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Abstract—Titanium alloy is characterized with excellent 

mechanical properties such as lightweight, and good 

corrosion resistance ability, hence, it finds application in 

many industrial and engineering applications. This study 

considers the process design of the milling operation of 

titanium alloy using artificial intelligence. The numerical 

experimentation involves the use of the Artificial Neural 

Network (ANN) back propagation and Levenberg-

Marquardt algorithm for the correlation of the process 

parameters while the physical experiments were investigated 

using a DMU80monoBLOCK Deckel Maho 5-axis CNC 

milling machine and carbide-cutting inserts of 12 and 14 mm 

(RCKT1204MO-PM S40T) under the cooling and dry 

machining conditions. The developed network was used to 

obtain a regression analysis which is suitable for the 

prediction of the feasible range of the process parameters. 

The results obtained from the physical experiments indicate 

significant reduction in the rate of tool wear under the 

cooling conditions as opposed to the dry machining. The 

findings of this work will find suitable application as a 

decision making tool in the manufacturing industries most 

especially the manufacturing industries, which employs 

titanium alloy for component part development.  
 

   

  

 

I. INTRODUCTION 

The use of high strength and low weight materials is 

gaining increased attention in the quest for manufacturing 

sustainability. Titanium alloy is characterized with 

excellent mechanical properties such as lightweight, high 

strength and corrosion resistance ability, hence, it finds 

application in many industrial and engineering applications 

[1-3]. However, its low thermal conductivity often makes 

it difficult to machine most especially in high temperature 

                                                           
    

and high speed cutting operations. This is because its low 

thermal conductivity allows the material to absorb and 

retain heat rather than quick dissipation to the conducting 

chips and other part of the material. The effect of high heat 

retention at the tool-work piece interface results in the 

build-up of temperature which promotes the development 

of residual stress and subsequently surface roughness and 

dimensional inaccuracies. The higher the surface roughness 

and dimensional inaccuracies of the final product, the lower 

the probability that the product will meet its functional and 

service requirements. This implies that the quality of a 

product is partly a function of its surface finish and 

dimensional accuracies. 

Nomenclature
 

𝑻𝒅        Inscribed circle diameter (mm)
 

𝒅𝒄        Depth of cut (mm)
 

𝜶       
 

Nose Radius (mm)
 

𝒕
 

Insert thickness (mm)
 

𝝋
 

Lead angle (deg.)
 

𝒅𝒊

 
Diameter of insert (mm)

 

𝒉𝒏

 
Number of the neurons in the hidden layer

 

𝑤
 

Weight of the input parameters,
 

𝑖 
 

Number of input parameters
 

𝑏
  

Bias
 

 

With increasing temperature, the hardness of cutting 

tool will reduce thereby resulting in low rates of material 

removal, and poor surface finish. Continuous cutting 

under this condition may also lead to the development of 

built up edges and subsequent failure of the cutting tool 

edge. Furthermore, titanium has the tendency to work 

harden most especially under uncontrolled cooling 

condition causing the shear zone to become harder than the 
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rest of the work piece. This work hardening phenomenon 

also has the tendency to promote surface roughness.   

Another issues is that titanium is also very tough and does 

not shear easily, hence, sufficient force is required to bring 

about an effective cutting action and the production of 

chips. When long chips are produced, provision must be 

made for quick evacuation in order to prevent the 

development of built edges which can cause poor surface 

finish and catastrophic failure of the cutting tool. Adequate 

process design involving the selection of cutting tool with 

the appropriate geometry will pave way for quick chip 

removal before edges are built up around the cutting tool 

[4-6]. Hence, the geometry of the cutting tool is another 

factor that has been identified which influences the rate of 

machinability and heat generation via friction during the 

machining operation [7-9]. The angle at which the cutting 

tool approaches the work piece for material removal 

influences certain factors such as the magnitude of the 

cutting force, rate of chip removals, material removal rate 

etc.  

 

Figure 1.  The schematic representation of the milling process 

Fig. 1 illustrates the engagement of the cutting tool and 

work piece during milling operation leaving sufficient 

space for chip removal. Effective chips removal will bring 

about significant reduction in the cutting temperature, 

reduction in the tendency for built up edges and increased 

chances for good surface finish.  In order to mitigate these 

challenges associated with titanium alloy during 

machining operations, many researchers have proposed 

some approaches such as the development of special high 

performance cutting tool, computer aided modelling and 

simulation of the cutting process, the optimization of the 

process parameters, the use of coolants and incorporation 

of smart devices for temperature measurement and 

monitoring in real time [10-12]. Many analytical, 

numerical and physical experimentation approaches have 

been carried out to improve the machinability of titanium 

alloy during milling operation [13]. Courbon et al. [14] 

carried out the tribological assessment of Ti6Al4V and 

Inconel 718 in order to determine their behaviour under 

dry and cryogenic conditions while Dhananchezian and 

Kumar [15] studied the cryogenic turning of the Ti–6Al–

4V alloy with some modification on the cutting tool inserts. 

