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Abstract— In this paper, a finite element formulation is 

developed to analyze the stress wave propagation in an elastic 

rod struck by a rigid body. The rod has either rigid, free, or 

deformable support conditions. The formulation is based 

upon Saint-Venant’s contact theory. Accordingly, the 

equations of motion are introduced, and the equivalent finite 

element formulation is obtained. Hence, the dynamic 

responses are illustrated, and contact forces are evaluated. 

Certain simulation results are compared to the 

corresponding published analytical results. Results 

demonstrate the influence of the support condition on the 

propagated stress wave and consequently on the velocities, 

the displacements, and the contact forces. A simulated 

visualization for the reflection and transmission of the stress 

wave at the constraint end is presented to improve the 

perception of the phenomenon.  

 

Index Terms—wave propagation, longitudinal impact, 

newmark integration method, finite element method, 

longitudinal vibration 

I. INTRODUCTION 

In many engineering applications, impacts of elastic 

bodies are a common problem, resulting from collisions of 

moving bodies. Investigation of impact has been 

extensively studied for a long time [1]–[7]. The most 

famous device that utilizes a longitudinal impact to 

generate stress waves is known as the Hopkinson's bar [6], 

[8]. Hopkinson's bar has been used for different 

applications such as testing and driving of pile and soil 

testing in geotechnical engineering, percussive drilling in 

terrestrial mining, and drilling devices in the aerospace 

application to explore the subsurface of Lunar, Martian [9], 

[10]. Along with other applications of the Hopkinson bar 

are the determination of some dynamic strength of 

materials at high strain rate [11]–[13] as well as calibration 

of shock accelerometers [14], [15]. 

The generation of a longitudinal stress wave in elastic 

rods by the impact of a rigid body was treated by Saint-

Venant and  Boussinesq [4] using the theory of wave 

propagation. The assumptions of the analysis include 

propagation of stress waves in one-dimension, perfectly 

plane contact surfaces, and neglecting the wave 

propagation and deformation of the striking body.  

The wave theory is reviewed by Goldsmith [1], Graf [2], 

Timoshenko [3], Love [4], and Johnson [5]. Increasing in 

times of wave traveling along the rod, the method leads to 
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complicated wave equations, and this made it difficult to 

be used.  

The numerical methods have been used in the study of 

longitudinal impacts of rod structures, Elkaranshawy [16]–

[18] and Ragab [19] investigated this problem using the 

finite element method, also the dynamic substructure 

method has been used in the analysis of impacts in uniform 

and non-uniform rod structures by Shen [20], [21]. Zhu 

and Xing [22] used the direct mode superposition method 

to obtain the analytical solution of impact problems. 

In this paper, based on Saint-Venant’s wave theory and 

using the finite element method (FEM), the dynamic 

response and the stress wave propagation of the 

longitudinal impact of a rigid mass on a bar with rigid, free, 

and elastic support conditions are fully analyzed. The finite 

element results are compared with the analytical results of 

the wave theory to verify the validation of using the finite 

element in the analysis of impacts of rod structures. 

II. MATHEMATICAL MODELING  

Considering a stationary homogenous elastic rod with 

mass m, young modulus 𝐸 , density 𝜌 , uniform cross-

section area A, and length 𝐿  and is struck on the right end 

𝑥 = 𝐿  at the initial time 𝑡 = 0 by a moving rigid block of 

mass  𝑀𝑏with initial velocity 𝑉𝑏. The resulting motion of 

the rod is assumed to be one-dimensional with longitudinal 

displacement 𝑢(𝑥, 𝑡) as shown in Fig. 1.  

 

Figure 1. Displacement 𝑢(𝑥, 𝑡) of the rod at position 𝑥. 

The equation of motion of the longitudinal wave in the 

rod is 

 
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
= 𝑐𝑜

2
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
,          0 ≤ 𝑥 ≤ 𝐿 (1)

 

where 𝑐𝑜 is the longitudinal wave propagation velocity, 

 𝑐𝑜 = √𝐸 𝜌⁄      
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The normal strain 𝜀(𝑥, 𝑡) and stress 𝜎(𝑥, 𝑡) in the rod 

are given by: 

 𝜀(𝑥, 𝑡) =
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
  

 

 𝜎(𝑥, 𝑡) = 𝐸
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
  

 

The contact force equals the stress at the contact end 

times the cross-section area of the rod, i.e. 

