
A Comparison of Two Reinforcement Learning

Algorithms for Robotic Pick and Place with Non-

Visual Sensing

Muhammad Babar Imtiaz, Yuansong Qiao, and Brian Lee
Software Research Institute, Athlone Institute of Technology, Athlone, Ireland

Email: b.imtiaz@research.ait.ie, {yuangsongqiao, blee}@ait.ie

Abstract—In this study, we perform a comparative analysis

of two approaches we developed for learning to carryout

pick and place operations on various objects moving on a

conveyor belt in a non-visual environment, using proximity

sensors. The problem under consideration is formulated as

a Markov Decision Process. and solved by using

Reinforcement Learning algorithms. Learning robotic

manipulations using simple reward signals is still considered

to be an unresolved problem. Our reinforcement learning

algorithms are based on model-free off-policy training using

Q-Learning and on-policy training using SARSA. Training

and testing of both algorithms along with detailed a

comparison analysis are performed in a simulation-based

testbed. Our results prove our approaches to be successful

in pick and place operations in non-visual industrial setups.

Index Terms—robotic manipulation, non-visual, Markov

decision problem, reinforcement learning, Q-learning,

SARSA

I. INTRODUCTION

The term ‘Industry 4.0’ appeared for the first time in

2011 and saw the introduction of many cutting-edge
technologies such as Cyber-Physical Systems (CPS),

Internet of Things (IoT), and Digital Twins (DT). World-

leading scholar Warren G. Bennis was quoted in 2016

saying “The factory of the future will have two

employees: a human and a dog. The task of the human

will be to feed the dog. The dog will have the task to

dissuade the human to touch the automated systems.”

This quote clearly sums all the expectations and beliefs

regarding the implementation of Industry 4.0.

Materializing the concept of Industry 4.0 has created a

number of global efforts such as Europe’s Industry 4.0

[1], America’s Advanced Manufacturing [2], China’s
Made in China 2025 [3], Japan’s Super smart society [4],

etc. Smart factories realize manufacturing processes with

the aid of artificial intelligence (AI), the latest novel

sensors, and use of robotics.

Improving robotic manipulations with the help of

advanced learning techniques has been a focus of the

research community for some time now. Reinforcement

learning (RL) addresses this task by performing

Manuscript received November 27, 2020; revised March 21, 2021.

sequential decision-making through a policy learned

during the process of maximizing an expected reward.

Various complex tasks such as learning and playing

board games [5] and video games [6] have been

independently mastered by RL agents due to the recent

use of deep neural networks as function approximators

for reinforcement learning trained agents.

Reinforcement learning has been widely used to

address various robotic manipulation problems.

Manipulations involving multiple stages like stacking
items and hand manipulations [7],[8] have multi-

dimensional state and action spaces and complex

dynamics and are extremely challenging to solve.

Promising results have, however, been recorded in

various manipulations such as grasping [9],[10], hand

manipulations [7],[8], and stacking [11]. Other

manipulations like pick and place [12], pushing objects

[12],[13], dual block-stacking [13],[14] and target finding

[15],[16] have also shown positive results. Pick and place

manipulation has been addressed by various studies,

some of which have used deep neural networks [17],[18]
while others have used neural networks as function

approximators for the RL agents [19]–[23]. But all these

studies discuss vision-based approaches to pick and place

manipulation.

Machine vision systems evolved over the years to

provide us with capabilities such as 3D graphical data

and full-color megapixel resolution. But still, often there

are various requirements such as high cost which can

restrict its use. For instance, the space available for

installing an industrial vision system may be only a few

centimeters. Other factors that can affect the use of vision

system in some particular settings can be vibrations, dust,
or even wash-up from water jets. Therefore, in this paper,

we present a novel approach that allows learning and

performing of pick and place operation in a non-visual

industrial environment.

The approaches presented in this paper address the

problem of pick and place in a smart production line,

where a number of variable-shaped objects are moving

on a conveyor belt at different positions and orientation,

and where the belt may assume different speeds. The

conveyor belt is equipped with ray-type infrared

proximity sensors which detect the object and signal the
robotic arm to operate. Once the robotic arm receives a

526

International Journal of Mechanical Engineering and Robotics Research Vol. 10, No. 10, October 2021

© 2021 Int. J. Mech. Eng. Rob. Res
doi: 10.18178/ijmerr.10.10.526-535

signal from the proximity sensor, it attempts to grasp and

pick the moving object, using a pliers-like gripper, from

the conveyor belt and place it at a designated location.

Our RL agents were trained to learn to successfully

perform the pick and place operation on various objects

at different positions, orientations, and speeds while

receiving inputs only from proximity sensors. After

extensive training and testing in our simulated testbed

designed using the V-REP simulator, we found our

approach achieved a success rate in excess of 90% to

pick up objects from the conveyor belt and place them at
designated place positions.

The rest of the paper is organized as follows. In section

ll, we look at some of the other approaches taken. In

section III, we discuss the background of the approach

we deployed. In section IV, we develop the methodology

of our approach in detail. In section V, we discuss the

results and findings of the experiments carried out to test

our approach. Finally, section VI concludes the paper

with some suggestions regarding future work.

II. RELATED WORK

We find a number of reinforcement learning-based
approaches to the problem of pick and place problem in a

visual environment but none for the non-visual

environment. Generally, these approaches can be divided

into two main categories, those that use a geometrical

model and the those that don’t.

Most early approaches for this pick and place

manipulation were totally dependent on the information

regarding shape. These shape-based approaches can be

seen from the perspective of grasping in [24]. This

approach has been also used by others for different

applications such as segmentation and manipulations [25],
[26], [27]. These approaches lack performance when they

are applied to objects that are difficult to be segmented or

not completely cuboid and cylindrical in shape.

