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Abstract—On the way to Industry 4.0, the digitization, 

networking and automation of industrial plants are the core 

challenges for manufacturing companies. These 

developments are accompanied by a rapid increase in the 

amount of available data, which often remains unused, 

resulting in waste in the sense of lean production. One reason 

for this is the great effort involved in the subsequent analysis 

of large amounts of data. In this context, predictive 

maintenance is a promising means of benefiting from data in 

terms of early wear prediction. In order to implement 

predictive maintenance, the approach presented here uses 

machine learning methods to generate a model for wear and 

plant status detection and, based on this, an algorithm for 

wear prediction. Only current signatures of production 

facilities are used for this. These signatures are available in 

every electrical system, have a high information content and 

can be measured with minimal effort and expense. Following 

the CRISP-DM methodology, a short-time Fourier transform 

is applied to the continuously acquired current signatures in 

order to extract features. In the modeling phase, recurrent 

neural networks are trained with these features. To create the 

right conditions, the current signatures are generated with a 

test setup for wear simulation, which is also used for the 

evaluation and verification of the developed models and 

algorithms. Especially in the area of critical wear, the trained 

recurrent neural network models provide correct 

classifications with an accuracy of over 95 percent. The 

developed algorithm for predictive maintenance therefore 

delivers reliable wear forecasts so that maintenance can be 

planned at an early stage. Finally, the models and algorithms 

are implemented and tested in a developed embedded system 

to perform wear detection and prediction at the machines 

edge in almost real-time. 

  

Index Terms—Current signature analysis, lean data, 

predictive maintenance, recurrent neuronal networks, short-

time Fourier transform 

I. INTRODUCTION 

There is a general awareness that the efficient 

processing of the exponentially growing volume of data in 
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Industry 4.0 represents is a decisive business success factor 

and secures competitive advantages for manufacturing 

companies [1], [2]. In practice, however, the analysis and 

profitable use of the accrued data are one of the main 

challenges for companies to be mastered while 

implementing an Industry 4.0 strategy [3]. One of the most 

important technologies for analyzing large amounts of data 

is machine learning [2]. Due to its diverse applications, 

machine learning, which enables the automated generation 

of knowledge from data [4], [5], developed from a research 

object to one of the most important universal technologies, 

among other in Industry 4.0 [2], [6]. According to a recent 

study, 73 percent of German companies are already 

focusing on machine learning, which will increasingly 

establish itself as a standard [7]. There are many possible 

applications in production. From a process and product 

perspective, machine learning is used, for instance, to 

optimize processes or product design and to predict 

product quality. For machines and plants, it brings 

significant advantages for predictive maintenance [8]. 

Predictive maintenance is a core component and key 

innovation contributing to the concept of Industry 4.0 [9], 

[10]. One of the technical challenges that companies must 

overcome for a successful implementation of predictive 

maintenance is the selection and evaluation of data [11]. 

The use of electrical current signatures as a database offers 

great potential for – in the sense of predictive maintenance 

– determining the wear of production plant [12]. In order 

to handle the constantly accumulating volume of data in 

production, solutions are needed that instantly derive the 

knowledge from the data (e.g. current signatures) with the 

help of machine learning in decentralized computing 

systems and thus reduce the forwarded data volume that 

can subsequently be directly used. We refer to this as the 

Lean Data approach [13]. 

This paper introduces a practical solution for the Lean 

Data approach by presenting an algorithm for decentral 

predictive maintenance with a developed edge device 

 

583© 2021 Int. J. Mech. Eng. Rob. Res

International Journal of Mechanical Engineering and Robotics Research Vol. 10, No. 11, November 2021

doi: 10.18178/ijmerr.10.11.583-591



using machine learning models based on current signatures. 

The current signatures are pre-processed using a short-time 

Fourier transform, so these can be used for more in-depth 

analyses and enable wear predictions. Furthermore, a 

model for wear detection is developed with machine 

learning methods and applied in an algorithm in order to 

verify the suitability of predictive maintenance by using 

current signature analysis on a brake system in a 

reproducible way. Recurrent neural networks are used for 

the modeling, as this machine learning approach enables 

the processing of sequential data [14]. The developed 

models are evaluated with the current signatures of a test 

setup, designed for the simulation of wear on brake 

systems. The algorithm is implemented and tested on the 

developed edge device for the purposes of practical 

evaluation. 

