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Abstract—This work is concerned with the vibration 

attenuation of a smart beam interacting with fluid using 

proportional-derivative PD control and adaptive 

approximation compensator AAC. The role of the AAC is 

to improve the PD performance by compensating for 

unmodelled dynamics using the concept of function 

approximation technique FAT. The key idea is to represent 

the unknown parameters using the weighting coefficient 

and basis function matrices/vectors. The weighting 

coefficient vector is updated using Lyapunov theory. This 

controller is applied to a flexible beam provided with 

surface bonded piezo-patches while the vibrating beam 

system is submerged in a fluid. Two main effects are 

considered: 1) axial stretching of the vibrating beam that 

leads to the appearance of cubic stiffness term in beam 

modelling, and 2) fluid effect. Fluid forces are decomposed 

into two components: hydrodynamic forces due to the beam 

oscillations and external (disturbance) hydrodynamic loads 

independent of beam oscillations. Simulation experiments 

are implemented using MATLAB/SIMULINK to verify the 

correctness of the proposed controller. Two piezo-patches 

are bonded on the beam while an impulse force with multi-

pulse is applied to excite the beam vibration. The results 

show the strength of the proposed control structure.  

 

Index Terms—fluid-structure interaction, smart beam, PD 

control, adaptive approximation control, hydrodynamic 

forces 

 

I. INTRODUCTION 

Flexible structures interacting with fluid play an 

important role in applications of many fields such as 

offshore extraction, underwater robotic vehicles, flexible 

aircraft structures, and resonant cantilevers for probing 

surface properties or measuring liquid density and 

viscosity [1-3]. These structures undergo instability and 

even damage if they are subjected to unwanted loads. 

Therefore, active vibration control is a potential solution 

for motion regulation and stability recover. Piezoelectric 

materials can be integrated with flexible structures for 

vibration suppression. They behave as actuators and/or 

sensors making the flexible structure adaptable to 
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external disturbances [4]. However, the vibrating flexible 

structure still requires a specific control system to 

stabilize the motion. As a result, this work is focused on 

active vibration control of a flexible nonlinear beam 

immersed in a fluid. Several collocated piezo-patches are 

bonded on the surface of the vibrating beam working as 

actuators/sensors in the control system. The dynamics of 

the vibrating beam is required to design a suitable control 

structure. The governing partial differential equation 

PDF of the target beam is derived considering three 

important issues: 1) axial stretching resulted from large 

deflection, 2) fluid loadings and 3) piezoelectric 

transducers. The axial stretching results in a nonlinear 

restoring force with cubic stiffness term that complicates 

the control task. On the other hand, the piezo-actuator 

moments are considered as input controls to regulate the 

beam vibration. What important here is the modelling of 

the fluid loadings. In fact, two concepts are available to 

determine the fluid effect [5]: 

1. If the flexible beam is constrained from oscillations 

while there are some incident waves, then the fluid 

forces can be decomposed into Froude-Krylov and 

diffraction forces/moment. 

2. If there is no incident wave while the flexible beam 

is enforced to vibrate with fluid oscillations, then the 

fluid force is decomposed into inertial, damping and 

restoring forces. The restoring forces are neglected in 

this work. The inertia force is proportional to the 

acceleration of the vibrating beam while the damping 

force is proportional to the velocity of the beam. The 

added fluid mass makes the resonance frequency 

decrease while the increase of damping makes the Q-

factor decrease [1]. For modelling of the coupled beam-

fluid system, the reader is referred to [1-3, 6-13].  

Due to the presence of nonlinear restoring force 

related to axial stretching, the coupled smart beam-fluid 

system is no longer linear and advanced nonlinear 

vibration control is required. Three well-known control 

strategies are used for nonlinear control purposes with 

uncertain modelling: 1) adaptive feedback linearization 

control, 2) adaptive backstepping control, and 3) virtual 

velocity error-based adaptive control VVEC with (or so-

called passivity based control in the community of 
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robotics control) [14-16]. In general, the adaptive scheme 

can be classified into two categories: regressor-based 

adaptive control and adaptive approximation control. The 

regressor algorithm is based on system physics while the 

adaptive approximation control is a model-free control 

algorithm. The latter is a promising tool to deal with 

unknown parameters. It includes a representation of 

uncertainty in terms of weighting coefficient and basis 

function matrices. Then the weighting coefficient 

matrices are updated based on Lyapunov theory. For 

more details, see [16-21]. To get a simple control 

structure, the key idea of this work is to enhance the PD 

controller using adaptive approximation compensator 

AAC with ensured stability. This control structure is 

equivalent to VVEC mentioned above with lumped 

uncertainty being approximated using orthogonal basis 

functions. 