To deal with new and unknown shapes of objects, a

different approach has been used by some researchers

whereby the shape of the object in question is estimated

from the data stored recently by the sensor feedback. In

[28], an approach is presented where the shape of the

object is modeled using a Gaussian process. To achieve

successful grasping the same idea has been implemented

in [29] using tactile feedback. These approaches fail to

perform when inadequate information is available to
predict the shape of the model with a high degree of

certainty. Accurately estimating shape from available

data is an active area of research [30], [31], [32].

Recently, there has been good progress to solve the

problem of grasping novel objects [33]. A number of

these approaches involve agents that have been trained

using supervised learning to predict whether successful

grasping has been achieved or not without using

geometrical information of the object. For instance, an

approach to place new objects at new places without

having or estimating geometrical information of the
object is presented in [34]. Similar approaches to handle

the grasping problem can be also found in [35].

Reinforcement learning has been studied the

perspective of its applications in robot control [36]. Over

time, approaches based on deep reinforcement learning

have become well known and popular for handling

manipulations in robotics [37], [9], [38].

This study focuses on the RL-based pick and place

solution in a non-visual environment, which has not been

much addressed before.

III. BACKGROUND

A. Reinforcement Learning

Reinforcement learning resolves a task by performing

sequential decision-making through a policy learned

during the process of maximizing the expected reward.

The RL agent observes its’ environment state and takes

an action in order to earn a reward and transition to the

next state. What the agent needs to learn is to take
optimal action at every stage so that the total reward i.e.,

the return, should be maximized. As the agent continues

to interact with the environment, the resulting random or

stochastic process is described by a Markov Decision

Process (MDP). This MDP is defined by a tuple (Ȿ, A, ẟ,

ℝ, 𝜆) [39]. Here the state space is represented by Ȿ, action

space is denoted by A, ẟ is commonly known as the

transition function of the environment, ℝ denotes the

reward function deciding the rewards for the agent’s

selections of actions at any certain state and 𝜆 represents
the discount factor ranging from 0 to 1 to discount the

rewards earned by the agent after the selections of action

at any certain state. At any given timestep, the RL agent

being at state, s ∈ Ȿ, selects an action from the action

space, a ∈ A, according to the policy µ(s|θµ):Ȿ→A where

policy parameters are represented by θµ. The environment

moves to the next state, s′ after the reward is received by

the agent, r = ℝ (s, a) : Ȿ×A→Ȿ, with the help of the

transition function, s′ = ẟ (s, a) : Ȿ×A→Ȿ. The final
objective is to maximize the expected return at each time

step t, 𝔼 st,at~µ ∑t 𝜆
 t-1 ℝ(st,at).

B. Temporal-Difference Learning

Temporal-difference (TD) learning is one of the key
ideas of reinforcement learning. Temporal-difference

learning can be seen as a blend of ideas from dynamic

programming (DP) and Monte Carlo methods. Temporal-

difference learning is termed model-free learning because

in this type of learning, the agent learns through actual

experimentation instead of learning from a model such as

a transition table. This factor enables TD to define and

work with a large number of state-action pairs. The agent

is completely unaware of the outcomes for its actions and

learns accordingly after experiences. In temporal-

difference learning, the agent learns from each and every

action, as the updating is performed at every timestep
rather than on completion of each episode. It can be

generalized as

527

International Journal of Mechanical Engineering and Robotics Research Vol. 10, No. 10, October 2021

© 2021 Int. J. Mech. Eng. Rob. Res

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ← 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒′ + 𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒[𝑇𝑎𝑟𝑔𝑒𝑡 − 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒′] (1)

In the equation above “Target – Estimate′” is also

known as the target error. Through this equation, we get

the “target” because the updating is performed at every

timestep. The higher the target value is, the better the

state agent into which the agent transitions. So, in

nutshell, the agent is left to play in a new world, where it

has zero awareness of any states, rewards, and transition

tables. Interacting with this world makes it learn by

continuously updating its existing knowledge after every

interaction. For temporal-difference control methods, we
can see both off-policy and on-policy approaches which

guide. For this scope of this study, we will review the Q-

Learning, an off-policy method., and SARSA, an on-

policy method. Off-policy Q-learning method was

introduced earlier and subsequently an on-policy variant

of this algorithm was introduced which formed the basis

of the on-policy SARSA algorithm.

C. Q-Learning

Watkins in 1989 made a great advance in the field of

reinforcement learning by developing a temporal

difference off-policy model-free control algorithm called

Q-learning [39]. In this algorithm, learning is achieved

through actions chosen and carried out according to

another policy. It can be described through the Bellman

equation as follows

𝑄𝜋(𝑠, 𝑎) = 𝔼[𝑟𝑡+1 + 𝜆𝑟𝑡+2 + 𝜆2𝑟𝑡+3 + ⋯ |𝑠, 𝑎] (2)

𝑄𝜋(𝑠, 𝑎) = 𝔼𝑠′[𝑟 + 𝜆𝑄𝜋(𝑠′ , 𝑎′)|𝑠, 𝑎] (3)

𝔼 represents the expected and discount is denoted by

the 𝜆. The main goal of Q-learning is to maximize the Q-

value, through policy iteration and value iteration. Policy

iteration means a continuous loop of policy evaluation

and improvement. In policy evaluation, we use the

greedy policy achieved from the last policy improvement

to estimate the value function V, whereas the policy is

updated with actions that will increase the V to the

maximum level for each state in the policy improvement

part of the loop. Updating is done through the Bellman

equation and the loop continues until the convergence
point is reached. With the help of the optimal Bellman

equation value function V is updated in value iteration,

which can be stated as follows

𝑣∗(𝑠) = max𝑎 𝔼 [ℝ𝑡+1 + 𝛾𝑣∗(𝑆𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎](4)

𝑣∗(𝑠) = max𝑎 ∑ 𝑝𝑠′,𝑟 (𝑠′ , 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝑣∗(𝑠′)] (5)

A general off-policy temporal-difference algorithm

flow can be seen in Fig. 1.

