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I. INTRODUCTION 

An inverted pendulum is an inherently unstable system 

and cannot be maintained in a balancing state without 

control. There are several types of inverted pendulums, 

such as truck-type inverted pendulums, wheel-type 

inverted pendulums and rotary-type inverted pendulums. In 

this paper, we focus on a two-wheeled self-balancing robot 

(TWSBR) based on the wheel-type inverted pendulum. 

TWSBR can be controlled by many different methods. 

The most common method to control TWSBR is to use PID 

controller [1]. In [2], state feedback control by Linear 

Quadratic Regulator (LQR) is proposed. It is common that 

microprocessors such as ARM Cortex-M4 [3], STM32 [4] 

and AVR [5], [6] have been used to control TWSBR. Also, 

obstacle avoidance of robots has been researched for many 

years and many methods are adopted fuzzy inference. In 

[7], obstacle avoidance by multiple ultrasonic sensors for 

TWSBR is proposed. 

                                                           
Manuscript received July 21, 2021; revised November 1, 2021. 

RISC-V is an open-source instruction set architecture 

(ISA) and free to use, which is different from those 

microprocessor’s ISA. In addition, RISC-V processors are 

used for controlling robots [8], [9].  In this paper, we 

propose a control and obstacle avoidance system of the 

TWSBR based on a 32-bit RISC-V soft microprocessor. 

The rest of the paper is organized as follows: Section II 

pro- vides a system overview of the TWSBR. Section III 

describes the control system of the TWSBR. Section IV 

discusses the obstacle avoidance system of the TWSBR. 

Section V proposes the method of the fixed-point 

arithmetic. Section VI explains the implementation of the 

software program. Finally, Section VII and VIII shows the 

results and conclusion. 

II. SYSTEM OVERVIEW 

A. Self-Balancing Robot 

Terasic’s Self-Balancing Robot (Fig. 1) is a type of the 

TWSBR, which includes accelerometer, gyroscope, motor 

driver and encoders like other robotic kits [10]. However, 

it uses a FPGA board DE10-NANO with Cyclone V 

5CSEBA6U2317 as a control board. Therefore, it has a 

very high configurability and ideal for implementing and 

experimenting with a new system. Fig. 2 shows a block 

diagram of the control system of the robot. 

 
Figure 1. Terasic’s self-balancing robot [10]. 

The Terasic’s Self-Balancing Robot equips a Cyclone 

SoC FPGA, which means that the ARM processor is 

embedded in the FPGA. Therefore, there are two processor 

options available to control the Robot. One is to use the 

ARM processor and the other is to implement a soft NIOS 

II processor [11] in the FPGA. If user want to select ARM 

to control the robot, the FPGA will boot from the Micro SD 
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Abstract—This paper introduces a Two-Wheeled Self-

Balancing Robot (TWSBR) which is controlled to avoid 

obstacles. The TWSBR is a type of the inverted pendulum 

and is treated as an inherently unstable nonlinear system. 

Therefore, a continuous appropriate control is required to 

maintain the inverted state. The TWSBR consists of two DC 

motors with encoders and 6-axis sensor (accelerometer and 

gyroscope). All peripherals are connected to a 32-bit RISC-V 

soft microprocessor implemented on an FPGA, and all 

control circuits for the peripherals are also implemented on 

the same FPGA. An attitude control system of the TWSBR is 

provided through 3 Proportional-Integral- Differential (PID) 

controllers with a sensor fusion-based on a Kalman Filter, 

which is implemented on the 32-bit RISC-V soft 

microprocessor. The obstacle avoidance system of the 

TWSBR is based on a fuzzy control using multiple ultrasonic 

sensors. The 32-bit RISC-V soft microprocessor includes a 

32-bit fixed-point (Q16.16) arithmetic instructions of 

addition, subtraction, multiplication, maximum and 

minimum as a custom instruction set architecture (ISA) 

extensions for calculation of a speed improvement. The 

software program is written in C language and compiled by 

the GNU GCC cross-compiler for the RISC-V ISA.




card and run the Linux by ARM processor to control the 

robot. If user want to select NIOS II processor to control 

the robot, the FPGA will boot from the configuration 

device (EPCS). Then, after FPGA is configured, the NIOS 

II processor will control the robot. Instead of using the 

ARM processor and soft NIOS II processor, we proposed a 

control system using a 32-bit RISC-V soft CPU as a 

microprocessor. 