The findings of the studies indicate that the cryogenic 

cooling technology is suitable for enhancing the 

machinability of titanium alloy under controlled 

conditions.  Elshwain et al. [16] carried out the assessment 

of degree of machinability of nickel and titanium alloys 

under gas based coolant-lubricants. The findings 

established that the use of the gas-based coolant-lubricants 

is clean and environmentally friendly but requires 

adequate process design for optimum performance. 

Rotella et al. [17] studied the effects of the cooling 

conditions on surface integrity in the machining of 

Ti6Al4V alloy. It can be inferred from the studies that the 

surface integrity and machinability of titanium alloy 

increases under certain cooling conditions as compared to 

dry machining. Furthermore, Strano et al. [18] carried out 

the comparative analysis of Ti6Al4V machining forces 

and tool life for cryogenic and conventional cooling while 

Park et al. [19] investigated the effect of cryogenic cooling 

and minimum quantity lubrication during the end milling 

operation of titanium alloy (Ti-6Al-4V). The findings of 

the works indicate that the machining forces decrease with 

an increase in the tool life under the cryogenic cooling 

condition as compared to the conventional cooling 

methods. In addition, Shan et al. [20] developed an 

improved analytical model for cutting temperature in an 

orthogonal cutting of Ti6Al4V while Daniyan et al. [21] 

performed the mathematical modelling and optimization 

of the cutting forces during Ti6Al4V milling process using 

the Response Surface Methodology. The works provide an 

analytical and predictive models for the prediction and 

optimization of the cutting temperature and forces during 

the machining operations of Ti6Al4V.  

The use of ANN for process design, modelling and 

optimisation during machining operations have been 

reported [22-24].  

The ANN has been proven to be a modelling technique 

which is suitable for investigating the relationship between 

the input and output variables so as to make reliable 

predictions. The ANN technique can be employed for 

performing modelling and optimization of simple or 

complex linear as well as non-linear systems with multi-

dimensional relationships [25-29]. 

The aim of this work is to employ the Artificial Neural 

Network (ANN) for the prediction of the process 

conditions and parameters such as the temperature, cutting 

force, cutting frequency and depth of cut. The work also 

seek to investigate the rate of tool wear for different cutting 

inserts under the same cutting conditions and parameters 

for comparative analysis. The process design and the 

prediction of process parameters via the artificial neural 

network have not been sufficiently highlighted by the 

existing literature. Hence, this work will assist 

manufacturers who employs titanium alloy for product 

development in the quest for the development of an 

efficient process for high performance cutting.  

The succeeding sections present details of the materials 

and method employed, results and discussion as well as the 

conclusion and recommendations. 

II. MATERIALS & METHODS 

The chemical composition as well as the mechanical 

and electrical properties of the titanium alloy (Ti-6Al-4V) 

used as the work piece are presented in Tables 1 and 2 

respectively. 
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TABLE I.  CHEMICAL COMPOSITION OF TITANIUM ALLOY (TI-6AL-4V) 

[30]. 

Element Al Fe O Ti V 

Percent weight 
(wt.%) 

6 0.25  0.2 90 4 

TABLE II. MECHANICAL AND THERMAL PROPERTIES OF TITANIUM 

ALLOY (TI-6AL-4V) [30]. 

S/N Properties Value 

 Mechanical  

1. Density (kg/m3) 45000  

2. Brinell’s hardness 334  

3. Yield strength (MPa) 880 

4. Ultimate tensile strength 

(MPa) 

950 

5. Bulk modulus (GPa) 150 

6. Modulus of elasticity (GPa) 113.8 

7. Poison’s ratio 0.342 

8. Shear modulus (GPa) 44 

9. Shear strength (MPa) 550 

 Thermal  

11. Specific heat capacity (J/g℃) 0.5263 

12. Thermal conductivity 

(W/m.K) 

6.7  

13. Melting point (℃) 1660 

14. Coefficient of thermal 

expansion (𝐾−1) 

8.70  

Figure  2. The schematic of the experimental set up and the DAQ. 