D. SARSA

Rummery and Niranjan in 1994 proposed an on-policy

version of Q-learning, "Modified Connectionist Q-

Learning" (MCQ-L) [40]. Later it was named SARSA,

being an acronym for state-action-reward-state-action.

SARSA is an on-policy temporal-difference control

method, Q(s, a, r′ ,s′ , a′) where agent at state s takes an

action a at time t, collects reward r′, with next state-

action pair s′, a′ at time t+1. Update rule followed in

SARSA is as follows

𝑄(𝑆𝑡 , 𝐴𝑡) ← 𝑄(𝑆𝑡 , 𝐴𝑡)+, 𝜆[𝑅𝑡+1 + 𝑄(𝑆𝑡+1, 𝐴𝑡+1) −
 𝑄(𝑆𝑡 , 𝐴𝑡)] (6)

A general off-policy temporal-difference algorithm
flow can be seen in Fig. 2.

IV. METHODOLOGY

In a a pick and play systems, the robotic arm has to

pick various moving objects on the conveyor belt and

place them at a designated location e.g., in a bin. Objects

move at different positions and orientations on conveyor

belt, i.e., left-aligned, center-aligned, or right-aligned.

The conveyor belt may also at different speeds e.g., slow

speed, medium speed, fast speed. When we say objects,

we mean shapes such as cuboids, spheres, or cylinders.

Fig. 3 describes the scene.

Figure 1. An off-policy TD control algorithm

Figure 2. An on-policy TD control algorithm

A. MDP Formulation

Our problem can be formulated as an MDP. For our

pick and place problem the elements of this MDP can be

described as follows:

 s ∈ Ȿ : (C, N, G, speed, position, path) where C is

any of the XYZ coordinates depending upon

the nature of the action; N represents the nature of
the action i.e., pre-pick, pick, place; G is the set of

potential grasping poses detected if any; speed

represents the speed of the moving object; position is

the position alignment of the moving object with

reference to the conveyor belt,; the path being the

calculated points of the path, from initial position to

pre-pick position or from pre-pick position to pick

position, to reach these particular C coordinates last

time if any.

528

International Journal of Mechanical Engineering and Robotics Research Vol. 10, No. 10, October 2021

© 2021 Int. J. Mech. Eng. Rob. Res

 a ∈ A: (C, N, G, path) where C is any of the chosen

XYZ coordinates depending upon the nature of the
action chosen; N represents the action i.e., pre-pick,

pick, place; G is the set of potential grasping poses

detected, the path, from initial position to pre-pick

position or from pre-pick position to pick position,

being the calculated points of the path to reach these

particular C coordinates.

 r ∈ ℝ: r is the reward and is 1 if the pick and place
task is accomplished, 0.5 if only the grasping part is

done successfully and 0 otherwise. Some bonus

rewards and negative reinforcement learning

schemes have also been tried.

 ẟ: ẟ is the transition function and is an unknown

stochastic function of the RL agent and the

environment - as this problem is being dealt with as
model-free, a transition function will emerge from

trial-and-error sampling [24].

 𝜆 : 𝜆 is the discount factor and is between 0 and 1.
Discounting future rewards enables the RL agent to

learn faster.

Figure 3. Conveyor belt scene

Figure 4. Pre-Pick and Pick XYZ Coordinates

In order to improve learning opportunity, we divided

the task of picking an object into two parts, i) firstly

moving the arm to a coordinate near the object and ii)

then moving via a linear path from the first position to

pick the object. We have divided the overall approach

into four phases. The first phase is called the ‘Initial

Phase’, in which the robotic arm is at the rest position,

waiting for the proximity sensors installed at the

conveyor belt to detect the coming object and signal the

presence, position, and speed of the object. Once the

signal is received, now the robotic arm enters the phase

called ‘Pre-Pick Phase’, by selecting one of the potential

pre-pick XYZ coordinates and calculating the path using

motion planning to make the end-effector reach the

selected pre-pick coordinates. After reaching the chosen
pre-pick coordinates, now the third phase called ‘Grasp &

Pick Phase’ begins. In this phase, one of the potential

pick XYZ coordinates is chosen, the linear path

calculation is done, and grasping is performed after

choosing the potential grasp pose. Fig. 4 below helps

illustrates the movement from ‘pre-pick’ to ‘pick’

coordinates more easily. Each ball-like object represents

a potential XYZ coordinate. XYZ Coordinates on the

left-hand side (three adjacent rows) are potential pre-pick

coordinates and the coordinates on the right-hand side

(single row) are pick coordinates. This figure is used to
describe the concept- the number and positions of

coordinates in the actual implementation are different. So

according to Fig. 4, our agent selected the red pre-pick

XYZ coordinate and the green pick XYZ coordinate.

Subsequently the robotic arm gripper will calculate the

path to reach the red coordinate and then once it reaches

this point successfully it will calculate the path to reach

the green coordinate and advance for the grasping.

Once the grasping is done successfully, the RL agent

enters the last phase of the iteration, called “Place Phase”,

wherein it calculates the path using motion planning to
make the end-effector reach the placing position XYZ

coordinates and release the gripper to place the object.

This whole loop of the four phases continues as shown in

Fig. 5. Rewards (0 and 1) are calculated on the basis of

the end result i.e., successful pick and place or not. The

agent has been trained and tested with negative

reinforcement learning also. A reward bonus scheme was

also tested. This scheme gave an additional reward given

for choosing the best hand-marked coordinates for

picking the object from the conveyor belt. A comparison

of these reward schemes is shown in the results section.

Figure 5. MDP overview

The basic idea behind the formulation of the MDP for

this episodic task of pick and place is to compute an

529

International Journal of Mechanical Engineering and Robotics Research Vol. 10, No. 10, October 2021

© 2021 Int. J. Mech. Eng. Rob. Res

optimal policy by trial-and-error in order to maximize the

later discounted reward.