 

Figure 2. Block diagram of the control board. 

B. Microprocessor  

VexRiscv [12] is a 32-bit RISC-V soft microprocessor 

written in SpinalHDL [13] and its architecture is RV32IM. 

SpinalHDL is Scala [14] based hardware description 

language (HDL). Therefore, it can be implemented on 

FPGA. VexRiscv can also add a custom instruction as a 

plugin by SpinalHDL. Since VexRiscv does not have a 

floating-point unit (FPU), We implemented custom 

instructions of signed 32-bit fixed-point addition, 

subtraction, multiplication, minimum and maximum, 

where the sign part is 1-bit, the integer part is 15-bit, and 

the fractional part is 16-bit (Q16.16). In this work, the clock 

frequency of the whole system is set to 50 MHz, which is 

the internal clock of the FPGA board. 

C. Peripherals 

The following peripherals are used in the robot: 

1) Motors: The robot has two DC geared motors (AS- 

LONG JGB37-520B). This motor has a speed reducer 

which can reduce the rotation speed and increase the 

torque. It is controlled by the motor driver device 

TB6612FNG. 

2) Encoders: The encoders on two DC motors is 

capable of measuring the rotation speed of wheels. 

3) MPU-6500 (Accelerometer and Gyroscope): The 

MPU- 6500 is an inertial measurement unit (IMU) 

equipped with an accelerometer and a gyroscope. It can 

acquire 𝑥 , 𝑦 and 𝑧 -axis acceleration (𝑎𝑥, 𝑎𝑦 , 𝑎𝑧)  and 

angular velocity (𝜔𝑥, 𝜔𝑦 , 𝜔𝑧)  as signed 16-bit integers. 

Then, the tilt angle of the robot 𝜓, its angular velocity 𝜓̇ 

and its yaw angular velocity 𝜙̇ is expressed as follows: 

ψ = tan−1 (
𝑎𝑥

𝑎𝑧

) ;  ψ̇ = ω𝑦; ϕ̇ = ω𝑧 (1)

4) Battery and A/D Converter: This robot has a 12 V 

lithium battery package. Since a certain level of the 

voltage is required for proper motor control of the robot, a 

12-bit A/D Converter (LTC2308) is used to obtain the 

whole system voltage. 

5) IR Receiver: The IR receiver is used to receive and 

process signals which are sent from the IR remote 

controller. This allows to give the commands to the robot 

to run, rotate, and stop. 

6) Ultrasonic Sensor: The ultrasonic sensor module 

(HC- SR04) is used to detect the distance of the obstacle 

in front of the robot. For obstacle avoidance, 3 ultrasonic 

sensor modules were installed in front of the robot and at 

45 degrees to the left and right. 

7) UART: The UART is a type of serial 

communication circuit. It is used to transmit and receive 

data between the PC and the robot. 

III. CONTROL SYSTEM 

This section describes how to control the robot. 

A. PID Controller 

The PID controller is the most classical and common 

method. We consider to design 3 PID controllers to control 

balance, speed, and turn of the robot [15]. These controllers 

can output PWM values from −100 to 100. Fig. 3 shows the 

block diagram of 3 PID controllers. The PWM values for 

left and right motors (PWMleft, PWMright) are calculated 

as follows: 

PWMleft = −PWMbalance − PWMspeed + PWMturn (2)

PWMright = −PWMbalance − PWMspeed − PWMturn (3)


1) Balance Controller (PD): The balance controller is 

expressed as follows: 

PWMbalance = 𝐾𝑝ψ + 𝐾𝑑ω𝑦 (4)

where, ψ is the tilt angle and ω𝑦 is the angular velocity of 

𝑦-axis component. 

