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Abstract—This article investigates a lifting method 

enhanced modified Q-Learning to be known as the special 

case of reinforcement learning (RL) for optimal control 

design of a class of periodic systems. Due to the purpose of 

investigating periodic systems with many sub-equations by 

only one dynamic equation, a lifting method is utilized to 

transfer the periodic LQR to time-invariant LQR in an 

augmented system. After obtaining the corresponding model 

to be described by only one dynamic equation, partition 

technique is developed to achieve easier optimal control 

design. Due to the difficulty in analytically solving 

Hamilton-Jacobi-Bellman equation, adaptive reinforcement 

learning (ARL) is studied using iteration algorithm. The 

model-free Q-learning solution with the advantage of 

considering the Bellman function of two variables is 

proposed with the expanded system and the convergence 

analysis is discussed by considering the poles position on the 

complex plane as well as Lyapunov stability theory. The 

proposed Q-Learning method is realized online to find the 

optimal controller based on the system states' data collection, 

and the computation of Bellman function and control policy 

is only in one step of the proposed algorithm. The tracking 

and performance of the proposed methods are illustrated 

for spacecraft systems with appropriate simulation results.  

 

Index Terms—lifting technique, Q-learning, discrete-time 

linear periodic systems, LQR, adaptive reinforcement 

learning 

 

I. INTRODUCTION 

Over the past decades, robotics control systems have 

attracted many researchers with numerous approaches 

mentioned, such as the backstepping technique [1,2], 

separation method [3], and so on. Typically, almost all 

control designs for robotic systems are developed by 

traditional nonlinear control techniques being extended 

from Lyapunov stability theory. As a result, it is 

challenging to make control objectives being different 

from conventional tracking control. In recent years, the 

optimal control solution is developed with the advantages 

of overcoming the challenges of input, full state 

constraint, actuator saturation, etc. The fact is that these 

disadvantages are formulated in the performance index as 
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well as online adaptive reinforcement learning [5,6]. The 

optimal control-based approaches with the consideration 

of optimizing the performance index are also discussed in 

recent time, such as adaptive dynamic programing in 

wheeled inverted pendulum [4], reinforcement learning in 

robots [14], in switched systems [15]. The starting point 

of optimal control application in control design can be 

considered the numerical solution method of the Ricatti 

equation for discrete-time periodic systems [7]. The Q-

learning technique is an extension of classical adaptive 

reinforcement learning with the idea of utilizing the 

special Q-function to be obtained from the Hamilton-

Jacobi-Bellman (HJB) equation [8,9]. 

It should be noted that because of the advantage of the 

Q-learning technique in handling completely uncertain 

systems[10], there are many application and development 

studies of Q-learning that can be implemented in 

[8,9,11,13]. However, most of the existing work is 

focused on time-invariant systems [16,17]. The fact is 

that the optimal function and corresponding optimal 

control need to be known as time-varying functions in 

varying systems. Hence, it is challenging to implement 

the PI, VI policies algorithm in control design. The linear 

periodic systems are a class of time-varying linear 

systems known much in practical applications [5,12]. 

Yang has investigated the novel lifting methodology in 

[18] with the advantage of transforming the linear 

periodic discrete-time system into a linear time-invariant 

discrete-time system, ensuring the implementation of the 

LQR method. However, to our knowledge, the 

development of Q-learning techniques for linear periodic 

discrete-time systems has not yet been completed. Our 

work presents a new lifting technique based on Q-

learning to implement the periodic LQR problem. The 

standard Q-learning can not be directly applied to the 

periodic LQR problem. Therefore we need to modify the 

standard Q-learning so that its convergence is still 

guaranteed. The remaining work is organized as follows. 

The optimal control design for discrete-time linear 

periodic systems and the lifting methodology are 

discussed in Section 2. The proposed Q-learning and 

theoretical discussions are described in Section 3. On the 

other hand, the simulation results are developed in 
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Section 4. Finally, the conclusions are pointed out in 

Section 5. 

Notation: Throughout this article,   denotes the 

Kronecker product. (.)blkdiag  is the block diagonal 

matrix, Discrete-time linear periodic system (DTLP). 

II. PROBLEM STATEMENTS 

This section describes the mathematical model of the 

linear periodic discrete-time system. The corresponding 

lifting technique is investigated to easily obtain the 

optimal control law by transforming the optimal control 

problem of discrete-time periodic systems into improved 

Linear Time-Invariant (LTI) systems.  

A. Optimal Controller for a DTLP System 

The DTLP systems can be represented as: 

1k k k k kx A x B u                                 (1) 

where n
kx   , , m

ku  are defined as the state 

variables vector, control inputs vector, respectively. 

