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Abstract—In this study, we perform a comparative analysis 

of two approaches we developed for learning to carryout 

pick and place operations on various objects moving on a 

conveyor belt in a non-visual environment, using proximity 

sensors. The problem under consideration is formulated as 

a Markov Decision Process. and solved by using 

Reinforcement Learning algorithms. Learning robotic 

manipulations using simple reward signals is still considered 

to be an unresolved problem. Our reinforcement learning 

algorithms are based on model-free off-policy training using 

Q-Learning and on-policy training using SARSA. Training 

and testing of both algorithms along with detailed a 

comparison analysis are performed in a simulation-based 

testbed. Our results prove our approaches to be successful 

in pick and place operations in non-visual industrial setups.  
 

Index Terms—robotic manipulation, non-visual, Markov 

decision problem, reinforcement learning, Q-learning, 

SARSA 

 

I. INTRODUCTION 

The term ‘Industry 4.0’ appeared for the first time in 

2011 and saw the introduction of many cutting-edge 
technologies such as Cyber-Physical Systems (CPS), 

Internet of Things (IoT), and Digital Twins (DT). World-

leading scholar Warren G. Bennis was quoted in 2016 

saying “The factory of the future will have two 

employees: a human and a dog. The task of the human 

will be to feed the dog. The dog will have the task to 

dissuade the human to touch the automated systems.” 

This quote clearly sums all the expectations and beliefs 

regarding the implementation of Industry 4.0. 

Materializing the concept of Industry 4.0 has created a 

number of global efforts such as Europe’s Industry 4.0 

[1], America’s Advanced Manufacturing [2], China’s 
Made in China 2025 [3], Japan’s Super smart society [4], 

etc.  Smart factories realize manufacturing processes with 

the aid of artificial intelligence (AI), the latest novel 

sensors, and use of robotics.  

Improving robotic manipulations with the help of 

advanced learning techniques has been a focus of the 

research community for some time now. Reinforcement 

learning (RL) addresses this task by performing 
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sequential decision-making through a policy learned 

during the process of maximizing an expected reward. 

Various complex tasks such as learning and playing 

board games [5] and video games [6] have been 

independently mastered by RL agents due to the recent 

use of deep neural networks as function approximators 

for reinforcement learning trained agents.  

Reinforcement learning has been widely used to 

address various robotic manipulation problems. 

Manipulations involving multiple stages like stacking 
items and hand manipulations [7],[8] have multi-

dimensional state and action spaces and complex 

dynamics and are extremely challenging to solve.  

Promising results have, however, been recorded in 

various manipulations such as grasping [9],[10], hand 

manipulations [7],[8], and stacking [11]. Other 

manipulations like pick and place [12], pushing objects 

[12],[13], dual block-stacking [13],[14] and target finding 

[15],[16] have also shown positive results. Pick and place 

manipulation has been addressed by various studies, 

some of which have used deep neural networks [17],[18] 
while others have used neural networks as function 

approximators for the RL agents [19]–[23]. But all these 

studies discuss vision-based approaches to pick and place 

manipulation.  

Machine vision systems evolved over the years to 

provide us with capabilities such as 3D graphical data 

and full-color megapixel resolution. But still, often there 

are various requirements such as high cost which can 

restrict its use. For instance, the space available for 

installing an industrial vision system may be only a few 

centimeters. Other factors that can affect the use of vision 

system in some particular settings can be vibrations, dust, 
or even wash-up from water jets.  Therefore, in this paper, 

we present a novel approach that allows learning and 

performing of pick and place operation in a non-visual 

industrial environment.  

The approaches presented in this paper address the 

problem of pick and place in a smart production line, 

where a number of variable-shaped objects are moving 

on a conveyor belt at different positions and orientation, 

and where the belt may assume different speeds. The 

conveyor belt is equipped with ray-type infrared 

proximity sensors which detect the object and signal the 
robotic arm to operate. Once the robotic arm receives a 
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signal from the proximity sensor, it attempts to grasp and 

pick the moving object, using a pliers-like gripper, from 

the conveyor belt and place it at a designated location. 