2) Speed Controller (PI): The speed controller is 

expressed as follows: 

PWMspeed = 𝐾𝑝𝐸𝑡 + 𝐾𝑖((∑𝐸𝑡) + 𝑣) (5)

𝐸𝑡 = 0.8𝐸𝑡−1 + 0.2(𝐶right − 𝐶left) (6)


where, 𝑣  is the target speed and 𝐶right , 𝐶left  are the 

encoder values at the right and left motor. (6) means first-
order low pass filter. Note that it is necessary to implement 
a saturation process since ∑𝐸𝑡 can diverge in practice. 

3) Turn Controller (PD): The turn controller is 

expressed as follows: 
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PWMturn = 𝐾𝑝(𝐶left + 𝐶right + 𝑢) − 𝐾𝑑ω𝑧 (7)

where, 𝑢  is the target turn speed and ω𝑧  is the angular 
velocity of 𝑧-axis component. 

 
Figure 3. The block diagram of 3 PID controllers. 

B. Kalman Filter 

The sensor values obtained from the MPU-6500 contain 

a lot of noise, and it is not possible to control the system 

using those values. Therefore, we need to correct the sensor 

values. Following equations are a definition of discrete-

time Kalman Filter. 

𝑥𝑘 = 𝐴𝑥̂𝑘−1 + 𝐵𝑢𝑘 (8)

𝑃𝑘 = 𝐴𝑃𝑘−1𝐴⊤ + 𝑄 (9)

𝐾𝑘 = 𝑃𝑘𝐻⊤(𝐻𝑃𝑘𝐻⊤ + 𝑅)
−1

(10)

𝑥̂𝑘 = 𝑥𝑘 + 𝐾𝑘(𝑧𝑘 − 𝐻𝑥𝑘) (11)

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘 (12)

 

where, 

𝑥𝑘: A priori state estimate;  𝑥̂𝑘: A posteriori state estimate; 

𝑃𝑘: A priori covariance matrix; 

𝑃𝑘: A posteriori covariance matrix; 

𝑄 , 𝑅: Covariance matrices; 𝐾𝑘: Kalman gain; 

𝑧𝑘: Observed value; 𝐼: Identity matrix; 𝑘 =  1, 2, 3, … . 

In particular, gyroscope has a certain amount of error 

called as bias. We consider a state-space model with the tilt 

angle ψ and the bias of the gyroscope 𝑦-component ω𝑦,bias 

and apply Kalman filter [16]. 

𝑥𝑘 = [
1 −𝑡𝑠

0 1
]  𝑥̂𝑘−1 + [

𝑡𝑠

0
] 𝜔𝑦

(𝑘)
 (13)

𝑃𝑘 = 𝑃𝑘−1 − [
𝑝01

(𝑘−1)
+ 𝑝10

(𝑘−1)
𝑝11

(𝑘−1)

𝑝11
(𝑘−1)

0
] 𝑡𝑠 + 𝑄 (14)

𝐾𝑘 =
1

𝑝
00

(𝑘)
+ 𝑅

[
𝑝

00

(𝑘)

𝑝
10

(𝑘)
] (15)

𝑥̂𝑘 = 𝑥𝑘 + 𝐾𝑘(ψobs
(𝑘)

− ψ
𝑘

) (16)

𝑃𝑘 = 𝑃𝑘 − 𝐾𝑘[𝑝
00

(𝑘)
𝑝

01

(𝑘)] (17)



where, 

𝑥̂𝑘 = [
ψ̂𝑘

ω̂𝑦,bias
(𝑘) ] ; 𝑥𝑘 = [

ψ
𝑘

ω𝑦,bias
(𝑘) ] ; 𝑃𝑘 = [

𝑝00
(𝑘)

𝑝01
(𝑘)

𝑝10
(𝑘)

𝑝11
(𝑘)

] . (18)

ψobs is derived by Eq 1 and used for correcting values. 