Additionally, it is assumed that the initial state variables 

vector 0x  has been known. The system matrices kA  kB  

are satisfied n n
k p kA A 
    and n m

k p kB B 
    , 

where p  is a positive constant natural number to be 

known as the number of samples in each period. 

The following formula proposes the traditional optimal 

Controller: 

*
k k ku L x                                     (2) 

This work enables us to minimize the following 

infinite performance index: 

0

1

2

T T
k k k k k k

k

J x Q x u R u





  
                        (3) 

where 0, 0k k p k k pQ Q R R     . Authors in [3] 

proposed the optimal feedback to be computed by solving 

the discrete-time periodic Riccati equation (DPRE): 

 
1

0

T
k k k k

T T T
k k k k k k k k k k k

A P A P

A P B R B P B B P A Q




   
       (4) 

It has been known that the eqn. (4) has a corresponding 

solution of the matrix *
kP for each couple of matrices 

0kQ  , 0kR  . A group of p   Riccati equations is 

continuously solved, leading us to obtain p  positive 

semidefinite matrices kP , 1, ,k p  . Hence, the optimal 

feedback matrix at each sample time is computed as: 

 
1

* * *T T
k k k k k k k kL R B P B B P A


                   (5) 

We have known that the eqn. DPRE (4) can be solved 

using the algorithms in [7,17]. We achieve the optimal 

feedback matrix being different from that at different 

sampling periods time. It is also necessary to know the 

accurate models to solve (4), but this requirement is not 

easy in practice. 

B. Lifting Technique in Control Design 

There are some easy lifting methodologies to be 

proposed in [6,12] but they are challenging to design the 

Controller.  Yang [18] proposed a remarkable lifting 

technique for developing a controller. The following 

theorem will describe this problem: 

Theorem 1. ( [18]) For a DTLP system with a period 

p , let’s define  

0

1 0

1 1 0

0 0

0 0

0 0 ...p

A

A A
A

A A A

 
 
 
 
 
  

 

0

1 0 1

1 1 0 1 2 1 1

0 0

0

... ...p p p

B

A B B
B

A A B A A B B  

 
 
 
 
 
  

 

1 ( 1) 1

2 ( 1) 2
1

( 1)

pk p k

pk p k
K K

pk p p k p

x x

x x
x x

x x

  

  


  

   
   
   

    
   
   
   

        

1
0

0 1

0

0

pk

pk
K

pk p

u

u
x u

x u



 

  
  
      
  
    

                

 

The eqn. (1) can be rewritten as 

1K K Kx Ax Bu                                  (6) 

where pn pnA   and pm pmB  . Then, we can realize 

the traditional LQR method for the augmented LTI 

system. We aim to find the control input Ku  to minimize 

the following quadratic performance index, including 

new state and control input vectors 

 

0

T T
K K K K

K

J x Qx u Ru





  
                             (7) 

where 

   0 1 1 0 1 1, ,..., , , ,...,p pQ blkdiag Q Q Q R blkdiag R R R   . 

Because the matrices A , B , Q , R  are constant, the 

periodic LQR problem can be discussed as the traditional 

LQR problem with following controller: 

 
1

* * *T T
K K Ku L x R B P B B P Ax


                     (8) 

where *P is the solution of the traditional Riccati 

equation 

 
1

0T T T TA PA P A PB R B PB B PA Q


                (9) 
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Remark 1. It can be seen that by using the lifting 

method in Theorem 1, the optimal feedback matrix (8) it 

can solve one Riccati equation (9) than solving p  Riccati 

equations. However, it is necessary to require accurate 

knowledge of the improved system dynamic for solving 

offline the Riccati equation (9).  

III.  NOVEL Q-LEARNING ALGORITHM 

In this section, we propose the method to deal with the 

LQR problem online using data collection along with the 

state variables in the absence of system dynamics. We 

consider the particular structure of the augmented system. 

Next, we investigate the Q-function and the development 

of policy improvement. Moreover, we also consider the 

feasibility of previous adaptive reinforcement learning 

algorithms. Finally, we present the control system using a 

modified Q-learning strategy for DTLP systems. 

A. Partition Method based Optimal Control 

Authors in [18] pointed out the method to split the 

matrices into subsystems obtaining easier analysis. 

Consider * *( )TP P  being a unique solution to (9) as 

* *
11 12*

* *
21 22

pn pnP P
P

P P


 
  
  

 

where * ( 1) ( 1)
11

p n p nP    , * ( 1)
12

p n nP   ,    

* ( 1)
21

n p nP   , *
22

n nP  . 