Our RL agents were trained to learn to successfully 

perform the pick and place operation on various objects 

at different positions, orientations, and speeds while 

receiving inputs only from proximity sensors. After 

extensive training and testing in our simulated testbed 

designed using the V-REP simulator, we found our 

approach achieved a success rate in excess of 90% to 

pick up objects from the conveyor belt and place them at 
designated place positions. 

The rest of the paper is organized as follows. In section 

ll, we look at some of the other approaches taken. In 

section III, we discuss the background of the approach 

we deployed. In section IV, we develop the methodology 

of our approach in detail. In section V, we discuss the 

results and findings of the experiments carried out to test 

our approach. Finally, section VI concludes the paper 

with some suggestions regarding future work. 

II.   RELATED WORK 

We find a number of reinforcement learning-based 
approaches to the problem of pick and place problem in a 

visual environment but none for the non-visual 

environment. Generally, these approaches can be divided 

into two main categories, those that use a geometrical 

model and the those that don’t. 

Most early approaches for this pick and place 

manipulation were totally dependent on the information 

regarding shape. These shape-based approaches can be 

seen from the perspective of grasping in [24]. This 

approach has been also used by others for different 

applications such as segmentation and manipulations [25], 
[26], [27]. These approaches lack performance when they 

are applied to objects that are difficult to be segmented or 

not completely cuboid and cylindrical in shape.  

To deal with new and unknown shapes of objects, a 

different approach has been used by some researchers 

whereby the shape of the object in question is estimated 

from the data stored recently by the sensor feedback. In 

[28], an approach is presented where the shape of the 

object is modeled using a Gaussian process. To achieve 

successful grasping the same idea has been implemented 

in [29] using tactile feedback. These approaches fail to 

perform when inadequate information is available to 
predict the shape of the model with a high degree of 

certainty. Accurately estimating shape from available 

data is an active area of research [30], [31], [32].  

Recently, there has been good progress to solve the 

problem of grasping novel objects [33]. A number of 

these approaches involve agents that have been trained 

using supervised learning to predict whether successful 

grasping has been achieved or not without using 

geometrical information of the object. For instance, an 

approach to place new objects at new places without 

having or estimating geometrical information of the 
object is presented in [34]. Similar approaches to handle 

the grasping problem can be also found in [35]. 

Reinforcement learning has been studied the 

perspective of its applications in robot control [36]. Over 

time, approaches based on deep reinforcement learning 

have become well known and popular for handling 

manipulations in robotics [37], [9], [38]. 

This study focuses on the RL-based pick and place 

solution in a non-visual environment, which has not been 

much addressed before. 

III. BACKGROUND 

A. Reinforcement Learning 

Reinforcement learning resolves a task by performing 

sequential decision-making through a policy learned 

during the process of maximizing the expected reward. 

The RL agent observes its’ environment state and takes 

an action in order to earn a reward and transition to the 

next state. What the agent needs to learn is to take 
optimal action at every stage so that the total reward i.e., 

the return, should be maximized. As the agent continues 

to interact with the environment, the resulting random or 

stochastic process is described by a Markov Decision 

Process (MDP). This MDP is defined by a tuple (Ȿ, A, ẟ, 

ℝ, 𝜆) [39]. Here the state space is represented by Ȿ, action 

space is denoted by A, ẟ  is commonly known as the 

transition function of the environment, ℝ denotes the 

reward function deciding the rewards for the agent’s 

selections of actions at any certain state and 𝜆 represents 
the discount factor ranging from 0 to 1 to discount the 

rewards earned by the agent after the selections of action 

at any certain state. At any given timestep, the RL agent 

being at state, s ∈ Ȿ, selects an action from the action 

space, a ∈ A, according to the policy µ(s|θµ):Ȿ→A where 

policy parameters are represented by θµ. The environment 

moves to the next state, s′ after the reward is received by 

the agent, r = ℝ (s, a) : Ȿ×A→Ȿ, with the help of the 

transition function, s′ = ẟ (s, a) : Ȿ×A→Ȿ. The final 
objective is to maximize the expected return at each time 

step t, 𝔼 st,at~µ ∑t 𝜆
 t-1 ℝ(st,at). 