𝑡𝑠 is the sampling time. The remaining parameters are set 

as follows: 𝑡𝑠 = 10 ms; 𝑄𝑘 =
diag(0.00003, 0.00001); 𝑅𝑘 = 0.5; 𝑥̂0 = [0, 0]⊤; 𝑃0 =
diag(1, 1). 

IV. OBSTACLE AVOIDANCE SYSTEM 

This section describes the method of obstacle avoidance 

of the robot based on Mamdani’s fuzzy inference system 

[17]. 

A. Fuzzy Logic Controller 

The fuzzy logic controller (FLC) receives the distance 

data between the robot and obstacles obtained from the left, 

front, and right ultrasonic sensors (𝑑𝑙 , 𝑑𝑑, 𝑑𝑟), then outputs 

the azimuth angle of the robot ϕ. Fig. 4 shows the block 

diagram of the FLC. 

 
Figure 4. Fuzzy Logic Controller (FLC). 

B. Fuzzy Membership Functions 

The range of inputs (𝑑𝑙 , 𝑑𝑑 , 𝑑𝑟) is limited from 0 m to 

1 m and divided into linguistic variables {“Near”, “Far”}. 

The range of output (ϕ) is limited from −90° to 90° and 

divided into linguistic variables {“Left”, “Front”, “Right”}. 

Fig. 5, 6 shows the fuzzy membership functions of inputs 

and output. 

 

Figure 5. Fuzzy membership functions of inputs (𝒅𝒍, 𝒅𝒅, 𝒅𝒓). 

 

Figure 6. Fuzzy membership functions of output (ϕ). 

C. Fuzzy Rules 

Table I shows the fuzzy rules of the controller. For 

example, the rule No.1 means that if the inputs 𝑑𝑙 is “Near”, 

𝑑𝑑 is “Near”, and 𝑑𝑟 is “Far”, then the output ϕ is “Right”. 
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TABLE I.  FUZZY RULES 

Rule No. 𝒅𝒍 𝒅𝒅 𝒅𝒓 𝛟 

1 Near Near Far Right 

2 Near Far Far Right 

3 Far Near Near Left 

4 Far Far Near Left 

5 Far Far Far Front 

6 Far Near Far Right 

D. Defuzzification 

There are many defuzzification methods: center of 

gravity (CoG), first of maximum (FoM), mean of 

maximum (MoM), last of maximum (LoM) and so on. In 

this paper, we adopt MoM method expressed as following 

equation. 

MoM =
FoM + LoM

2
(19)

E. Simulation Results 

Fig. 7 shows the simulation results of the fuzzy 

controller by MATLAB Fuzzy Logic Toolbox. 

 

Figure 7. The simulation results of the controller. 

V. FIXED-POINT ARITHMETIC 

Fixed-point arithmetic is used for calculating Kalman 

filter, PID controller and Fuzzy logic controller. 

A. Custom Instructions 

We implemented custom instructions of Addition, 

subtraction, multiplication, minimum and maximum for 

fixed-point arithmetic. Table II shows encodings of the 

instructions. Since these instructions are binary operation, 

encodings are expressed as R-Format. 