The physical experiments were performed using a 

DMU80monoBLOCK Deckel Maho 5-axis CNC milling 

machine with a maximum spindle speed of 18000 rpm. 

Two carbide cutting inserts of 12 and 14 mm 

(RCKT1204MO-PM S40T) were used for the machining 

operation for comparison purpose. The physical 

experimentations employ the predicted process parameters 

by ANN for the determination of the rate of the tool wear 

and temperature profiles during titanium milling operation 

using the cutting inserts of diameters 12 mm and 14 mm. 

The cryogenic cooling involving the injection of liquid 

nitrogen (LN2) at the interface of the cutting tool and work 

piece was employed as the cooling medium. In order to 

prevent hardening due to its extreme low temperature, the 

amount of the cooling agent introduced through an 

external spray was regulated in relation to the temperature 

measured in real time. The temperature of the cutting 

operation was also measured and monitored using a 

professional infrared video thermometer with LCD display 

and camera function (MT 696) with infrared temperature 

range of -50-1000℃. The instrument is highly sensitive to 

temperature variation and highly suitable for temperature 

measurement and monitoring. The stationary 

dynamometer (KISTLER 9257A 8-Channel Summation 

of Type 5001A Multichannel Amplifier) with the Data 

Acquisition System (DAQ) were employed for the cutting 

force measurement in real time. The schematics of the 

process design is shown in Fig. 2. The tool wear was 

measured with the aid of the toolmaker’s microscope (type 

LS 3003). The Figure illustrates the integration of the 

software and data acquisition system with the CNC milling 

machining and the temperature monitoring system. This 

enables the collection of data and storage of the data 

relating to the machining operations in real time.he 

specifications of the cutting tool is presented in Table III. 

TABLE III. THE CUTTING TOOL GEOMETRY. 

Symbol Parameter Value 

𝑻𝒅 Inscribed circle diameter (mm) 3.987 

𝒅𝒄 Depth of cut (mm) 1.760 

𝜶 Nose Radius (mm) 6.000 

𝒕 Insert thickness (mm) 4.750 

𝝋 Lead angle (deg.) 0o 

𝒅𝒊 Diameter of insert (mm) 12 & 14 
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The Artificial Neural Network (ANN) which comprises 

of a network iteratively trained by the Levenberg-

Marquardt backpropagation algorithm was developed.  

The choice of the Levenberg-Marquardt backpropagation 

algorithm was informed by its high ability to study and 

correlate simple and complex relationships between the 

data sets. Furthermore, the algorithm is highly efficient for 

training, correlative and predictive purposes within a little 

time [25]. 

 

 

Figure 3. The physical experimental set-up. 

For the physical experimentations, the feed per tooth, 

feed rate, maximum chip thickness and the cutting speed 

were used as the input parameters while the temperature, 

cutting force, cutting frequency and the depth of cut serve 

as the measured output. The physical experimentation 

produced 15 experimental trials. The set-up of the physical 

experimentation process is shown in Fig. 3. The input and 

output (target) parameters employed for the training are as 

follow: 

 
The architecture of the developed neural network which 

comprises of four inputs and outputs as well as ten hidden 

and four output layers is presented in Fig. 4.  

 

 

Figure 4. The architecture of the neural network. 

 

The number of neurons in the input and output layers 

equals the number of input and output variables in the data 

being processed which in this case is four. The hidden 

layer is the neuron layer in between the input and output 

layers. The artificial neurons receives a set of weighted 

inputs and produce a corresponding output based on the 

input received. 

The number of the neurons in the hidden layer (ℎ𝑛) 

equals the weighted sum of inputs and bias expressed as 

expressed by (1). 

ℎ𝑛 = ∑(𝑤𝑖) + 𝑏   (1) 

Where 𝑤 is the weight of the input parameters, 

𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 and 𝑏 is the bias. 

For the four input data parameters fed into the ANN, the 

number of the neurons in the hidden layer was obtained as 

ten while the corresponding number of output layer was 

four.  

Using the Levenberg Marquardt algorithm, the network 

was iteratively trained until a network with good 

predictive and correlative abilities was developed. The 

training plots of the developed network is shown in Fig. 5. 

Fig. 5 indicates that that it takes maximum of five 

iterations (5 epochs) for a good network with high 

predictive capability to be developed and that the best 

training performance was gotten at the second iterations. 