 

B. Temporal-Difference Learning 

Temporal-difference (TD) learning is one of the key 
ideas of reinforcement learning. Temporal-difference 

learning can be seen as a blend of ideas from dynamic 

programming (DP) and Monte Carlo methods. Temporal-

difference learning is termed model-free learning because 

in this type of learning, the agent learns through actual 

experimentation instead of learning from a model such as 

a transition table. This factor enables TD to define and 

work with a large number of state-action pairs. The agent 

is completely unaware of the outcomes for its actions and 

learns accordingly after experiences. In temporal-

difference learning, the agent learns from each and every 

action, as the updating is performed at every timestep 
rather than on completion of each episode. It can be 

generalized as 
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𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ← 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒′ + 𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒[𝑇𝑎𝑟𝑔𝑒𝑡 − 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒′]     (1) 

In the equation above “Target – Estimate′” is also 

known as the target error. Through this equation, we get 

the “target” because the updating is performed at every 

timestep. The higher the target value is, the better the 

state agent into which the agent transitions. So, in 

nutshell, the agent is left to play in a new world, where it 

has zero awareness of any states, rewards, and transition 

tables. Interacting with this world makes it learn by 

continuously updating its existing knowledge after every 

interaction. For temporal-difference control methods, we 
can see both off-policy and on-policy approaches which 

guide. For this scope of this study, we will review the Q-

Learning, an off-policy method., and SARSA, an on-

policy method. Off-policy Q-learning method was 

introduced earlier and subsequently an on-policy variant 

of this algorithm was introduced which formed the basis 

of the on-policy SARSA algorithm. 

C. Q-Learning 

Watkins in 1989 made a great advance in the field of 

reinforcement learning by developing a temporal 

difference off-policy model-free control algorithm called 

Q-learning [39].  In this algorithm, learning is achieved 

through actions chosen and carried out according to 

another policy. It can be described through the Bellman 

equation as follows 

 

𝑄𝜋(𝑠, 𝑎) = 𝔼[𝑟𝑡+1 + 𝜆𝑟𝑡+2 + 𝜆2𝑟𝑡+3 + ⋯ |𝑠, 𝑎]  (2) 
 

𝑄𝜋(𝑠, 𝑎) = 𝔼𝑠′[𝑟 + 𝜆𝑄𝜋(𝑠′ , 𝑎′)|𝑠, 𝑎]              (3) 

 

𝔼 represents the expected and discount is denoted by 

the 𝜆. The main goal of Q-learning is to maximize the Q-

value, through policy iteration and value iteration. Policy 

iteration means a continuous loop of policy evaluation 

and improvement. In policy evaluation, we use the 

greedy policy achieved from the last policy improvement 

to estimate the value function V, whereas the policy is 

updated with actions that will increase the V to the 

maximum level for each state in the policy improvement 

part of the loop. Updating is done through the Bellman 

equation and the loop continues until the convergence 
point is reached. With the help of the optimal Bellman 

equation value function V is updated in value iteration, 

which can be stated as follows 

 

𝑣∗(𝑠) = max𝑎 𝔼 [ℝ𝑡+1 + 𝛾𝑣∗(𝑆𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎](4) 

 

𝑣∗(𝑠) = max𝑎 ∑ 𝑝𝑠′,𝑟 (𝑠′ , 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝑣∗(𝑠′)]           (5) 

 

A general off-policy temporal-difference algorithm 

flow can be seen in Fig. 1.  

D. SARSA 

Rummery and Niranjan in 1994 proposed an on-policy 

version of Q-learning, "Modified Connectionist Q-

Learning" (MCQ-L) [40]. Later it was named SARSA, 

being an acronym for state-action-reward-state-action. 