 𝐸𝑡 = 𝑟𝑡 + 𝜆𝑟𝑡+1 + 𝜆2𝑟𝑡+2 … 𝜆𝑇−1𝑟𝑇 (7)

This methodology and reward schemes are

implemented using both off-policy Q-learning and on-

policy SARSA algorithms. How they differ technically is

discussed in the next sub-section.

B. Q-Learning vs SARSA

As this study compares off-policy and on-policy

temporal-difference control-based approaches, it is

important to understand the key differences between

them. In off-policy algorithms, agents tend to converge to

an optimal policy by updating a policy different from the

behavior policy. In this way, without actually following

any greedy policy, the off-policy algorithm estimates an

expected reward and allocates a new value to the
expected new state [39]. On other hand, in on-policy

algorithms, the agent sticks to the same optimal policy

and follows it throughout. The policy that is being used

for updating is the same policy that is being followed to

choose actions in contrast to off-policy algorithms [39].

When we examine the pseudocode of the Q-learning

and SARSA algorithms, we notice similarities but also

certain differences [41]. The main difference between Q-

Learning and SARSA is in the way they update their Q-

values in the Q-table. In Q-learning, the updating of the

Q-table is done by selecting the best available action in

the next state agent has transitioned to. In SARSA, on the
other hand, a new reward value is generated by selecting

an action by following the same policy. In SARSA the

future action selection will not always be perfect, and in

case of the presence of some unwanted states, the agent

could end up in any such undesired state. Therefore,

SARSA follows a safer pattern to minimize the chances

of any such transitions that can land the agent in an

undesired state. Q-learning, however, doesn’t take this

probability of the agent ending up in an undesired state

into account and assumes to do action selection solely

based on the Q-values of the state in the Q-table. This
difference of behavior between Q-learning and SARSA

can be clearly seen in [39] when they are applied to the

famous cliff-walking problem.

C. Motion Planning

Many motion planning and control solutions are

available for robotics. We considered different options to
perform our motion planning task such as OpenRave and

Trajpot [42], [43]. Open Motion Planning Library

(OMPL) [44] proved to be the best approach as it

provided us with a high degree of customization. OMPL

contains a number of geometric and control-based

planners. Some of the many sampling-based planners

available are Single-query Bi-direction Lazzy (SBL),

Expansive Space Trees (EST), Rapidly-exploring

Random Trees (RRT), Probabilistic Roadmap Method

(PRM) along with their many variants. The planner we

used for motion planning and path calculations is a
single-query planner, a bidirectional variant of Rapidly-

exploring Random Trees (RRT), known as the RRT-

Connect [45]. The key idea of RRT-Connect is to

develop two RRT, one at the start point and the other at

the end, then connecting them. For this reason, RRT-

Connect planner tends to outperform the RRT planner.

D. V-REP

The Virtual Robot Experimentation Platform (V-REP)

is a 3D robotic simulator with an integrated development

and coding support [46]. It also uses physics engines

Bullet and ODE for real-time emulation of the objects

involved in the simulation. The API and threaded/non-

threaded Lua scripting functionalities make it a good

choice for combining multiple platforms such as python,

java, C++ etc. for experimentation. Using this API, we

were able to make our python-based RL agent

communicate with the Lua-scripted simulated
environment.

V-REP provides various calculation modules including

the forward and inverse kinematics module. Forward

kinematics means using kinematic equations, taking

joints parameters as input, to calculate the position of

end-effector, whereas inverse kinematics is the reverse

process, calculating joint parameters for a given position

of end-effector [47]. The collision detection module is

another important module in V-REP to highlight

collisions if any. We used the JACO robotic arm [48] for

our experiments. This is a six (6) degrees of freedom

robotic arm, and we used an RG2 gripper for grasping
purposes. Fig. 6 shows various grasp poses for various

objects from our approach.

Figure 6. Various grasping poses

V. EXPERIMENTAL RESULTS & DISCUSSION

The Q-learning and SARSA RL agents described in

the previous section were extensively trained and

evaluated in our experimentation phase.

530

International Journal of Mechanical Engineering and Robotics Research Vol. 10, No. 10, October 2021

© 2021 Int. J. Mech. Eng. Rob. Res

A. Training & Testing on Individual Shapes

Firstly, we trained and evaluated the performance of

the Q-learning and SARSA agents individually for each

shape. Later we also evaluated the performance of off-

policy and on-policy agent on random objects at random
position alignments moving at a random speed in order to

get a better view of the performance.

While dealing with each object’s shape individually,

we also trained and evaluated both off-policy and on-

policy agents for each of the speeds (slow, medium, fast)

and position alignment (left, center, right) separately. The

success rates of the Q-learning agent picking an object

from the conveyor belt and placing it at a designated

place position, for each object type, at each position

alignment, while moving at three different speeds (slow,

medium, fast) are shown in Tables I, II, and III
respectively.

We can clearly see from Table I, II, and III that the Q-

learning RL agent has learned throughout the training

phase elements such as suitable XYZ coordinates for

picking and placing, different position alignments, speeds,

and shapes of the objects. We can draw a number of

inferences from these results such as that the agent seems

to struggle with pick and place of spherical objects as

compared to others. This holds true for all speeds.

TABLE I. Q-LEARNING AGENT’S INDIVIDUAL SUCCESS RATE (%)

AT SLOW SPEED

Objects
Training Testing

Left Center Right Left Center Right

Cuboid 89% 95% 91% 95% 99% 96%

Cylinder 92% 91% 88% 94% 93% 93%

Sphere 83% 88% 85% 92% 95% 91%

TABLE II. Q-LEARNING AGENT’S INDIVIDUAL SUCCESS RATE (%)

AT MEDIUM SPEED

Objects
Training Testing

Left Center Right Left Center Right

Cuboid 91% 93% 93% 96% 98% 96%

Cylinder 89% 94% 90% 96% 99% 97%

Sphere 84% 90% 87% 93% 94% 94%

TABLE III. Q-LEARNING AGENT’S INDIVIDUAL SUCCESS RATE (%)

AT FAST SPEED

Objects
Training Testing

Left Center Right Left Center Right

Cuboid 91% 95% 96% 97% 99% 95%

Cylinder 93% 91% 90% 95% 95% 96%

Sphere 78% 83% 85% 90% 91% 93%

In the same way, the Q-learning agent has shown

better performance with all objects that were center-

aligned at medium speed i.e., the most suitable

coordinates and grasp poses were found and learned by

the agent for the center-aligned objects moving at

medium speed. Testing results clearly depict the level of

learning achieved during the training phases.