 

 𝐹 = 𝐸𝐴
𝜕𝑢(𝐿, 𝑡)

𝜕𝑥
  

 

According to Saint-Venant’s contact theory, at the 

instant of the impact, the velocity of the contact end 

(𝑥 = 𝐿)  of the stationary rod immediately equal to the 

velocity of the striking mass ( 𝑉𝑏). The rigid mass remains 

in contact with the rod as long as the contact force is 

compressive. We define the contact period 𝑡𝑐 as the time 

during which the contact force between the rigid mass and 

the rod tip remains compressive. After that time, the mass 

is no longer in contact with the rod, and the rod performs 

free vibration, and its motion is controlled by equation (1). 

The boundary conditions during the contact and after the 

cease of impact are: 

At 𝑥 = 0  for  𝑡 > 0 

 

 

{
 
 

 
 

 𝑢(0, 𝑡) = 0                      (𝐹𝑖𝑥𝑒𝑑)

𝜕𝑢(0, 𝑡)

𝜕𝑥
= 0                         (𝑓𝑟𝑒𝑒)   

𝐴𝐸
𝜕𝑢(0, 𝑡)

𝜕𝑥
= 𝑘𝑢(0, 𝑡)      (𝑒𝑙𝑎𝑠𝑡𝑖𝑐) 

  

 

And at 𝑥 = 𝐿:  

 

 For    0 < 𝑡 ≤ 𝑡𝑐 
 

 𝐸𝐴 
𝜕𝑢(𝐿, 𝑡)

𝜕𝑥
= −𝑀𝑏  

𝜕2𝑢(𝐿, 𝑡)

𝜕𝑡2
  

 

 

 For       𝑡 > 𝑡𝑐          
 

 𝐸𝐴 
𝜕𝑢(𝐿, 𝑡)

𝜕𝑥
= 0  

 

And the initial conditions at 𝑡 = 0 are 

 
𝑢(𝑥, 0) = 0             𝑓𝑜𝑟       0 ≤ 𝑥 ≤ 𝐿  

 

 
 𝜕𝑢(𝑥, 0)

𝜕𝑡
= 0       𝑓𝑜𝑟       0 ≤ 𝑥 < 𝐿  

 

 
 𝜕𝑢(𝑥, 0)

𝜕𝑡
= −𝑉𝑏           𝑎𝑡       𝑥 = 𝐿  

III. FINITE ELEMENT MODELLING AND ALGORITHMS 

The finite element formulation for the pre-mentioned 

wave equation is derived by assuming that  

 

 𝑢(𝑥, 𝑡) = [𝑁]{𝑈(𝑡)}  

where 𝑢 is the displacement vector, [N] is the matrix of 

shape functions, and 𝑈 is the vector of nodal displacement 

that is assumed to be a function of time t.  

Lagrange’s equation has been used to obtain the 

equation of motion which have the following form 

 [𝑀]{�̈�} + [𝐾]{𝑈} = {𝑓(𝑡)}  

where [𝑀]  and [𝐾]  are the global mass and stiffness 

matrices and {𝑓(𝑡)} is the global force vector, and {𝑈}, 

{�̇�},  {�̈�} are the displacement, velocity, and acceleration 

vectors. 

The rod is divided into 𝑛 linear elements which give 

𝑁 = n + 1  global nodes and the Newmark time 

integration method is used in the simulation. The initial 

conditions are: 

 𝑈𝑖 = 0       𝑓𝑜𝑟     𝑖 = 1,2, … , 𝑁  

 �̇�𝑖 = 0       𝑓𝑜𝑟     𝑖 = 1,2, … , 𝑁 − 1  

 �̇�𝑁 = 𝑉𝑏  

The boundary conditions at the contact end are: 

 𝐹𝑁 = −𝑀𝑏�̈�               𝑓𝑜𝑟   0 < 𝑡 < 𝑡𝑐  

 

 𝐹𝑁 = 0                         𝑓𝑜𝑟   𝑡 > 𝑡𝑐  

 

where the 𝐹𝑁  is the force at the contact end. The 

displacement, velocity, and acceleration of the block are 

the same as those of the bar tip as long as the 𝐹𝑁 is negative. 

During the simulation, we monitor the sign of the 𝐹𝑁 

and whenever it becomes positive, it remarks the 

separation of the striking mass from the rod and they lose 

contact. Hence, we switch to the condition 𝐹𝑁 =  0 and the 

rod and the mass are treated separately.  

Slight numerical damping is introduced in the Newmark 

time integration method [23], to reduce the oscillation in 

the solution, by assuming  𝛿 = 0.52  and  𝛼 = 0.25 ×
(0.5 + 𝛿)2  for the Newmark’s integral parameters. 

