom Instructions [𝛍𝐬]

Addition 1.37 0.83

Subtraction 1.41 0.83

Multiplication 2.96 0.83

Minimum 0.95 0.83

Maximum 0.95 0.83

TABLE V. NUMBER OF FIXED-POINT INSTRUCTIONS

 Add Sub Mul Min Max

PID Controller 5 4 9 0 0

Kalman Filter 8 8 11 0 0

FLC 1 18 19 141 164

TABLE VI. CALCULATION SPEED COMPARISON:
PID CONTROLLER, KALMAN FILTER AND FLC

 libfixmath [𝛍𝐬] Custom

Instructions [𝛍𝐬]

PID Controller 32 13

Kalman Filter 58 31

FLC 1,815 1,028

C. Obstacle Avoidance

We have an experiment for an obstacle avoidance of the

robot. In this experiment, a box was placed as an obstacle

in front of the robot. Fig. 10 shows the results of the

obstacle avoidance experiment. Fig. 10 (a) and (b) confirm

that the robot turns right according to the fuzzy rule No.6

(Table I) since 𝑑𝑙 is “Far”, 𝑑𝑑 is “Near” and 𝑑𝑟 is “Far”.

Fig. 10 (c) and (d) demonstrate that the robot keeps the

direction according to the fuzzy rule No. 2 and No. 4.

5

International Journal of Mechanical Engineering and Robotics Research Vol. 11, No. 1, January 2022

© 2022 Int. J. Mech. Eng. Rob. Res

(a) (b)

(c) (d)

Figure 10. Experiment results of obstacle avoidance.

VIII. CONCLUSION

In this paper, we introduced the design of a controller

with obstacle avoidance function using an accelerometer, a

gyroscope, motor encoders, and ultrasonic sensors. The

control and obstacle avoidance programs were executed on

VexRiscv, a 32-bit RISC-V soft microprocessor with

custom instructions of 32-bit fixed-point operations. As a

result, we have managed to construct control and obstacle

avoidance system without FPU.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

T. T. Hoang and C. K. Pham supervised the research
and revised the manuscript. R. Tsutada carried out the
experiment and wrote the paper.

REFERENCES

[1] K. Liu, M. Bai, and Y. Ni, “Two-wheel self-balanced car based on
Kalman filtering and PID algorithm,” in Proc. 2011 IEEE 18th
International Conference on Industrial Engineering and
Engineering Management, Changchun, pp. 281–285, 2011.

[2] C. Xu, M. Li, and F. Pan, “The system design and LQR control of
a two-wheels self-balancing mobile robot,” in Proc. 2011
International Conference on Electrical and Control Engineering,
Yichang, pp. 2786–2789, 2011.

[3] M. Engin, “Embedded LQR controller design for self-balancing
robot,” in Proc. 2018 7th Mediterranean Conference on Embedded
Computing (MECO), Budva, pp. 1–4, 2018.

[4] C. Iwendi, M. A. Alqarni, J. H. Anajemba, A. S. Alfakeeh, Z. Zhang,
and A. K. Bashir, “Robust navigational control of a two-wheeled
self-balancing robot in a sensed environment,” IEEE Access, vol. 7,
pp. 82337–82348, 2019.

[5] H. Juang and K. Lurrr, “Design and control of a two-wheel self-
balancing robot using the arduino microcontroller board,” in Proc.
2013 10th IEEE International Conference on Control and
Automation (ICCA), Hangzhou, pp. 634–639, 2013.

[6] B. Zeng, J. Zhang, L. Chen, and Y. Wang, “Self-balancing car
based on ARDUINO UNO R3,” in Proc. 2018 IEEE 3rd Advanced
Information Technology, Electronic and Automation Control
Conference (IAEAC), Chongqing, pp. 1939–1943, 2018.

[7] X. Ruan and W. Li, “Ultrasonic sensor based two-wheeled self-
balancing robot obstacle avoidance control system,” in Proc. 2014
IEEE International Conference on Mechatronics and Automation,
Tianjin, China, pp. 896– 900, 2014.