TABLE II.  R-FORMAT ENCODING 

 funct7 rs2 rs1 funct

3 

rd opcode 

Addition 000001

0 

rs2 rs1 000 rd 000101

1 

Subtraction 000001
0 

rs2 rs1 001 rd 000101
1 

Multiplicatio

n 

000001

0 

rs2 rs1 010 rd 000101

1 

Minimum 000001
0 

rs2 rs1 100 rd 000101
1 

Maximum 000001

0 

rs2 rs1 101 rd 000101

1 

1) Addition and Subtraction: The calculation diagrams 

of addition (𝐶 = 𝐴 + 𝐵) and subsection (𝐶 = 𝐴 − 𝐵) are 

shown in Fig. 8 (a). 𝑐𝑙𝑖𝑝𝑎𝑑𝑑  and 𝑐𝑙𝑖𝑝𝑠𝑢𝑏  are clipping 

(saturation) functions which can be expressed below. Note 

that these numerical values are 2’s complement. 

𝑐𝑙𝑖𝑝add = {

0x80000000         (𝑎 = 0, 𝑜𝑓add = 1)

𝑟𝑒𝑠 (𝑜𝑓add = 0)
0x7FFFFFFF (𝑎 = 1, 𝑜𝑓add = 1)

(20)

𝑐𝑙𝑖𝑝sub = {

0x80000000         (𝑎 = 0, 𝑜𝑓sub = 1)

𝑟𝑒𝑠         (𝑜𝑓sub = 0)

0x7FFFFFFF         (𝑎 = 1, 𝑜𝑓sub = 1)
(21)



where, 𝑜𝑓add  and 𝑜𝑓sub  are the combinational logic for 
overflow detection: 

𝑜𝑓add = ¬(𝑎 ⊕ 𝑏) ∧ (𝑎 ⊕ 𝑠+) (22)

𝑜𝑓sub = (𝑎 ⊕ 𝑏) ∧ (𝑎 ⊕ 𝑠−) (23)


where, 𝑎, 𝑏 and 𝑠± are the most significant bit (MSB) of 

𝐴, 𝐵, 𝐴 ± 𝐵. Symbols of ¬, ∧ and ⊕ are the operator of 
NOT, AND, and exclusive OR, respectively. 

 
Figure 8. (a) The calculation diagrams of addition and subtraction, (b) 

The calculation diagrams of multiplication. 

2) Multiplication: The calculation diagram of 

multiplication is shown in Fig. 8 (b). 𝑐𝑙𝑖𝑝𝑚𝑢𝑙  is a clipping 

function which can be expressed below. Note that 𝑟𝑒𝑠 is 

64-bit data and the output result 𝐶 is a 32-bit fixed-point. 

𝑐𝑙𝑖𝑝mul = {

0x80000000  (𝑎 ⊕ 𝑏 = 1, 𝑟𝑒𝑠[63: 48] ≠ 0)

𝑟𝑒𝑠[47: 16] + 𝑟𝑒𝑠[15]                 (𝑎 ⊕ 𝑏 = 0)

0x7FFFFFFF   (𝑎 ⊕ 𝑏 = 0, 𝑟𝑒𝑠[63: 48] ≠ 0)

(24)

3) Minimum and Maximum: The maximum and 

minimum instructions are intended to get rid of conditional 

branches, which are expressed as follows: 

𝑚𝑖𝑛(𝐴, 𝐵) = {
𝐵    (𝐴 > 𝐵)

𝐴    (𝐴 < 𝐵)
(25)

 𝑚𝑎𝑥(𝐴, 𝐵) = {
𝐴    (𝐴 > 𝐵)

𝐵    (𝐴 < 𝐵)
(26)



This is effective in pipelined processors. 
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B. Divison 

In this work, division was calculated by libfixmath [18], 

which is a 32-bit fixed-point arithmetic library for C 

language. 

C. Trigonometric Arithmetic (Arctan) 

It is common to use a standard library such as “math.h” 

to calculate trigonometric functions in C language. 

However, it is implemented using a floating-point 

arithmetic. We implement a fixed-point version of arctan 

function based on COordinate Rotation DIgital Computer 

(CORDIC) [19] since only arctan is used for trigonometric 

calculations in this work. 