The results of the SARSA agent picking an object

from the conveyor belt and placing it at a designated

place position, for each object type, at each position

alignment, while moving at three different speeds (slow,

medium, fast) are shown in Tables IV, V, and VI

respectively.

Results shown in Table IV, V and VI clearly indicate

that, as with the Q-learning agent, our on-policy SARSA

agent has also managed to learn suitable XYZ

coordinates for picking and placing, different position

alignments, speeds, and shapes of the objects during the

training phase. The overall results shows that our SARSA

agent has not performed as well as our Q-learning agent.

We can also see the deterioration in the performance of

the SARSA agent as the speed of objects increased.

Similar to the Q-learning agent, the SARSA agent also

has difficulty to deal with spherical objects during

training and testing phases. The results also highlight that

the SARSA agent has performed well in the case of left

and center-aligned objects at all speeds as compared to

the objects which were right-aligned.

TABLE IV. SARSA AGENT’S INDIVIDUAL SUCCESS RATE (%) AT

SLOW SPEED

Objects

Training Testing

Left Center Right Left Center Right

Cuboid 83% 81% 80% 82% 82% 80%

Cylinder 82% 80% 78% 80% 81% 78%

Sphere 80% 79% 79% 78% 79% 77%

TABLE V. SARSA AGENT’S INDIVIDUAL SUCCESS RATE (%) AT

MEDIUM SPEED

Objects
Training Testing

Left Center Right Left Center Right

Cuboid 81% 78% 75% 79% 77% 73%

Cylinder 80% 78% 76% 78% 80% 77%

Sphere 77% 77% 73% 78% 77% 72%

TABLE VI. SARSA AGENT’S INDIVIDUAL SUCCESS RATE (%) AT

FAST SPEED

Objects

Training Testing

Left Center Right Left Center Right

Cuboid 79% 78% 72% 78% 78% 71%

Cylinder 77% 78% 73% 78% 77% 72%

Sphere 75% 72% 71% 76% 71% 69%

531

International Journal of Mechanical Engineering and Robotics Research Vol. 10, No. 10, October 2021

© 2021 Int. J. Mech. Eng. Rob. Res

B. Training & Testing on Random Objects

After training and testing specific objects at individual

position alignments and speeds, we proceeded to train

and evaluate the performance of the both Q-learning and

SARSA RL agents on episodes of random objects at

random position alignments moving at a random speed.

In order to evaluate the performance of the RL agents in

this manner, we designed 5 test cases, each having 50

iterations/objects. In test case 1, each alignment position

was assigned one-third of the random objects moving at a

random speed. In test case 2, each speed option was

assigned to one-third of the random objects at random

position alignments. Test cases 3, 4, and 5 had at least 40%

cuboid, sphere, and cylinder objects respectively moving

at a random speed at random alignment positions. The

testing process can be seen in Fig. 7. The success rate for

these test cases for both off-policy and on-policy agents

is shown in Table VII. The average success rate for Q-

learning results shown in Table VII is around 93%. Our

Q-learning RL agent has performed well in all test cases

but comparatively lowly in test case 4. The reason is that

test case 4 includes a greater proportion oof spherical

objects more than 40%. As the RL agent performance

was seen to be poorer in individual testing in the case of

spherical objects, it also affected our random testing in

test case 4. On the other hand, the average success rate

for SARSA agent according to Table VII is around 80%.

As might be expected the SARSA agent also performed

least well in test case 4. In overall performance, it can be

clearly witnessed that our Q-learning agent outperformed

the SARSA agent. The fact that the SARSA agent failed

to perform at the higher belt speed and also on right-

aligned objects are the major factors in its poorer

showing.

Figure 7. Training process

TABLE VII. RANDOM TEST-CASES SUCCESS RATE (%)

Test Case
Q-Learning Agent’s

Success Rate

SARSA Agent’s

Success Rate

Test Case 1 93%
82%

Test Case 2 95%
81%

Test Case 3 99%
80%

Test Case 4 83%
77%

Test Case 5 97%
81%

A comparison of Q-learning and SARSA agents’

performance in random testing of up to 3000 timesteps is
given in Fig. 8, where the success rate (%) has been

plotted against the number of steps. The figure clearly

indicates that the Q-learning agent outperforms the

SARSA agent. In the initial time steps, it seemed SARSA

agent is having an edge over Q-learning agent, maybe

due to practicing more exploitation over exploration, but

gradually the scenario is reversed.

Figure 8. Performance comparison of Q-learning and SARSA agents

C. Reward Scheme Variations

As we discussed earlier in the methodology section,

we trained both off-policy and on-policy agents with a

reward system of 1 if the pick and place task is

accomplished, 0.5 if only the grasping part is done

successfully but failed to place it at the designated

location, otherwise 0.

To experiment with the reward scheme, we also

trained and tested a variant of our both Q-learning and

SARSA agents with negative reinforcement learning
where -1 was awarded on failing the task completely and

a bonus reward of 1 for some best suitable coordinate’s

selection. Fig. 9 shows the performance comparison

between the Q-learning agent with normal reward scheme

and its variant trained with negative reinforcement

learning and in the same manner, Fig. 10 shows the same

for the SARSA agent. The blue line in both diagrams

represents the agent trained with the normal reward

scheme while the orange line represents the variant

trained with negative rewarding as well as bonus

rewarding scheme.