In view of the above, this paper proposes proportional-

derivative PD control with adaptive approximation 

compensator AAC to stabilize the coupled smart beam-

fluid system. The effect of axial stretching is considered 

that complicates the control problem due to the 

appearance of a coupled cubic stiffness term. In addition, 

the fluid loading can be decomposed into two 

components: a hydrodynamic force due to the beam 

vibration ),( txfm  and an external exciting 

hydrodynamic force ),( txfe  independent of the beam 

motion. On the other hand, ),( txfm  can be further 

modelled as inertia and damping forces [1,2]. The PDE 

for the coupled system is derived and is transformed into 

multi-modal ODEs using the Galerkin approach. 

Simulation experiments are performed on a simply 

supported beam with two piezo-patches immersed in a 

fluid. An impulse force with multi pulses is used for 

exciting the coupled beam-fluid system. The results 

show the strength of the proposed control architecture to 

attenuate the produced vibration. The contribution of this 

paper can be summarized as follows: 

1. Design of a PD controller integrated with an 

AAC to compensate for nonlinear terms. 

2. Considering the axial stretching of the beam 

vibration complicates the modelling and control 

problems. 

The rest of the paper is organized as follows. Section 2 

introduces the modelling of a coupled smart beam-fluid 

system in detail. Section 3 presents the control structure 

while simulation results and discussions are described in 

Section 4. Section 5 concludes. 

II. DYNAMICS OF COUPLED SMART BEAM-FLUID 

SYSTEM 

This section describes in some detail the modelling of 

a flexible beam with surface bonded piezo-patches 

interacting with fluid, see Fig. 1. To determine the effect 

of hydrodynamics pressure, we should recognize two 

sub-problems for analyzing the fluid effects [5, 22] 

1. If the flexible structure is constrained from 

oscillations, then the hydrodynamic forces are 

composed of Froude-Krylov and diffraction 

forces/moments. 

2.  If the flexible structure is enforced to vibrate 

with the fluid excitation frequency, then the 

hydrodynamic forces are determined by the 

concept of added mass, damping and restoring 

terms. The current work is concerned with this 

category of problem. 

In view of the above, the following assumptions are 

imposed [4, 22]: 

1. The beam is forced to oscillate with fluid excitation 

frequency in any mode shape. 

2. No incident waves occur and hence the fluid 

loading is composed of inertial and damping forces. 

3. The axial stretching on the beam is considered. 

4. The modal amplitudes are measurable via a 

sufficient number of piezo-sensors. 

 

Figure 1. A flexible beam with piezo-patches interacting with fluid 

The governing PDE for the transverse deflection 

),( txw  of a smart beam-fluid system can be expressed as 

follows [4, 23] 
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where bE , bI , bA , and b  are Young's modulus, 

moment of inertia, cross-sectional area, and density of 

the beam respectively. pM  is the moment per unit 

length exerted by the piezo-actuator to regulate system 

motion, D  is a constant depending on properties of the 

regular beam and smart materials [23]. (.)H  is a 

Heaviside step function of the beam displacement. On 

the other hand, ),( txf  denotes to the hydrodynamic 

forces that composed of two terms: ),( txfm  denoting to 

the hydrodynamic force per unit length due to the beam 

motion and ),( txf
e

 referring to an external 

hydrodynamic force independent of beam motion, e.g. 

turbulent forces. The second term on the left-hand side of 

Eq. (1) comes from the axial loading affected on the 

vibrating beam. 
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Remark 1. The hydrodynamics forces ),( txfm  

consists of two terms: inertia and damping forces and 

hence they can be expressed as [1] 

t

w
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where am  and ac  are the added mass and damping 

coefficient respectively. On the other hand, ),( txf
e

 is a 

disturbance hydrodynamic force found experimentally. 

In this work, it will be imposed as an impulse force with 

multi-pulse for excitation purposes. 

The next step is to transform the PDF of Eq.(1) into 

multi-modal ODEs using the Galerkin approach, hence 

the deflection can be approximated as 
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where )(xi  is the mode shape and )(tqi  is the modal 

amplitude. 

Substituting Eq. (4) into Eq. (1), multiplying by an 

arbitrary )(xj  and integrating along the beam length 

exploiting the orthogonal conditions for a simply 

supported beam, we can get  
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Equation (5) includes using one piezo-actuator. For 

a
N -piezo-atuators, the equation can be reformulated as 
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It is suitable to integrate the structural damping at this 

stage, however, a viscous damping coefficient is added. 