IV. NUMERICAL SIMULATION 

To investigate the influence of the support condition of 

the rod on the contact force, the contact duration, and the 

stress wave propagation, numerical simulations are 

presented. An aluminum rod and a striking mass are 

considered. The material and geometric properties are 

shown in Table I. It can be noticed that the striking mass 

has the same mass as the rod (𝑀𝑏 = 𝜌𝐴𝐿). 
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TABLE I.   MATERIAL AND GEOMETRIC PROPERTIES OF THE ROD AND THE 

STRIKING MASS. 

Rod Rigid mass 

𝐿(𝑚) 𝐴(𝑚2) 𝜌 (kg 𝑚3⁄ ) 𝐸 (𝐺𝑃𝑎) 𝑀𝑏  (kg) 𝑉𝑏(m 𝑠⁄ ) 

2.5 0.00025 2700 70 1.6875 −1 

We define the dimensionless time 𝜏 to show the stress 

wave propagation and its reflection from the constraint end 

through the rod during the contact time where 

 𝜏 = 𝑡𝑐𝑜/𝐿  

A. Longitudinal Impact for a Fixed-free Rod 

Here we consider the longitudinal vibration and stress 

of the fixed-free rod which is fixed at  𝑥 = 0 and impacted 

by the moving rigid mass at the free end 𝑥 = 𝐿 as shown 

in Fig. 2.  

 

Figure  2.  Longitudinal impact of a mass on a fixed-free rod. 

The contact force, displacement, and velocity at the 

impacted end of the rod are shown in Figs. 3-6. The rod 

displacement is continuous, but both contact force and 

velocity at the contact end exhibit discontinuities at 

intervals of 2τ,  which correspond to the arrival of the 

reflection wave from the end of the rod. The black circles 

on the curves indicate the termination of contact. After the 

contact time (𝑡𝑐),
 the striking mass moves in the positive 

x-axis with a constant velocity that is the rebound velocity. 

For the end of the rod at 𝑥 = 𝐿, the contact force ceases, 

i.e., 𝐹𝑁 = 0, and the simulation presents the free vibration 

of that end. 

 

Figure  3.  The contact force
 
between the fixed-free rod and the striking 

mass.
 

 

Figure  4.  Displacements of contact end and striking mass of the fixed-

free rod. 

 

Figure  5.  Displacements of the fixed-free rod. 

 

Figure  6.  Velocities of contact end and striking mass of the fixed-free 
rod. 

The analytical solution given in [1] predicts the contact 

time, rebound displacement of contact end, rebound 

velocity of contact end, and maximum contact force for the 

longitudinal impact of the fixed-free rod. Both the 

analytical results and the corresponding results of the 

current finite element simulation are given in Table II. 

TABLE II. COMPARISON BETWEEN THE ANALYTICAL AND THE FINITE 

ELEMENT RESULTS (FIXED – FREE ROD) 

Item 
Analytical Results  

[1] 
Proposed Finite 
Element Results 

Contact time 0.001506 𝑠𝑒𝑐. 0.001506 𝑠𝑒𝑐. 

Maximum contact force −7.335 × 103 𝑁 −7.1575 × 103 𝑁 

Rebound displacement −0.1842 𝑚𝑚 −0.18413 m𝑚 

Rebound velocity 0.6876 𝑚 𝑠𝑒𝑐⁄  0.6879 𝑚 𝑠𝑒𝑐⁄  

 

 

 

 

  

 

 

 

 

 

 

 

 

Rod  

𝐴,𝜌,𝐸 
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As shown in Figs. 7-10, there is no deformation in the 

undisturbed region until the stress wave arrives. The 

compressive stress wave, which travels through the rod, is 

reflected from the fixed end as a compressive wave at time 

𝜏 = 1 or 𝑡 = 0.48902𝑚𝑠. During the contact period, the 

contact tip works as a fixed end, and the compressive wave 

is reflected from that end as a compressive wave again at 

time 𝜏 = 2.  So, the whole rod is under compression during 

the contact period. The arrival of the reflected compression 

wave to the contact end raises the stress at the contact end, 

and accordingly, the contact force reaches its maximum 

value. 

 

Figure  7.  Stress wave propagation in the fixed-free rod from the 
contact end to the fixed end. 

 

Figure  8.  Propagation of the reflected wave from the fixed end to the 

contact end of the fixed-free rod. 

 

Figure  9. The stress of the fixed-free rod. 

 

Figure  10.  Propagation of the stress wave in the fixed-free rod. Stress 
distributions are shown every 0.1500 dimensionless time. 

B. Longitudinal Impact for a Free- free Rod 

The free-free rod and the striking mass are shown in Fig. 