532

International Journal of Mechanical Engineering and Robotics Research Vol. 10, No. 10, October 2021

© 2021 Int. J. Mech. Eng. Rob. Res

In the case of the Q-learning agent, Fig. 9 reveals

better performance of the variant trained with negative

reinforcement learning. However, for the case of the

SARSA agent, Fig. 10 shows the ups and downs of both

normal reward scheme agent and negative reward scheme

agent. This comparison clearly shows that the negative

reward scheme in Q-Learning performs better over the

same number of training steps.

D. Discussion

We trained and tested our both Q-learning agent and

SARSA agent on the same testbed. Agents were trained

and tested for both individual shapes task and random

shapes task. In all cases the Q-learning agent

outperformed the SARSA agent in our testing.

Figure 9. Performance comparison of Q-learning normal reward scheme

agent and the negative reward scheme agent

The SARSA agent has faced difficulties in maintaining

success as the speed of the conveyor belt increases. Its

lack of performance can be also be witnessed in the case

of all right-aligned objects for both individual and
random shapes. Spherical objects remained problematic

for both our agents but the Q-learning agent still managed

to deal with them better than the SARSA agent.

Figure 10. Performance comparison of SARSA normal reward scheme

agent and the negative reward scheme agent

The reason behind the lack of performance in our

experimentation by SARSA in comparison to Q-learning

can be seen as the exploration-exploitation dilemma.

SARSA follows a safer pattern to minimize the chances

of any such transitions that can land the agent in an

undesired state while earning itself a large negative

reward. But by doing so, it becomes conservative and

loses chances of exploration and finding optimal options

to move forward. Meanwhile, the Q-learning agent

doesn’t take this probability of the agent ending up in an

undesired state into account much and assumes to do

action selection solely based on the Q-values of the state

in the Q-table. This difference of behavior led to the

optimal convergence and better performance of Q-

learning agent over the SARSA agent.

VI. CONCLUSION

In this paper, we have presented an approach to
address the problem of industrial robotic pick and place

in a non-visual environment. We formulated the problem

as an MDP for which Reinforcement Learning provides a

very extensive framework for dealing with such tasks.

We deployed both model-free off-policy temporal

difference RL algorithm (Q-Learning) and on-policy

temporal difference RL algorithm (SARSA). We trained

and tested Q-learning and SARSA agents on different

shaped objects at different position alignments moving at

different speeds.

We designed test-cases to evaluating the performance
of our Q-learning and SARSA agents on different objects,

which resulted in an average success rate of 93 percent

and 80 percent respectively. We also improved the

performance by retraining the Q-learning and SARSA

agents with negative and bonus rewards.

In this paper, we present a novel approach that allows

learning and performing of pick and place operation in a

non-visual industrial environment where deployment of

vision-based system is difficult due to various

requirements such as high cost which can restrict its use.

For instance, the space available for installing an
industrial vision system may be only a few centimeters.

Other factors that can affect the use of vision system in

some particular settings can be vibrations, dust, or even

wash-up from water jets. Known limitations of our

approach are the excessive time periods required for

training for various objects with different parameters

(about 4 to 5 hours for each object class on Intel Core i7-

3770 @ 3.40 GHz with 12 GB RAM), run-time path

computation overhead, difficulties to understand the

geometric features of certain objects like spheres due to

the absence of vision sensors in the setup.

So, for future work, we plan to address these
limitations by using a camera, and deploying deep

reinforcement learning to handle the state and action

complexity. In order to increase the efficiency, a hybrid

approach combining on-policy and off-policy algorithms

such as backward Q-learning presented in [49] and [50]

is also being worked on. We also plan to explore the

possibility of deploying a multi-query planner for motion

planning instead of a single-query planner in order to

have multiple options computed on the run, hence

increasing the chances of higher efficiency.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

533

International Journal of Mechanical Engineering and Robotics Research Vol. 10, No. 10, October 2021

© 2021 Int. J. Mech. Eng. Rob. Res

ACKNOWLEDGMENT

This publication has emanated from research

conducted with the financial support of Science

Foundation Ireland (SFI) under Grant Number SFI

16/RC/3918, co-funded by the European Regional

Development Fund.

REFERENCES

[1] B. Melzer, “Reference architectural model industrie 4.0 (RAMI

4.0),” p. 15.

[2] “Pcast-advanced-manufacturing-june2011.pdf.” .

[3] C. C. Kuo, J. Z. Shyu, and K. Ding, “Industrial revitalization via

industry 4.0–A comparative policy analysis among China,

Germany and the USA,” Glob. Transit., vol. 1, pp. 3–14, 2019.

[4] Y. Harayama, “Society 5.0: Aiming for a new human-centered

society,” p. 6.

[5] D. Silver et al., “Mastering the game of Go with deep neural

networks and tree search,” Nature, vol. 529, no. 7587, pp. 484–

489, Jan. 2016.

[6] V. Mnih et al., “Human-level control through deep reinforcement

learning,” Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015.

[7] H. Zhu, A. Gupta, A. Rajeswaran, S. Levine, and V. Kumar,

“Dexterous manipulation with deep reinforcement learning:

Efficient, general, and low-cost,” in Proc. 2019 International

Conference on Robotics and Automation (ICRA), Montreal, QC,

Canada, May 2019, pp. 3651–3657.

[8] OpenAI et al., “Learning dexterous in-hand manipulation,”

ArXiv180800177 Cs Stat, Jan. 2019, Accessed: Dec. 17, 2020.

[Online]. Available: http://arxiv.org/abs/1808.00177.

[9] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training

of deep visuomotor policies,” ArXiv150400702 Cs, Apr. 2016,

Accessed: Dec. 17, 2020. [Online]. Available:

http://arxiv.org/abs/1504.00702.

[10] I. Popov et al., “Data-efficient deep reinforcement learning for

dexterous manipulation,” p. 12.