Also, the negligible value of the Mean Square Error (MSE) 

indicates that the network was adequately trained. 
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Figure 5. The performance training plot. 

III. RESULTS AND DISCUSSION 

Fig. 6 is a plot of the gradient, training gain Mu and 

validation check after the network has been adequately 

trained.  The gradient was 7.6552 × 10−11   while the 

training gain Mu was 1.00 × 10−8 after 5 iterations. The 

negligible values of the gradient and the training gain 

indicate that the difference between the network output 

and target is negligible. This is an indication that the 

developed network is suitable for correlative and 

predictive purposes. 

Fig. 7 shows the regression plots for the training, 

validation, test and overall correlation, which has the 

correlation coefficients as 1, 0.72447, 1 and 0.97787 

respectively. The closer the correlation coefficient to 1, the 

more efficient the network is and vice versa. The 

correlation coefficient can be made closer to 1 by 

increasing the size of the data set and iteratively training 

the data set until there is a significant performance training 

plot. The model equations from the ANN models for the 

training, test, validation and overall process are expressed 

as (2-5) respectively. 

 

𝑂𝑢𝑡𝑝𝑢𝑡 𝑌, 𝐿𝑖𝑛𝑒𝑎𝑟 𝐹𝑖𝑡: 𝑌 = (1)𝑇 + (9.8 × 10−12) (2) 

𝑂𝑢𝑡𝑝𝑢𝑡 𝑌, 𝐿𝑖𝑛𝑒𝑎𝑟 𝐹𝑖𝑡: 𝑌 = (1)𝑇 + (−2.0 × 10−11) (3) 

𝑂𝑢𝑡𝑝𝑢𝑡 𝑌, 𝐿𝑖𝑛𝑒𝑎𝑟 𝐹𝑖𝑡: 𝑌 = (0.91)𝑇 + (88.0) (4) 

𝑂𝑢𝑡𝑝𝑢𝑡 𝑌, 𝐿𝑖𝑛𝑒𝑎𝑟 𝐹𝑖𝑡: 𝑌 = (0.99)𝑇 + (13.0) (5) 

Where: T is the target variable. 

The fact that the correlation coefficients were close to 1 

indicate that the network is capable of performing the 

corrective and predictive functions accurately with 

minimal deviations from the target. Only the correlation 

coefficient for the validation process (0.72447) was not 

very close to 1 as compared to others. However, others 

which were close to 1 justified the efficiency of the 

developed neural network for predictive purpose. The fact 

that the value of the correlation coefficient of the 

validation process was lightly farther from 1 may be due 

to the limited data samples used in training the network. 

Larger data samples may produce a better correlation 

coefficient. In addition, the process is iterative, and the 

network parameters can be further adjusted until a better 

coefficient is obtained. 

 

Figure 6. The plot of the gradient, training gain Mu and validation. 
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Figure 7. The regression plots. 
 

From the plot, it is obvious that the degree of agreement 

between the output of the network and the experimental 

targets were in good agreement. The validation of the 

developed network was carried out using random values 

selected from the physical experimentations and the results 

obtained were found to be within the range of the physical 

experimental values as presented in Table IV.  

The results obtained indicated that that the predicted 

output of the network namely the temperature, cutting 

force, cutting frequency and depth of cut were within the 

range of the physical experimentation values by 

interpolation. This indicates that the developed network is 

a suitable tool for the prediction of the machining process 

parameters. The corresponding   predictive mathematical 

modelling equations are also shown in the Figure. 

The physical experiments were carried out based on the 

use of the ANN for the process parameters selection and 

prediction for the milling operation of titanium alloy. 

Using the feasible combination of process parameters 

predicted from the ANN, the milling operations were 

performed using two different cutting inserts namely 12 

and 14 mm under different cooling conditions namely; 

liquid nitrogen coolant and under dry conditions (no 

cooling). The corresponding tool wear as a function of the 

cutting force were determined in both cases (Fig. 8 and 9). 

Fig. 8 and 9 indicate that an insert of 12 mm produced 

lower tool wear as opposed to the 14 mm cutting inserts.  

This might be connected to the fact that frictional 

activities which promote tool wear increases with an 

increase in the diameter of the cutting tool inserts and vice 

versa. The results also indicate a higher rate of tool wear 

under dry machining as opposed to the machining under 

the cooling condition of liquid nitrogen. The reduction in 

the magnitude of tool wear was because the temperature at 

the work piece, tool and chip interface reduce considerably 

with the application of coolants with significant reduction 

in the cutting force requirements than under the dry 

machining conditions. The developed chips was also 

observed to break away easily from the work piece surface 

without developing edges around the tool or work piece 

under cooling conditions. This prevents the development 

of “built up edges” with significant reduction in the rate of 

tool wear.  