II. RELATED WORK 

The suitability of current signatures for wear detection 

and prediction has been scientifically proved. For example, 

in their development of a predictive maintenance approach 

for turbogenerators, Pellicel et al. highlight the fact that 

current signatures can contain information about electrical 

or mechanical problems. Monitoring the frequencies and 

their changes in the current signatures makes it possible to 

draw conclusions about the evolution of the operating 

conditions of a machine. [15] Position figures and tables at 

the tops and bottoms of columns.  

The empirical evidence of a correlation between motor 

current and (tool) wear is provided by Li et al. Using the 

spindle motor current and the feed drive current as a 

baseline, wear detection via current signatures is proven 

and the advantages of this method are elaborated. In 

addition to its simple application and effectiveness, the 

authors also include the low cost and the smooth 

machining process. [16] 

Mandal summarizes the current state of research in his 

examination of the applicability of tool condition 

monitoring methods in conventional milling, specifically 

micromilling: there is scientific consensus that on the one 

hand the use of current signatures is characterized by the 

simplicity of implementation and by low costs. No external 

sensors are required, since the current of the drive can be 

used. On the other hand, Mandal emphasizes that current 

signatures are unaffected by mechanical noise as another 

advantage of this method. [17] Stavropoulos et al. also 

emphasize the low-cost aspect when using current 

signatures in their comparison of common condition 

monitoring methods [18]. 

Unlike Mandal, Klaic et al. consider tool wear during 

drilling. One advantage Klaic et al. point out when using 

current signatures for condition monitoring is that the 

machining process is not disturbed due to indirect 

measurement. On the contrary, Klaic et al. note that 

indirect methods – compared to direct methods – are 

generally less accurate. For example, the information in 

current signatures can be dependent on or affected by 

motor dynamics and motor temperature. [19] 

Another positive aspect of current signatures as used in 

condition monitoring is provided by Praveenkumar et al. 

In a comparison with vibration signals, acoustic signals 

and current signatures for early fault diagnosis in 

gearboxes, the best results are achieved – regardless of the 

model choice – when current signatures are used as 

baseline data. [20] 

An overview of further scientific publications dealing 

with condition monitoring of tools based on current 

signatures during drilling is given by Jantunen [21]. 

In summary, it can be said that: 

• The suitability of current signatures for wear 

detection and prognosis is empirically proven, 

• A more cost-effective use of current signatures for 

wear detection and prognosis can be stated 

compared to other indirect methods and 

• Current signatures are well suited as baseline data, 

since modern production plants are almost 

exclusively electrically operated [22] (high data 

availability). 

Despite the scientific proof of the suitability of current 

signatures for wear monitoring and the advantages 

mentioned in comparison to other indirect methods, it is 

not yet widely used in practice. Although first publications 

are already several years old and do not show any concrete 

obstacles or disadvantages, it is difficult to find a clear 

reason why this technique has not been pursued. While 

there are already initial applications, the method of wear 

detection and prediction in current signatures is still in the 

development stage [23]. This fact attests to the novelty and 

relevance of the research subject of this work. 

III. METHODOLOGY 

A. Description of the Experimental Setup 

Fig. 1 shows the experimental test setup, designed and 

built for the reproducible simulation of wear on a brake 

system. The brake disc is driven by an asynchronous 

geared motor. The motor has a rated power of 180 Watt 

and a maximum speed of 1360 revolutions per minute. A 

worm gear with a gear ratio of 15:1 reduces the maximum 

speed to 90 revolutions per minute and delivers a 

maximum torque of 16 newton meter. The asynchronous 

motor is supplied with a voltage of 230 Volt via a 

frequency converter. The frequency converter allows 

variable control of the speed of the electric motor.  