Based on the results in [18], we have 
* * * *

11 11 1 12 21( ) , ( ) 0)T TP P Q P P    . Thus, it leads to: 

1*

*
22

0

0

Q
P

P

 
  
  

                         (10) 

The optimal feedback matrix can be yielded as: 

* *
120 pm pnL L   

 
                    (11) 

where 

   
1

* * *
12 1 1 1 2 22 2

T T T pm nL R B P B B Q A B P A


     

Several Assumptions are mentioned in this work to 

analyze the convergence of the proposed algorithm in the 

next sessions 

Assumption 1 A couple of matrices  2 2,A B is 

controllable. 

Remark 2. The improved system (6) has a couple of 

matrices  ,A B   being stabilizable. 

Remark 3. For the model-free approach, Landelius [9] 

proposed several essential optimal control methods for 

discrete-time systems. The Q-Learning is also discussed 

for the time-invariant LQR problem in [4]. However, all 

algorithms require the condition  ,A B   to be controllable. 

We can not apply these algorithms to our LQR problem 

(6) and (7) because the matrices are only stabilizable. 

Additionally, the tracking of the existing algorithms has 

not been guaranteed in this work. Therefore, to tackle this 

disadvantage of controllability conditions, an enhanced 

Q-learning is presented. 

Remark 4. The optimal Controller (8) can only move 

n non-zero poles being controllable. 

Due to the purpose is to consider the proposed 

algorithm in the next chapter, the state variable is splited 

as: 
1

2

K pn
K

K

x
x

x

 
  
  

                             (12) 

where 1 ( 1)p n
Kx  , 2 n

Kx  . According to (11,12,8) the 

control input can be given as: 

1
* * 2
12 122

0
K

K K

K

x
u L L x

x

 
      
    

                     (13) 

It should be noted that the optimal Controller (13) only 

depends on 2
Kx . Therefore, this result is the critical idea 

to modify the existing Q-learning algorithms, and the 

convergence is still satisfied as applying for the 

augmented system (6).  

B. Q-function in Control Design 

The unity function of the improved system can be 

chosen as: 

 , T T
K K K K K Kr x u x Qx u Ru   

A policy K Ku Lx   stabilizing system (6) is led to 

Bellman Function as: 

( ) T
L K K KV x x Px                             (14) 

Q-function ( , )L K KQ x u  can be considered as a 

framework of the value function ( )L kV x   and the unity 

function  ,K Kr x u   

1( , ) ( , ) ( )L K K K K L KQ x u r x u V x                  (15) 

According to (6,14,15), the Q-function can be given 

explicitly: 

   
( , )L K K

T T T T
K K K K

T T T T
K K K K

Q x u

x Q A PA x u B PB R u

x A PBu u B PAx

   

 

   (16) 

It leads to the relation as: 

 

 21 1 2
1 2 1 1 1 2 22 2( ) ( )

T T
K K

T T T T
K K K K

x Q A PA x

x Q x x Q A Q A A P A x



   
 

  2
1 1 1 2 22 20[ ]T T T T T

K K K Ku B PAx u B Q A B P A x        (17) 

Eq (17) does not depend on 1
Kx . Hence, it is 

formulated as 
2T T T T

K K K Ku B PAx u B PAM x           (18) 
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With 
( 1)0 p n n

n n

M
I

 



 
  
  

  

Therefore, we can obtain that: 

1 1
1( , ) ( )T T

L K K K K K KQ x u x Q x H            (19) 

where kernel matrix ( ) ( )pm n pm nH      is given as: 

11 12

21 22

H H
H

H H

 
  
 

 

where: 

11 2 1 1 1 2 22 2

12 21

22

2

,

,

,

( )

T T n n

T T T n pm

T pm pm

T
T T n pm

K K K

H Q A Q A A P A

H H M A PB

H B PB R

x u









   

  

  

  
 

 

C. The Proposed Q-learning Strategy 

The Q-function can be written in the recursive form to 

evaluate the algorithm as 

 

   1 1

,

, ,

L K K

K K L K K

Q x u

r x u Q x Lx 



 
                (20) 

Note that  T
K K KH vec H    were  ( T T

K K K      

and H  is the symmetric matrix, (19) becomes 

   1 1
1, ( )TL K K K K KQ x u x Q x vec H        (21) 

Then, we rewrite (20) to yield 

   1

1 1 1 1
1 1 1 1

, ( )

(( ) ( )

K K K K

T T
K K K K

r x u vec H

x Q x x Q x

  