Then, Eq. (6) becomes 
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In matrix representation, Equation (7) becomes 
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III. CONTROL STRUCTURE 

The vibrating beam is equipped with distributed piezo-

patches. The task of piezo-patches is to actuate the input 

control and/or to measure the state variables of the 

dynamic system. In fact, the measurement of modal 

amplitudes occurs via installing piezo-sensors such that a 

mathematical relation is established between the modal 

amplitudes and sensor voltage readings. The proposed 

control system described here consists of two terms: PD 

control term and an AAC term for compensating 

unmodelled dynamics. Therefore, the intuitive control 

law is selected as 

)sgn(ˆ eγeKeKςu   dp  (9a) 

dqqe  , 

emddd ggηqKqBqMς ˆˆˆˆˆˆˆ   , 

θWς
Tˆˆ   

(9b) 

where ).̂(  refers to estimation, NN
p R K  and 

NN
d R K  are the proportional and derivative gains 
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respectively, NNR γ  is a positive definite diagonal 

matrix, N
d Rq  is the desired reference vector that 

should tracked by the controller (it is a null vector in the 

case of vibration suppression), NNR  
Ŵ  and 

NRθ  are the weighting coefficient and the basis 

function matrix/vector, and   is the number of basis 

function used for the function approximation technique 

FAT.  

Equating Eq. (9a) to Eq. (8) to obtain the following 

closed loop dynamics 
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By adding )( λqCqM  dd
  to Eq. (10) leads to  
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where NRε  is the approximation modelling error. 

Now, it is time to prove the stability of control law of 

Eqs. (9a) and (11) while deriving the suitable update law 

for the weighting coefficient vector ς̂ . Let us consider 

the non-negative function along Eq. (11) to get 
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Taking time derivative of the above equation to obtain 
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Equation (13) can be manipulated to get 
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From Eq. (14), the suitable update law for the 

weighting matrix to get a stabilized system is 

T
eθGW  1ˆ   (15) 

Equation (14) is reduced to 
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Selecting  

iii e    , where i  is a positive constant can 

stabilize the closed-loop dynamics leading to 



i

iid
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Equation (17) is stable according to Lyapunov theory. 

IV. SIMULATION RESULTS AND DISCUSSIONS 

This section attempts to verify the validity of the 

proposed control architecture by making a simulation 

experiments on a smart simply supported beam 

interacting with fluid, see Fig. 1. The piezo-patches are 

placed on bl3.0  from both ends of the beam. The 

external excitation hydrodynamic force is assumed a 

multi-pulse impulse force having 1 N pulse peak, 2% 

pulse width and 2 s pulse period. Besides, it is applied at 

the middle of the beam. See Table I for more details on 

properties of beam, piezo-materials and fluid used in 

simulation experiments. 

TABLE I. PROPERTIES OF BEAM, PIEZO-MATERIALS, AND FLUID 

Beam 

msNb

msNbmA

MPaEmlmkg

b

bbb

/.03.0

,/.007,001.004.0

,10190,4.0,/8000

2

1

33
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Piezo- 

material .1070

,0004.0035.0,08.0

3 MPaE

mAml

p

pp



  

Fluid 

(FC-72) ./1068.1

,104.0,2280/,1.2
33

26

mkg

smcc

f

vm



 



  

 

The proposed control law associated with the update 

law described in Eqs. (9a) and (15) are applied on the 

vibrating beam using MATLAB/SIMULINK package. 

The feedback and adaptation gain matrices used for 

simulation are: 2,11,20,100,300 2222  NIWIKIK dp  . 

In the tuning process, the gains are used from zero to a 

value at which the noise or instability occurs then the 

value is halved. Chebyshev polynomials are used as 

approximator for adaptive technique. The results show 

that the controller is safely and precisely attenuate the 

resulted vibrations. Figs. 2 and 3 show the modal 

response and input control. In fact, it is assumed that the 

actuators are strong enough to produce any response; 

however, an algorithm is required to limit the output of 

the piezo-actuators. On the other hand, here we used 2 

piezo-patches with two-mode shapes and hence 

determining the input control for piezo-voltages is easy, 

however, if the number of piezo-actuators is not equal to 

the number of the mode shapes, then pseudo-inverse 

matrix should be used alternatively to compute the input 

voltages.   
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Figure 2. Modal amplitude response. As we see, there are sudden pulses at times: 2s, 4s, 6s, 8s, and 10s. Despite of the hard abrupt impulses, the 
controller smoothly attenuates the vibration motion of the beam. 

 

Figure 3. Input control voltages. As we see, there are sudden pulses at times: 2s, 4s, 6s, 8s, and 10s. 

V. CONCLUSIONS  

This work proposes a PD control with AAC for 

vibration suppression of smart beam interacting with 

fluid. The axial stretching is considered in dynamic 

modelling of the beam that complicates the control 

problem due to the appearance of nonlinear cubic 

stiffness term. In addition, the hydrodynamic loads are 

assumed equivalently to consist of two terms: inertial 

and damping forces using (i.e., added mass and damping). 

Standard multi-modal ODEs are derived and regulated 

using the proposed controller. In effect, our algorithm is 

sufficient to deal with any complex systems, however, 

future work is required to deal with the following points: 

1. The effect of fluid loads using incident waves. 

2. Generalizing the algorithm to deal with aeroelastic 

plates and shells. 

3. Compensating for unmodelled mode shapes. 
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