 

Figure 1. Schematic structure of the experimental test setup 
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In order to make the test results of the wear 

demonstrator reproducible and comparable, a pneumatic 

cylinder and a maintenance unit are installed. In order to 

be able to perform measurements with a defined braking 

force, the air pressure can be precisely specified with the 

help of the maintenance unit. The pneumatic cylinder 

actuates the brake lever with a known force resulting from 

the set pressure, which triggers the braking process. In this 

way, the force is transmitted hydraulically via the brake 

lever to the two brake pistons installed in the brake caliper. 

The braking process is initiated by pressing the brake pads 

against the brake disc. The test setup is suitable for 

simulating and analyzing wear on the brake disc on the one 

hand, and for examining brake pad wear on the other. This 

work is focused on brake pad wear. 

A total of six brake pads with different wear reserves 

are considered. In addition to new brake pads (t0 = 3.7 mm), 

brake pads with a thickness of t1 = 3.5 mm, t2 = 2.8 mm, t3 

= 2.6 mm, t4 = 2.4 mm and t5 = 2.2 mm are used 

(dimensions including backing plate). The wear of the 

brake pads analyzed in this work is measured by the two 

key figures wear reserve and degree of wear. The wear 

reserve indicates the brake pad thickness in millimeters 

that is still available until the brake pads need to be 

replaced.  
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wear reserve = current brake pad thickness - t5 (1)

With t5 as the intervention limit. The degree of wear

refers to the brake pad thickness still available and 

indicates, in an interval from 0 to 100 percent, how much 

the brake pads are worn. This available brake pad 

thickness is calculated from the difference between the 

original thickness of the brake pads (3.7 mm) and the brake 

pad thickness of the defined intervention limit (2.2 mm) 

amounting to 1.5 mm of usable brake pad.

degree of wear = 
(1.5 - wear reserve) 

1.5
 ∙ 100 % (2)

A 0 percent degree of wear means that the brake pad is 

new and not yet subject to wear. 100 percent degree of 

wear means that the intervention limit has been reached 

and the brake pads must be replaced.

To record the current signatures of the asynchronous 

motor, the current signals of the three output phases of the 

frequency inverter are each connected to a current 

transformer (Hall-effect current transformer HX 03-P from 

LEM). The NI 9222 module from National Instruments, 

which has a resolution of 16 bit, is used to digitize the 

measured signal. A sampling rate of 20 kHz is specified 

for the experiments. A value of 1.15 bar is selected for the 

air pressure and the speed is set to the maximum value of 

90 revolutions per minute.

A total of three measurement series are carried out for 

the brake pads of each pad thickness. Between each 

measurement series, the brake pads of each thickness are 

reinstalled. This serves to ensure that the classification of 

the individual degrees of wear is actually based on the 

degree of wear and not, for example, on possible 

characteristics in the current signatures due to a possible 

deviation in the installation of the brake pads. For each 

installation, 30 braking operations with a duration of 

approximately 1-2 seconds were performed. Thus, each 

measurement series contains 30 braking processes. In total, 

current signatures from 90 braking operations were 

recorded for each brake pad thickness. Only the brake pad 

thickness is used to label the measurement series, 

regardless of the installation, in order to minimize the 

distortion effects described above. An overview of the 

experiments is shown in Table I.

TABLE I. DESIGN OF EXPERIMENTS

Series 

Number

Brake pad 

thickness

in mm

Brake pad 

thickness 

number

Installation 

number

Number of 

braking

operations

1 3.7 t0 1 30

2 3.7 t0 2 30

3 3.7 t0 3 30

4 3.5 t1 1 30

5 3.5 t1 2 30

6 3.5 t1 3 30

7 2.8 t2 1 30

8 2.8 t2 2 30

9 2.8 t2 3 30

10 2.6 t3 1 30

11 2.6 t3 2 30

12 2.6 t3 3 30

13 2.4 t4 1 30

14 2.4 t4 2 30

15 2.4 t4 3 30

16 2.2 t5 1 30

17 2.2 t5 2 30

18 2.2 t5 3 30

In order to counteract any possible influence of the 

engine temperature and dynamics, the measurements for 

brake pads of the same wear condition are not performed 

in direct succession.