11. The contact force, displacement, and velocity at the 

impacted end of the rod are shown in Figs. 12-15. The 

displacement and velocity for both the free end of the rod 

and the striking mass are presented in Figs. 13 and 15. The 

black circles on the curves indicate the termination of 

contact. The rod displacement is continuous, but both 

contact force and velocities of both ends of the rod exhibit 

discontinuities at intervals of 2τ, which correspond to the 

arrival of the reflection wave from the end of the rod.  

 

Figure  11.  Longitudinal impact of a mass on a free-free rod. 

 

Figure  12.  The contact force between the free-free rod and the striking 
mass. 

 

Figure  13.  Displacements of contact end, striking mass, and the free 

end of the free-free rod. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Rod  

𝐴,𝜌,𝐸 
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Figure  14.  The magnitude of displacement of the free-free rod. 

 

Figure  15.  Velocities of contact end, striking mass, and the free end of 

the free-free rod. 

The contact time, rebound displacement of contact end, 

rebound velocity of contact end, and maximum contact 

force for the impact of the free-free rod given in Table III. 

TABLE III.   THE FINITE ELEMENT RESULTS (FREE-FREE ROD) 

Item Proposed Finite Element Results 

Contact time 0.97805 m𝑠. 
Maximum contact force −3.6522 × 103 𝑁 

Rebound displacement −0.42422 𝑚𝑚 

Rebound velocity −0.1370 𝑚 𝑠𝑒𝑐.⁄  

As illustrated in Figs. 16-18, the reflected stress wave is 

opposite to the incident stress wave, thus, the compression 

wave reflects as a tension wave and vice versa. This stress 

reversal is a characteristic of the free end. However, at the 

contact tip, when the tension wave reaches this tip, it 

cancels the stress to zero, and contact is terminated at 

dimensionless time 𝜏 = 2.  

 

Figure  16.  Stress wave propagation in the free-free rod and its 
reflection from the free end. 

 

Figure  17.  The stress of the free-free rod. 

 

Figure  18.  Propagation of the stress wave in the free-free rod.
 
Stress 

distributions are shown every 0.1500
 
dimensionless time.

 

C.
 

Longitudinal Impact for a Rod Attached to a Spring 
 

Here we consider the longitudinal impact between the
 

rigid mass and the
 
aluminum rod

 
which

 
is attached to a 

spring whose stiffness is 𝑘 , as shown in Fig. 19. The 

contact force, displacement, and velocity at the impacted 

end of the rod are shown in Figs. 20-22. The black circles 

on the curves indicate the termination of contact. The rod 

displacement is continuous, but both contact force and 

velocities of both ends of the rod exhibit discontinuities at 

intervals of 2𝐿 𝑐𝑜⁄ , which correspond to the arrival of the 

reflection wave from the end of the rod. 
 

It should be noted that when 0 ≤ 𝜏 < 1 , the contact 

force is independent of the constraint of the left end 𝑥 = 0
 

and the results are the same whatever the boundary 

condition of the end is. So, when 0 ≤ 𝜏 < 1, the constraint 

of the left end, i.e.,  0 ≤ 𝑘 ≤ ∞
 
has not any effects on the 

impact loads. 
 

 

Figure  19.  Longitudinal impact of a mass on the rod with spring.

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Rod 
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Figure  20.  The contact force between the rod tip and the striking mass. 

 

Figure  21.  Displacement of the contact end of the rod attached to a 
spring. 

 

Figure  22.  The velocity of the contact end of the rod attached to a 

spring. 

The wave propagation in the rod when 𝑘 = 𝑘𝑟𝑜𝑑  is 

shown in Fig. 23. The reflected wave is something between 

the reflected wave for the fixed end and the reflected wave 

for the free end. The finite element results agree with those 

by the method of mode superposition very well [22]. 

 

Figure  23.  Propagation of the reflected wave for 𝑘 = 𝑘rod. 

V. CONCLUSIONS   

Based on Saint-Venant's contact theory, the dynamic 

response and stress wave propagation for the longitudinal 

impact between a rigid mass and a uniform elastic rod with 

rigid, free, and deformable support conditions have been 

analyzed. A finite element formulation combined with the 

Newmark time integration method has been utilized to 

investigate the effect of the boundary conditions on the 

stress propagation, contact forces, displacements, and 

velocities. The displacement and velocity of the striking 

mass have been illustrated also. The presented 

visualization of the stress wave propagation enhances the 

understanding of the considered physical phenomenon. 

The results confirm that the developed finite element 

analysis provides a convenient, accurate, and applicable 

means to investigate this complex incident.   
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