[11] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P.

Abbeel, “Overcoming exploration in reinforcement learning with

demonstrations,” ArXiv170910089 Cs, Feb. 2018, Accessed: Dec.

17, 2020. [Online]. Available: http://arxiv.org/abs/1709.10089.

[12] M. Andrychowicz et al., “Hindsight experience replay,”

ArXiv170701495 Cs, Feb. 2018, Accessed: Dec. 17, 2020.

[Online]. Available: http://arxiv.org/abs/1707.01495.

[13] M. Zhang, S. Vikram, L. Smith, P. Abbeel, M. J. Johnson, and S.

Levine, “SOLAR: Deep structured representations for model-

based reinforcement learning,” ArXiv180809105 Cs Stat, Jun.

2019, Accessed: Dec. 17, 2020. [Online]. Available:

http://arxiv.org/abs/1808.09105.

[14] M. Riedmiller et al., “Learning by playing - solving sparse reward

tasks from scratch,” ArXiv180210567 Cs Stat, Feb. 2018,

Accessed: Dec. 17, 2020. [Online]. Available:

http://arxiv.org/abs/1802.10567.

[15] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-

driven exploration by self-supervised prediction,”

ArXiv170505363 Cs Stat, May 2017, Accessed: Dec. 17, 2020.

[Online]. Available: http://arxiv.org/abs/1705.05363.

[16] N. Savinov et al., “Episodic curiosity through reachability,”

ArXiv181002274 Cs Stat, Aug. 2019, Accessed: Dec. 17, 2020.

[Online]. Available: http://arxiv.org/abs/1810.02274.

[17] J. Mahler and K. Goldberg, “Learning deep policies for robot bin

picking by simulating robust grasping sequences,” p. 10.

[18] D. Morrison, J. Leitner, and P. Corke, “Closing the loop for

robotic grasping: a real-time, generative grasp synthesis approach,”

presented at the Robotics: Science and Systems 2018, Jun. 2018,

doi: 10.15607/RSS.2018.XIV.021.

[19] A. Zeng et al., “Multi-view self-supervised deep learning for 6D

pose estimation in the Amazon picking challenge,” in Proc. 2017

IEEE International Conference on Robotics and Automation

(ICRA), Singapore, Singapore, May 2017, pp. 1386–1383.

[20] A. Zeng et al., “Robotic pick-and-place of novel objects in clutter

with multi-affordance grasping and cross-domain image matching,”

ArXiv171001330 Cs, May 2020, Accessed: Dec. 17, 2020.

[Online]. Available: http://arxiv.org/abs/1710.01330.

[21] Q. Shao et al., “Suction grasp region prediction using self-

supervised learning for object picking in dense clutter,” in Proc.

2019 IEEE 5th International Conference on Mechatronics System

and Robots (ICMSR), Singapore, May 2019, pp. 7–12.

[22] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T.

Funkhouser, “Learning synergies between pushing and grasping

with self-supervised deep reinforcement learning,” in Proc. 2018

IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), Madrid, Oct. 2018, pp. 4238–4245.

[23] I. Sarantopoulos, M. Kiatos, Z. Doulgeri, and S. Malassiotis,

“Split deep q-learning for robust object singulation,” in Proc.

2020 IEEE International Conference on Robotics and Automation

(ICRA), Paris, France, May 2020, pp. 6225–6231.

[24] A. T. Miller, S. Knoop, H. I. Christensen, and P. K. Allen,

“Automatic grasp planning using shape primitives,” in Proc. 2003

IEEE International Conference on Robotics and Automation (Cat.

No.03CH37422), Taipei, Taiwan, 2003, pp. 1824–1829.

[25] R. B. Rusu, N. Blodow, Z. C. Marton, and M. Beetz, “Close-range

scene segmentation and reconstruction of 3D point cloud maps for

mobile manipulation in human environments,” p. 7.

[26] K. Harada, K. Nagata, T. Tsuji, N. Yamanobe, A. Nakamura, and

Y. Kawai, “Probabilistic approach for object bin picking

approximated by cylinders,” p. 6.

[27] T. Morwald, J. Prankl, A. Richtsfeld, M. Zillich, and M. Vincze,

“BLORT - The blocks world robotic vision toolbox,” p. 8.

[28] S. Dragiev, M. Toussaint, and M. Gienger, “Gaussian process

implicit surfaces for shape estimation and grasping,” in Proc.

2011 IEEE International Conference on Robotics and Automation,

Shanghai, China, May 2011, pp. 2845–2850.

[29] J. Mahler et al., “GP-GPIS-OPT: Grasp planning with shape

uncertainty using Gaussian process implicit surfaces and

Sequential Convex Programming,” in Proc. 2015 IEEE

International Conference on Robotics and Automation (ICRA),

Seattle, WA, USA, May 2015, pp. 4919–4926.

[30] S. Hinterstoisser et al., “Gradient response maps for real-time

detection of textureless objects,” IEEE Trans Pattern Anal Mach

Intell, vol. 34, no. 5, pp. 876–888, May 2012.

[31] K. Pauwels and D. Kragic, “SimTrack: A simulation-based

framework for scalable real-time object pose detection and

tracking,” in Proc. 2015 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), Hamburg, Germany, Sep.

2015, pp. 1300–1307.

[32] P. Wohlhart and V. Lepetit, “Learning descriptors for object

recognition and 3D pose estimation,” in Proc.2015 IEEE Conf.

Comput. Vis. Pattern Recognit. CVPR, Jun. 2015.

[33] J. Bohg, A. Morales, T. Asfour, and D. Kragic, “Data-driven grasp

synthesis-a survey,” IEEE Trans. Robot., vol. 30, no. 2, pp. 289–

309, Apr. 2014.

[34] Y. Jiang, M. Lim, C. Zheng, and A. Saxena, Learning to Place

New Objects in a Scene. 2012.