B. Preparation of the Current Signatures

In addition to filtering and transforming the data to 

extract the relevant information, preparation also consists 

of formatting the data, which is required for a recurrent 

neural network. Fig. 2 shows the main steps of the data 

preparation.



 

Figure 2. Main steps of current signature preparation (data pre-
processing) 

The approach in this section is based on the cross-

industry standard process for data mining (CRISP-DM), an 

open standard process methodology for data mining and 

covers the phases of data understanding and data 

preparation. 

First, the current signatures are filtered so that only the 

segments of the braking processes remain. The idle 

operation is completely removed. Based on a spectrum 

analysis, one can see that the current signatures are 

predominantly composed of low frequencies. In a second 

step, the filtered current signatures are transformed into the 

time-frequency domain using the short-time Fourier 

transform (STFT). This allows conclusions to be drawn 

about the changes in frequencies over time. The von Hann 

window is selected as the analysis window of the STFT. In 

addition to this input parameter of the function, the 

parameter for the overlap of the analysis windows is set to 

50 percent of the window length. The length of an analysis 

window is 1024 measuring points. Each analysis window 

is labeled with the brake pad thickness of the transformed 

current signature. For the next step, a number of n analysis 

windows are required to view changes in spectral 

properties over time. A total of 50 analysis windows are 

combined to form a sequence. Starting with the fiftieth 

analysis window, the current analysis window is modeled 

as a sequence with the previous 49 analysis windows. Each 

generated sequence is labeled with the corresponding 

current brake pad thickness. 

After the preparation of the current signatures, the data 

is split into training and test data in a ratio of 80 to 20. The 

training data is then used to train recurrent neural networks 

for brake pad thickness identification to determine the 

degree of wear. 

C. Description of the Analysis Model for Condition 

Detection 

This section covers the modeling phase of the CRISP-

DM. To create the recurrent neural network, the Keras 

library in Python is used. Compared to the LSTM-

architecture (Long Short-Term Memory), the GRU-

architecture (Gated Recurrent Unit) achieved better results 

in a direct comparison and is therefore used in this work. 

Fig. 3 shows the topology of the recurrent neural network. 

By adding batch normalization layers, the training process 

is accelerated and overfitting is reduced. 

 

Figure 3. Topology of recurrent neural network for wear classification 

The standard activation function for GRUs is the 

tangent hyberbolic function. However, better results are 

obtained when rectified linear units (ReLU) are used, 

which is why – with the exception of the output layer – 

ReLU is assigned as the activation function to all layers of 

the recurrent neural network. 

The number of neurons in the output layer corresponds 

to the number of brake pad thicknesses to be classified – 

i.e. six. The activation function is the softmax function, 

which is widely used for classification tasks. The output of 

the recurrent neural network is an array with six values. 

Due to the softmax activation function, each value 

corresponds to the probability of a class. 

Adaptive moment estimation (Adam) is used as an 

optimization algorithm for training. The characteristic of 

this optimizer is its adaptive character, i.e. the dynamic 

adjustment of the learning rate in the course of training. 

The error function used is the categorical cross entropy, 

which is a common error function for classification tasks. 

Due to the large amount of training data, the number of 

epochs is set to 4 when training the recurrent neural 

networks. The batch size is set to 32. During the iterative 

process, training processes with a batch size of 16 show 

that the error function does not converge and when 

choosing a larger batch size of 128, the model quality is 

not satisfactory. 