 

 

 
               (22) 

We define   

  1 1 1 1
1 1 1 1, (( ) ( )T T

K K K K K K Kr x u x Q x x Q x     

And (22)  becomes 

 1 ( )K K Kvec H                          (23) 

Which is a linear equation that can be written as 

( )Zvec H Y                                   (24)  

With ( )( )N pm n pm nZ      and NY    being the data 

matrices defined by: 

 

 

 

1

1 2

1

T

K K

T

K K

T

K N K N

Z

 

 

 



 

  

 
 
 

 
  
 
 

  

 1 1, ,
T

K K K NY       

Now, the proposed Q-Leaning strategy for online 

implementation is presented as follows: 

Algorithm 1:  

1. Initialization: The stabilizing policy 0
Ku  is chosen 

to guarantee the admissible control condition 

2. Policy Evaluation: The equation is solved by the 

Least-Squares method: 

 1 ( )j
K K Kvec H                         (25) 

3. Policy Update: Update control policy using 

 
1

12 22 21
j j j

L H H


                                    (26) 

1
120

j jj
K KKu L x L x

     
 

                  (27) 

In this policy evaluation stage, the Bellman equation 

(20) is realized for a term of ( )jvec H under the data 

collection and system states to obtain the data matrices. 

The solution of (21) is solved by using the Least-Squares 

(LS)  

 
1

( )j T Tvec H Z Z Z Y


                     (28) 

The PE condition [1,4,15] need to be satisfied to 

guarantee the convergence of Algorithm 1 in the optimal 

policy. The intersection of the proposed algorithm is 

expressed in the following theorem. 

Theorem 2. Let a couple of  2 2,A B   being 

controllable,  1/2,A Q   be observable, and 0
Ku    be an 

initially stabilizing control. Hence, the convergence of the 

proposed algorithm is described as The sequence 

 
0

j

j
H




 convergences to the optimal matrix kernel *H  

as j   and the feedback gain *jL L  as j  . 

Remark 5. Algorithm 1 is implemented online in real-

time using only the state variables data collected along 

the state trajectories without requiring any system 

matrices knowledge. 

IV. SIMULATION RESULTS 

In this section, we implement the spacecraft attitude 

control design using proposed algorithms. The spacecraft 

can be described by the continuous-time linear periodic 

system    
d

x Ax B t u
dt

  . 

where   6
1 2 3 1 2 3, , , , ,

T
x q q q     , 1 2 3, ,   are the 

body rate concerning the local vertical and local 

horizontal (LVLH) frame is represented in the body 

frame and 1 2 3, ,q q q  are the rotation of the body frame 

relative to the LVLH frame. 1 2 3, ,m m m   do the magnetic 

coils induce the magnetic moment in spacecraft 

coordinates. The CTLP system is discretized with 

sampling time to get the DTLP system. It is assumed that 

the number of samples in one orbital period is p=10. The 

weighting matrices are chosen as 

0 6 0 3100 ,k kQ Q I R R I    . The initial state is 

appropriately chosen, and the probing noise is selected as 

random noise. Using the proposed method in the above 
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sections, the simulation results in Fig. 1,2 describe the 

effectiveness of tracking of matrices, trajectories, 

respectively. 

 

Figure 1. The convergence of a matrix ,L H  to its optimal values 

 

 

Figure 2. The response of trajectory tracking and control input 

V.  CONCLUSIONS 

This paper proposed a lifting methodology enhanced 

Q-learning algorithm to tackle the challenge of 

computation in traditional LQR problem. This proposed 

method is developed by two steps using lifting and 

partition technique. First, because the model of periodic 

systems are described by many sub-equations, it implies 

that the Ricatti equation is established with high 

dimension. Therefore, a lifting method is employed to 

transfer the periodic LQR to time-invariant LQR in an 

augmented system. Second, partition technique is 

implemented to obtain easier optimal control design by 

Q-learning algorithm. It is noted that this algorithm is 

able to compute Bellman function and control policy in 

one step. The proposed method deals with the 

requirement of controllability condition and convergence. 

Moreover, the lifting technique is utilized in this work 

with the purpose of handling DTLP systems. On the other 

hand, the algorithm is computed online in the absence of 

the system matrices. The simulation studies show that the 

convergence of not only Bellman function but also 

control policy with good tracking effectiveness of the 

proposed method. In the future, we will investigate the 

problem with off-policy Q learning technique as well as 

in general robotic systems. On the other hand, practical 

experiments will developed for robotic systems with 

reinforcement learning control scheme. 
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