In Fig. 8 and 9, the tool wear was also observed to 

increase with an increase in the magnitude of the cutting 

force. This may be due to the fact that the stress developed 

in the cutting tool coupled with increasing frictional 

activities due to insufficient cooling.  The formation of 

chips of longer lengths were observed under the dry 

machining conditions as opposed to the cutting under the 

cooling conditions. This is due to the absence of 

lubrication.  

This can promote an increase in the cutting temperature 

due to frictional activities between the interface of the 

cutting tool and the work piece thereby increasing the rate 

of tool wear. It can also bring about the development of 

built up edges, a phenomenon whereby the chips generated 

sticks on to the surface of the cutting tool or work piece. 

This phenomenon can promote sudden fracture of the tool 

and can as well increase the profile irregularities of the 

work piece surface. It was observed that the thickness of 

the chips generated increases with an increase in the cutter 

diameter [31-33].  The temperature profiles of the milling 

operation of titanium alloy under the cooling and dry 

conditions for the 12 mm insert is presented in Fig. 10. The 

temperature profiles of the work piece and cutting tool is 

important because it influences the rate of energy 

consumption of the machining operation, tool life, work 

piece strength and surface finish. The temperature profile 

has to be consistently monitored and kept within the 
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optimum range through the use of effective process 

monitoring and control devices in order to promote the 

overall sustainability of the cutting process [34-36]. 

Comparing the cutting operation under cooling and no 

cooling conditions as shown in Fig. 10, there is a 

significant reduction in the temperature distribution across 

the work piece, and tool interface. This achieved with the 

use of the liquid nitrogen coolant. This will reduce the 

development of residual stress with improved surface 

finish of the work piece due to the reduction in the 

frictional activities at the interfaces of the cutting tool, 

work piece and the chips formed. Furthermore, the 

reduction in temperature with the use of coolants will also 

cause the chips formed to break away easily thereby 

preventing the formation of built up edges. 

Fig. 11 presents the relationship between the cutting 

force and the cutting temperature under cooling and no 

cooling conditions using the 12 mm cutting insert. The 

results obtained indicate that the magnitude of the cutting 

temperature increases with an increase in the magnitude of 

the cutting force.  

The increase in cutting temperature becomes more 

pronounced in the absence of cooling conditions (under no 

cooling condition). This may be due to an increase in 

frictional activities in the interface of the cutting tool and 

work piece. An increase in the cutting temperature beyond 

the optimum may increase the energy requirement of the 

cutting process thereby making the process less 

sustainable in terms of energy consumption, cost-

effectiveness and environmental friendliness. It may also 

provoke surface roughness and dimensional inaccuracies 

in the work piece.  

High temperature between the cutting tool and work 

piece interface may also reduce the hardness of the cutting 

tool, thereby increasing the machining time. As the 

hardness of the cutting tool decreases, there are chances 

that the rate at which the cutting tool will penetrate the 

work piece for material removal will reduce. The rate of 

distortion may also increase thereby promoting profile 

irregularities in the work piece. This further underscores 

the importance of temperature monitoring and control. 

This result is in line with the findings of some existing 

work which emphasis effective process design that will 

ensure quick heat dissipating, efficient temperature 

monitoring and control, quick chip removal, application of 

effective cooling strategy, as well as optimisation of 

process parameters in order to achieve significant 

reduction in the magnitude of cutting temperature at the 

shear zone. This will promote the rate of machinability, 

degree of surface finish, process economics and 

sustainability [37-38]. Since the cutting force has been 

observed to influence the rate of tool wear and cutting 

temperature which are detrimental to the tool life and the 

surface finish of the work piece, the optimisation of the 

cutting force will be helpful in the determination of the 

optimum range of the cutting force. Once the optimum 

range is determine, the acquisition of the cutting force data 

and monitoring in real time will assist in keeping the 

magnitude of the cutting force within the optimum range. 

It is also worth mentioning that the determination of right 

orientation and geometry of the cutting tool in relation to 

the nature of the work piece to be machined and the degree 

of surface finish required are important decisions that can 

influence the magnitude of the cutting force.  

TABLE IV. THE PROCESS PARAMETER FOR TITANIUM ALLOY MILLING. 