D. Evaluation of the Analysis Model for Condition 

Detection  

The approach in this step is based on the CRISP-DM 

and covers the phases of evaluation and deployment. The 

test data set is used to evaluate the trained model. This still 

unseen data is passed to the recurrent neural network and 

then classified with respect to the brake pad thickness. To 

ensure reproducibility, a total of five recurrent neural 

networks with constant topology are trained with identical 

training parameter settings. Since the results of the 

individual models differ from each other, the average 
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model.add(GRU(1024, activation='relu', return_sequences=True, 
input_shape= (num_steps, num_features)))

model.add(BatchNormalization())

model.add(GRU(512, activation='relu', return_sequences=True))

model.add(BatchNormalization())

model.add(GRU(512, activation='relu', return_sequences=True))

model.add(BatchNormalization())

model.add(GRU(256, activation='relu', return_sequences=True))

model.add(BatchNormalization())

model.add(GRU(256, activation='relu', return_sequences=True))

model.add(BatchNormalization())

model.add(GRU(128, activation='relu', return_sequences=True))

model.add(Flatten())

model.add(Dense(6, activation='softmax'))
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correct classification rate of all five models is determined 

in Table II. 

TABLE II. AVERAGE CORRECT CLASSIFICATION RATE (CCR) OF THE 

FIVE MODELS 

Modell 1 2 3 4 5 Average 

CCR 
in % 

91.44 92.27 85.34 91.86 90.36 90.25 

The confusion matrix of the average values of the 

trained recurrent neural networks is shown in Fig. 4. One 

can see that the probabilities of the individual classes vary. 

When the confusion matrices are viewed horizontally, no 

specific pattern can be identified that can be used to 

explain incorrect assignments to other classes. The highest 

correct classification rate of 97.89 percent is achieved with 

a brake pad thickness of 2.2 millimeters. The average 

probability of correct assignment across all classes is 90.25 

percent. 

It can also be seen that the average probability of correct 

classification increases with decreasing brake pad 

thickness. For example, the probability of predicting a 

brake pad thickness of 3.7 mm (t0) – which corresponds to 

the original thickness of a new brake pad – is 85.35 percent. 

As the brake pad is worn down, i.e. with increasing wear, 

the average probability that the predicted value is correct 

also increases. Consequently, the prediction can be 

considered highly accurate in the critical range of the 

degree of wear, which is advantageous for the reliability 

of the subsequent algorithm towards the end of the lifetime. 

However, this pattern can only be observed when looking 

at the average values of the five models and does not 

necessarily occur with each of the trained recurrent neural 

networks. 

 

Figure 4. Confusion matrix of the average values of the five recurrent 
neural networks 

E. Description of the Algorithm for Wear Prediction 
The described model makes it possible to diagnose the 

present degree of wear of the brake pads for the six defined 

levels of wear and thus represents a condition monitoring 

system based on current signatures. In order to make 

predictions, the time-related component for determining 

the remaining useful life (RUL) is still missing. For this 

purpose, an algorithm is presented below in which the 

model is applied. 

For an accurate prognosis, the wear behavior, and the 

RUL dependent on it, between the discrete wear stages 

must be described and determined. Due to the 

homogeneity of the brake pad material and the constant 

parameters of the test setup, such as engine speed and 

constant braking force, the wear behavior of the brake pads 

is assumed to be linear for the purposes of this work. Based 

on this premise, a wear coefficient is determined, which 

results from the wear of the brake pad thickness in 

millimeters related to a time interval. During the 

measurements in braking mode with a length of 122 s, an 

average of 0.027 mm of the brake pad thickness is 

removed. The wear coefficient is therefore calculated as 

follows: 

wear coefficient = 
0.027 mm

122 s
 = 0.22 

μm

s
 (3) 

The wear coefficient

 

can be used to determine the 

progressive removal of wear reserve

 

and reduction of RUL

 

between the discrete stages. In addition to the recurrent 

neural network for wear classification, another recurrent 

neural network that determines the operating status of the 

test setup is used in the algorithm. The average correct 

classification rate of the recurrent neural networks for the 

classification of the operating status is 98.83 percent. The 

complete algorithm is shown and explained in Fig. 5.

 

The degree of wear

 

and RUL

 

are updated after each 

sequence. If the same discrete brake pad thickness has 

already been detected in condition monitoring, the degree 

of wear

 

and RUL

 

are recalculated using the wear 

coefficient. By continuously updating the RUL

 

and wear

 

reserve,

 

wear can be predicted in order to plan and initiate 

maintenance measures at an early stage.

 

F.