VI. SOFTWARE IMPLEMENTATION 

Fig. 9 shows the flow chart of the software program. 

This main loop program is implemented by a timer 

interrupt at 10 ms cycles. The control program is written in 

C language and compiled by GNU GCC cross-compiler for 

RISC-V ISA [20]. In this work, the compiler optimization 

option (-O3) was used. In addition to that, we used the “insn” 

pseudo-instruction via inline assembly when calling 

custom instructions in C language. 

 

Figure 9. Flow chart of the software program. 

VII. EXPERIMENT AND RESULTS 

A. Systhesis Results 

Table III shows the synthesis results of the FPGA board 

(DE10-NANO, Cyclone V 5CSEBA6U2317) by Quartus 

Prime. 

TABLE III.  SYNTHESIS RESULTS 

Logic utilization (in ALMs) 2,521 

Total registers 4,672 

Total block memory bits 661,760 

Total DSP Blocks 3 

Maximum frequency [MHz] 63.22 

 

B. Calculation Speed 

Table IV shows the comparison of calculation speed of 

addition, subtraction and multiplication between libfixmath 

and our custom instructions. In this work, all types of our 

custom instructions are faster than software 

implementation by libfixmath. All custom instructions are 

same calculation time since their calculation part are 

processed by a clock cycle. Table V shows the comparison 

of the number of the instructions of PID Controller, 

Kalman Filter and Fuzzy Controller. Table VI shows the 

comparison of the calculation speed of PID Controller, 

Kalman Filter and Fuzzy Controller between libfixmath 

and our custom instructions. 

TABLE IV.  CALCULATION SPEED COMPARISON: 
ADDITION, SUBTRACTION, MULTIPLICATION, MINIMUM, MAXIMUM 

 libfixmath [𝛍𝐬] Custom Instructions [𝛍𝐬] 

Addition 1.37 0.83 

Subtraction 1.41 0.83 

Multiplication 2.96 0.83 

Minimum 0.95 0.83 

Maximum 0.95 0.83 

TABLE V.  NUMBER OF FIXED-POINT INSTRUCTIONS 

 Add Sub Mul Min Max 

PID Controller 5 4 9 0 0 

Kalman Filter 8 8 11 0 0 

FLC 1 18 19 141 164 

TABLE VI.  CALCULATION SPEED COMPARISON: 
PID CONTROLLER, KALMAN FILTER AND FLC 

 libfixmath [𝛍𝐬] Custom 

Instructions [𝛍𝐬] 

PID Controller 32 13 

Kalman Filter 58 31 

FLC 1,815 1,028 

C. Obstacle Avoidance 

We have an experiment for an obstacle avoidance of the 

robot. In this experiment, a box was placed as an obstacle 

in front of the robot. Fig. 10 shows the results of the 

obstacle avoidance experiment. Fig. 10 (a) and (b) confirm 

that the robot turns right according to the fuzzy rule No.6 

(Table I) since 𝑑𝑙  is “Far”, 𝑑𝑑  is “Near” and 𝑑𝑟  is “Far”. 

Fig. 10 (c) and (d) demonstrate that the robot keeps the 

direction according to the fuzzy rule No. 2 and No. 4. 

5

International Journal of Mechanical Engineering and Robotics Research Vol. 11, No. 1, January 2022

© 2022 Int. J. Mech. Eng. Rob. Res



  
(a) (b) 

  
(c) (d) 

Figure 10. Experiment results of obstacle avoidance. 

VIII.  CONCLUSION 

In this paper, we introduced the design of a controller 

with obstacle avoidance function using an accelerometer, a 

gyroscope, motor encoders, and ultrasonic sensors. The 

control and obstacle avoidance programs were executed on 

VexRiscv, a 32-bit RISC-V soft microprocessor with 

custom instructions of 32-bit fixed-point operations. As a 

result, we have managed to construct control and obstacle 

avoidance system without FPU. 
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