Trials Feed per 

tooth  

Feed rate 

(mm/min) 

Maximum 

chip 

thickness 

(mm) 

Cutting 

speed 

(mm/sec) 

Temperature 

(oC) 

Cutting 

force (N) 

Cutting 

frequency 

(Hz) 

Depth of 

cut (mm) 

1 0.18 0.19 0.09 255000 298.984 25.3334 20.1007 0.11 

2 0.18 0.18 0.08 256000 302.198 25.5665 20.0675 0.10 

3 0.19 0.21 0.10 250000 301.223 24.8439 20.0985 0.10 

4 0.20 0.22 0.11 255000 300.993 25.0995 20.2007 0.19 

5 0.21 0.22 0.11 255000 298.468 25.4678 20.1085 0.10 

6 0.22 0.24 0.22 265000 405.346 35.7885 50.5235 0.21 

7 0.26 0.26 0.21 260000 402.653 35.3546 50.1985 0.22 

8 0.27 0.25 0.23 265000 407.653 34.6908 502.096 0.21 

9 0.28 0.27 0.21 264000 397.431 35.0776 50.0652 0.20 

10 0.24 0.25 0.20 263000 403.542 35.0546 50.0345 0.20 

11 0.32 0.33 0.31 275000 505.368 50.0001 100.1345 0.32 

12 0.31 0.32 0.32 275000 502.643 50.0478 100.0458 0.32 

13 0.30 0.31 0.33 278000 503.653 49.8675 100.0096 0.31 

14 0.29 0.32 0.30 272000 506.324 50.0097 100.0342 0.30 

15 0.33 0.33 0.34 276000 501.325 50.0986 100.2556 0.30 
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Figure 8. The wear rate using different inserts under cooling conditions. 
 

 
 

Figure 9. The wear rate using different inserts under dry machining conditions. 

 
Figure 10. The temperature profile under cooling and dry machining conditions. 
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Figure 11. Cutting force-temperature relationship under cooling and dry machining conditions. 
 

IV. CONCLUSION 

The process design for the milling operation of titanium 

alloy using the artificial neural network was carried out. 

The Artificial Neural Network (ANN) back propagation 

and Levenberg-Marquardt algorithm was employed for the 

correlation of the process parameters. The results obtained 

indicated that the developed network is highly suitable for 

corrective and predictive function judging from the 

correlation coefficients which were close to 1 and the 

negligible value of the mean square error. Furthermore, 

from the physical experimentations, an insert of 12 mm 

produced lower rate of tool wear as opposed to the 14 mm 

cutting inserts. The tool wear was also observed to 

increase with an increase in the magnitude of the cutting 

force.  In addition, higher rate of tool wear was observed 

under dry machining as opposed to the machining under 

the cooling condition of liquid nitrogen. Hence, this work 

will assist manufacturers who employs titanium alloy for 

product development in the quest for the development of 

an effective process for high performance cutting. The 

approach will also serve as a decision making tool for the 

selection of process parameters and control of machining 

conditions. The small size of the data set employed in this 

study was a limitation. This is due to the fact that the 

performance of the ANN improves with an increase in the 

data size. Hence, further study can consider the 

implementation of the ANN for process design with a 

larger data set and comparison analysis with other 

techniques for process design. 
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mineral processing systems, and machine design. The process design for 

the milling operation of titanium alloy using the artificial neural network 
was carried out. The Artificial Neural Network (ANN) back propagation 

and Levenberg-Marquardt algorithm was employed for the correlation of 

the process parameters. The results obtained indicated that the developed 
network is highly suitable for corrective and predictive function judging 

from the correlation coefficients which were close to 1 and the negligible 

value of the mean square error.

 

Furthermore, from the physical 
experimentations, an insert of 12 mm produced lower rate of tool wear as 

opposed to the 14 mm cutting inserts.

 

The tool wear was also observed 

to increase with an increase in the magnitude

 

of the cutting force. 

 

In 
addition, higher rate of tool wear was observed under dry machining as 

opposed to the machining under the cooling condition of liquid nitrogen. 

Hence, this work will assist manufacturers who employs titanium alloy 
for product development in the quest for the development of an effective 

process for high performance cutting. The approach will also serve as a 
decision making tool for the selection of process parameters and control 

of machining conditions.

 

The small size of the data set employed in this 

study was a limitation. This is due to the fact that the performance of the 
ANN improves with an increase in the data size. Hence, further study can 

consider the implementation of the ANN for process design with a larger 

data set and comparison analysis with other techniques for process design.
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