 

Test and Evaluation with a Developed Embedded 

System

 

In [24], Küfner et al. present a practical solution for 

vertical data continuity by combining signal acquisition 

with a microcontroller and simultaneous data analysis and 

evaluation with a single board computer in a decentralized 

embedded system without the use of time-consuming 

external cloud solutions. The models and algorithms 

presented here are implemented and

 

tested in the 

embedded system design, introduced in [24] to perform 

wear detection and prediction at the machine’s edge in 

almost real-time.

 

For the evaluation new brake pads (t0

 

= 3.7 mm), as well 

as brake pads with a thickness of t6

 

= 2.7 mm and t7

 

= 2.3 

mm, are used. The model is also used to classify the 

"idling" and "off" states in addition to the different brake 

pads. The values speed and pressure of the test setup are as 

described in III.A. The current signatures are measured 

again with the current transformer HX 03-P from LEM.
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Figure 5. Flow diagram of the algorithm for wear prediction 

In order to avoid potential correlations between the 

relevant information on the degree of wear in the current 

signatures and the influence of other factors, several series 

of measurements are also carried out here with newly 

installed brake pads. For each installation, 15 braking 

operations with a duration of approximately 2-3 seconds 

are performed. A total of four measurement series are 

therefore carried out for the brake pads of each pad 

thickness. In total, current signatures from 60 braking 

processes are measured for each pad thickness. 

To realize the data pre-processing steps in almost real-

time on the embedded system, these have to be adapted to 

the hardware architecture. Only the current signal of one 

phase is measured and analyzed by the embedded system. 

The phase conductor L1 was used in this setup. On the 

embedded system, the maximum sampling rate is limited 

to 12 kHz when recording one channel. An STFT is first 

performed with the microcontroller on the signal. The 

frequency resolution of the transformation and the time 

interval of a window are set respectively to 20 Hz and to 

50 ms for easier assignment. The sampling rate is therefore 

reduced to 10.24 kHz and the number of points of a time 

window is halved from 1024 to 512. The resolution is 

reduced to the maximum possible value of 14 bit. The 

rectangular window is used as an analysis window instead 

of the von Hann window and there is no overlap. When 

modeling the STFT analysis windows of the current 

signatures to sequences, n-to-1 modeling is still used, but 

only 10 instead of 50 windows are combined to one 

sequence. Thus, each sequence is half a second long. To 

label the data, the RMS is used for a threshold analysis via 

the analysis window. This makes it possible to clearly 

distinguish the three states off, idling and braking. Since a 

new file is created for each measurement series and pad 

thickness, the respective pad thickness can be determined 

from the file name. As a basis for the recurrent neural 

network, the model described in III.C is used and adapted 

according to the changed parameters. These are the 

number of analysis windows per sequence, the features per 

analysis window and the number of output classes (five in 

total). The first three measurement series are used to train 

the model, the fourth measurement series is used to test and 

evaluate the model. Due to the reduced number of input 

values, more epochs are required to train the model 

properly. To exclude the occurrence of overfitting, 10 

separate models are trained with identical parameters and 

training data. After each epoch, the loss of training and test 

data is determined and finally the respective median is 

formed for each epoch to mitigate outlier effects. As seen 

in Fig. 6, the minimum of the test loss is approximately at 

epoch 5, but even better results are achieved with 

individual models at epochs 9-11. The train loss converges 

to zero after about 15 epochs. The optimum number of 

epochs is therefore in the range of 5-10 and varies 

depending on the individual model. For the next steps, the 

number of epochs in training is set to 10. 

 

Figure 6. Loss functions of the training and test processes at the 
embedded system 
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The model is trained on the single board computer of the 

embedded system, a Raspberry Pi 4 Model B (4 GB RAM). 
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data in a ratio of 90 to 10. The training data is then used to 

train recurrent neural networks. The correct classification 

rate of the trained model is 94.61 percent for the training 

data and 93.87 percent for the test data. The classes “off” 

and “idling” have a correct classification rate of over 99 

percent. The average probability of correct assignment 
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across all classes is 94.53 percent. Fig. 7 shows the 

confusion matrix of the predicted values of the first three 

measurement series. 