[8] A. Ruospo, R. Cantoro, E. Sanchez, P. D. Schiavone, A. Garofalo,
and L. Benini, “On-line testing for autonomous systems driven by
RISC-V processor design verification,” in Proc. 2019 IEEE
International Symposium on Defect and Fault Tolerance in VLSI
and Nanotechnology Systems (DFT), Noordwijk, Netherlands, pp.
1–6, 2019.

[9] J. Lee, H. Chen, J. Young, and H. Kim, “RISC-V FPGA Platform
Toward ROS-Based Robotics Application,” in Proc. 2020 30th
International Conference on Field-Programmable Logic and
Applications (FPL), Gothenburg, Sweden, pp. 370–370, 2020.

[10] Terasic, Robotic Kits - Self-Balancing Robot. [Online]. Available:
 https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=E
nglish&CategoryNo=&No=1096.

[11] Intel Nios II processor. [Online]. Available: https://www.intel.co.j
p/content/www/jp/ja/products/programmable/processor/nios-ii.ht
ml.

[12] VexRiscv. [Online]. Available:
https://github.com/SpinalHDL/VexRiscv.

[13] SpinalHDL, [Online]. Available:
https://github.com/SpinalHDL/SpinalHDL.

[14] The Scala Programming Language, [Online]. Available:
https://www.scala-lang.org/.

[15] T. Liu, X. Wang, H. Zhou, X. Che, H. Liu, and Q. Wang, “Design
and control of a two-wheeled self-balancing robot made in 3D
printing,” in Proc. 2018 Chinese Automation Congress (CAC),
Xi’an, China, pp. 1211–1216, 2018.

[16] J. Juan Rincón Pasaye, J. Alberto Bonales Valencia, and F. Jiménez
Pérez,“Tilt measurement based on an Accelerometer, a Gyro and
a Kalman Filter to control a self-balancing vehicle,” in Proc. 2013
IEEE International Autumn Meeting on Power Electronics and
Computing (ROPEC), Mexico City, pp. 1–5, 2013.

[17] Mamdani, “Application of fuzzy logic to approximate reasoning
using linguistic synthesis,” IEEE Transactions on Computers, vol.
C-26, no. 12, pp. 1182–1191, Dec. 1977.

[18] Libfixmath. [Online]. Available:
https://code.google.com/archive/p/libfixmath/

[19] J. E. Volder, “The CORDIC trigonometric computing technique,”
IRE Transactions on Electronic Computers, vol. EC-8, no. 3, pp.
330– 334, Sept. 1959.

[20] RISC-V GNU Compiler Toolchain, [Online]. Available:
https://github.com/riscv/riscv-gnu-toolchain

Copyright © 2022 by the authors. This is an open access article
distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-
commercial and no modifications or adaptations are made.

 Ryuichi Tsutada is received the B.E. degree in information and
communication engineering from the University of Electro-
Communications, Tokyo, Japan in 2020. He is currently a master student
in information and network engineering with the Department of
Information and Network Engineering, the University of Electro-
Communications, Tokyo.

6

International Journal of Mechanical Engineering and Robotics Research Vol. 11, No. 1, January 2022

© 2022 Int. J. Mech. Eng. Rob. Res

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Trong-Thuc Hoang received the B.Sc. degree in electronics and
telecommunications and the M.S. degree in microelectronics from the
University of Science, Vietnam National University, Ho Chi Minh City,
Vietnam, in 2012 and 2017, respectively. He is currently pursuing the
Ph.D. degree in information and network engineering with the University
of Electro-Communications, Tokyo, Japan. He is also a Research
Assistant with the National Institute of Advanced Industrial Science and
Technology, Tokyo.

Cong-Kha Pham received the B.S., M.S., and Ph.D. degrees in
electronics engineering from Sophia University, Tokyo, Japan in 1989,

1990 and 1992, respectively. He is currently a Professor with the

Department of Information and Network Engineering, University of
Electro-Communications, Tokyo. His research interests include the

design of analog and digital systems using integrated circuits.

7

International Journal of Mechanical Engineering and Robotics Research Vol. 11, No. 1, January 2022

© 2022 Int. J. Mech. Eng. Rob. Res