[35] M. Gualtieri, A. Ten Pas, and R. Platt, Pick and Place without

Geometric Object Models, 2018.

[36] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement Learning in

Robotics: A Survey,” p. 38.

[37] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen, Learning

Hand-Eye Coordination for Robotic Grasping with Deep Learning

and Large-Scale Data Collection. 2016.

[38] U. Viereck, A. Pas, K. Saenko, and R. Platt, “Learning a

visuomotor controller for real world robotic grasping using easily

simulated depth images,” 2017.

[39] R. S. Sutton and A. G. Barto, “Reinforcement learning: An

introduction,” p. 352.

[40] G. A. Rummery and M. Niranjan, “On-line Q-learning using

connectionist systems,” p. 22.

[41] M. Tokic and G. Palm, “Value-difference based exploration:

adaptive control between epsilon-greedy and softmax,” in Proc.

KI 2011: Advances in Artificial Intelligence, vol. 7006, J. Bach

and S. Edelkamp, Eds. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2011, pp. 335–346.

[42] R. Diankov, “Automated construction of robotic manipulation

programs,” p. 263.

[43] J. Schulman, J. Ho, A. Lee, I. Awwal, H. Bradlow, and P. Abbeel,

“Finding locally optimal, collision-free trajectories with sequential

convex optimization,” presented at the Robotics: Science and

Systems 2013, June 2013.

534

International Journal of Mechanical Engineering and Robotics Research Vol. 10, No. 10, October 2021

© 2021 Int. J. Mech. Eng. Rob. Res

[44] I. A. Sucan, M. Moll, and L. E. Kavraki, “The open motion

planning library,” IEEE Robot. Autom. Mag., vol. 19, no. 4, pp.

72–82, Dec. 2012.

[45] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient

approach to single-query path planning,” in Proc. 2000 ICRA.

Millennium Conference. IEEE International Conference on

Robotics and Automation. Symposia Proceedings (Cat.

No.00CH37065), San Francisco, CA, USA, 2000, vol. 2, pp. 995–

1001.

[46] M. Freese, S. Singh, F. Ozaki, and N. Matsuhira, “Virtual robot

experimentation platform V-REP: A versatile 3D robot simulator,”

in Simulation, Modeling, and Programming for Autonomous

Robots, vol. 6472, N. Ando, S. Balakirsky, T. Hemker, M.

Reggiani, and O. von Stryk, Eds. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2010, pp. 51–62.

[47] Z. Zou, J. Han, and M. Zhou, “Research on the inverse kinematics

solution of robot arm for watermelon picking,” in Proc. 2017

IEEE 2nd Information Technology, Networking, Electronic and

Automation Control Conference (ITNEC), Chengdu, Dec. 2017,

pp. 1399–1402, doi: 10.1109/ITNEC.2017.8285026.

[48] K. Iturralde, T. Kinoshita, and T. Bock, “Grasped element position

recognition and robot pose adjustment during assembly,”

presented at the 36th International Symposium on Automation and

Robotics in Construction, Banff, AB, Canada, May 2019.

[49] Y. H. Wang, T. H. S. Li, and C. J. Lin, “Backward Q-learning:

The combination of Sarsa algorithm and Q-learning,” Eng. Appl.

Artif. Intell., vol. 26, no. 9, pp. 2184–2193, 2013.

[50] X. Li, Z. Lv, L. Wu, Y. Zhao, and X. Xu, “Hybrid online and

offline reinforcement learning for Tibetan Jiu chess,” Complexity,

vol. 2020, p. 4708075, May 2020.

Copyright © 2021 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Muhammad Babar Imtiaz is currently a doctorate scholar funded by

Science Foundation Ireland (SFI) CONFIRM Smart Manufacturing

Center, at Software Research Institute (SRI) at Athlone Institute of

Technology (AIT). Previously, his Master’s degree in Computer

Sciences MS (CS) is with distinction from The Islamia University

Bahawalpur, Pakistan in 2017. His Bachelor degree in Computer

Sciences BS(CS) is from The Islamia University Bahawalpur, Pakistan

in 2015. His area of research includes robotics, smart manufacturing

and artificial intelligence.

Yuansong Qiao is a Senior Research Fellow in the Software Research

Institute (SRI) at Athlone Institute of Technology (AIT) Ireland. He is a

Science Foundation Ireland (SFI) Funded Investigator in the SFI

CONFIRM Smart Manufacturing Centre. He received his Ph.D. in

Computer Applied Technology from the Institute of Software, Chinese

Academy of Sciences (ISCAS), Beijing, China, in 2008. He completed

a B.Sc. and an M.Sc. in Solid Mechanics from Beihang University,

Beijing, China in 1996 and 1999 respectively. He is a member of IEEE

(Communications, Computer and Robotics and Automation societies

and Blockchain Community) and ACM (SIGCOMM and SIGMM). His

research interests include Future Internet Architecture, Smart

Manufacturing, Blockchain Systems, IoT Systems, and Edge

Intelligence and Computing.

Brian Lee is currently the Director of the Software Research Institute

(SRI), Athlone Institute of Technology (AIT), Athlone, Ireland. He is a

Science Foundation Ireland (SFI) Funded Investigator in the SFI

CONFIRM Smart Manufacturing Centre. He received the Ph.D. degree

in application of programmable networking for network management

from the Trinity College Dublin, Dublin, Ireland. He has more than 25

years of research and development experience in telecommunications

network monitoring, their systems and software design, and the

development for large telecommunications products with very high

impact research publications. He was the Director of Research for LM

Ericsson, Ireland, with responsibility for overseeing all research

activities, including external collaborations and relationship

management. He was an Engineering Manager of Duolog Ltd., where

he was responsible for strategic and operational management of all

research and development activities.

535

International Journal of Mechanical Engineering and Robotics Research Vol. 10, No. 10, October 2021

© 2021 Int. J. Mech. Eng. Rob. Res