 

Figure 7. Confusion matrix of the values at the embedded system 
(measurement series 1-3) 

The fourth measurement series is used to further 

evaluate the model with unseen data to ensure that the 

classification is actually based on the degree of wear and 

not on possible characteristics in the current signatures. 

In the fourth measurement series, the motor was not 

turned to the “off” state. Therefore, no samples with this 

state exist. The average probability of correct assignment 

across all classes is then 98.60 percent. There are no 

specific patterns to explain the incorrect classifications. 

Consequently, a high accuracy of the classification can be 

stated across all classes. Fig. 8 shows the confusion matrix 

of the predicted values of the fourth measurement series 

for test and evaluation of the model. 

 

Figure 8. Confusion matrix of the values at the embedded system 
(measurement series 4) 

For use on the edge device, the model is converted to a 

“TensorFlow Lite” model which speeds up the inference 

significantly. In this way, the model can be used with the 

embedded system to predict the current condition every 

20 ms and the system can perform wear detection as well 

as condition monitoring in almost real-time. 

IV. CONCLUSION AND OUTLOOK 

The subject of this work is the realization of a decentral 

wear prognosis in electrical current signatures of 

production plant at the machines edge. Therefore, a test 

setup for the simulation of wear on brake pads is developed 

and tests with different wear conditions are carried out, 

whereby the current signatures of the electric motor of the 

test setup are measured. The collected data is processed to 

train recurrent neural networks that can classify six 

degrees of wear of the brake pads. The preprocessing step 

(data preparation) includes filtering, short-time Fourier 

transformation to the time-frequency domain, and 

sequence modeling. Subsequently, five identical recurrent 

neural networks were trained, resulting in reproducibility 

of the results. The average correct classification rate of the 

wear classification is 90.25 percent. 

An analysis of the results of the models shows that the 

average probability for correct classification rises with 

increasing wear. This demonstrates that the models 

developed in this work are suitable for identifying wear in 

current signatures of production plants. In particular, the 

models also provide accurate information in the critical 

wear range, which is particularly important for ensuring 

high plant availability due to the short remaining useful life. 

The developed models are thus an essential basis for 

predictive maintenance and reliable wear forecasts, which 

enable early planning and initiation of maintenance 

measures. 

To realize a predictive maintenance approach, an 

algorithm was developed to enable reliable wear 

predictions in addition to wear identification by the trained 

recurrent neural networks. In addition to the recurrent 

neural network for wear classification, another recurrent 

neural network that determines the operating status of the 

test setup is used in the algorithm. It is shown that the 

developed predictive maintenance algorithm provides a 

reliable wear prediction based on the key parameters 

“degree of wear” and “remaining useful life”, generated in 

the algorithm. These two key parameters are elementary in 

order to be able to plan maintenance measures in advance. 

To implement the approach on a decentralized 

embedded system, the algorithm is adapted to the hardware 

architecture and tests with different wear setups are carried 

out. The collected data is pre-processed and reduced. A 

model is trained for the execution on an edge device with 

an average correct classification rate of 98.60 percent. This 

solution can reliably detect the states “off” and “idling” 

and three degrees of wear of the brake pads. The system 

therefore performs wear detection on an edge device in 

almost real-time. 

A future goal is to further increase the correct 

classification rate so that the statements of the models are 

even more reliable. Potential further optimization by 

increasing the number of GRUs or hidden layers is only 

possible to a limited extent due to the available resources, 

in particular due to the hardware at the machine’s edge. 

Another restriction that arises due to unavailable resources 

is the number of analysis windows that are modeled into 

one sequence. Apart from using better resources, 

alternative ways to optimize the models need to be 
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explored. These include, for example, the amount of 

training data available. In addition, the models must be 

capable of recognizing additional conditions, such as 

defective brake pads, faults on the brake disc or an oily or 

rusted brake systems. Moreover, the developed algorithm, 

as well as the models, must be transferred to and tested in 

other manufacturing applications. 
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