SARSA is an on-policy temporal-difference control 

method, Q(s, a, r′ ,s′ , a′) where agent at state s takes an 

action a at time t, collects reward r′, with next state-

action pair s′, a′ at time t+1. Update rule followed in 

SARSA is as follows 

 

𝑄(𝑆𝑡 , 𝐴𝑡) ←  𝑄(𝑆𝑡 , 𝐴𝑡)+, 𝜆[𝑅𝑡+1 + 𝑄(𝑆𝑡+1, 𝐴𝑡+1) −
        𝑄(𝑆𝑡 , 𝐴𝑡)]                                                                     (6) 

 

A general off-policy temporal-difference algorithm 
flow can be seen in Fig. 2. 

IV.  METHODOLOGY 

In a a pick and play systems, the robotic arm has to 

pick various moving objects on the conveyor belt and 

place them at a designated location e.g., in a bin. Objects 

move at different positions and orientations on conveyor 

belt, i.e., left-aligned, center-aligned, or right-aligned. 

The conveyor belt may also at different speeds e.g., slow 

speed, medium speed, fast speed. When we say objects, 

we mean shapes such as cuboids, spheres, or cylinders. 

Fig. 3 describes the scene. 
 

 

Figure 1. An off-policy TD control algorithm 

 

Figure 2. An on-policy TD control algorithm 

A. MDP Formulation 

Our problem can be formulated as an MDP. For our 

pick and place problem the elements of this MDP can be 

described as follows: 

 s ∈ Ȿ : (C, N, G, speed, position, path) where C is 

any of the  XYZ coordinates depending upon  

the nature of the action; N  represents the nature of 
the action i.e., pre-pick, pick, place; G is the set of 

potential grasping poses detected if any; speed 

represents the speed of the moving object; position is 

the position alignment of the moving object with 

reference to the conveyor belt,; the path being the 

calculated points of the path, from initial position to 

pre-pick position or from pre-pick position to pick 

position, to reach these particular C coordinates last 

time if any. 
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 a ∈ A: (C, N, G, path) where C is any of the chosen 

XYZ coordinates depending upon the nature of the 
action chosen; N represents the action i.e., pre-pick, 

pick, place; G is the set of potential grasping poses 

detected, the path, from initial position to pre-pick 

position or from pre-pick position to pick position, 

being the calculated points of the path to reach these 

particular C coordinates.  

 r ∈ ℝ: r is the reward and is 1 if the pick and place 
task is accomplished, 0.5 if only the grasping part is 

done successfully and 0 otherwise. Some bonus 

rewards and negative reinforcement learning 

schemes have also been tried. 

  ẟ: ẟ is the transition function and is an unknown 

stochastic function of the RL agent and the 

environment - as this problem is being dealt with as 
model-free, a transition function will emerge from 

trial-and-error sampling [24]. 

 𝜆 : 𝜆 is the discount factor and is between 0 and 1. 
Discounting future rewards enables the RL agent to 

learn faster. 

 

Figure 3. Conveyor belt scene 

 

Figure 4. Pre-Pick and Pick XYZ Coordinates 

In order to improve learning opportunity, we divided 

the task of picking an object into two parts, i) firstly 

moving the arm to a coordinate near the object and ii) 

then moving via a linear path from the first position to 

pick the object. We have divided the overall approach 

into four phases. The first phase is called the ‘Initial 

Phase’, in which the robotic arm is at the rest position, 

waiting for the proximity sensors installed at the 

conveyor belt to detect the coming object and signal the 

presence, position, and speed of the object. Once the 

signal is received, now the robotic arm enters the phase 

called ‘Pre-Pick Phase’, by selecting one of the potential 

pre-pick XYZ coordinates and calculating the path using 

motion planning to make the end-effector reach the 

selected pre-pick coordinates. After reaching the chosen 
pre-pick coordinates, now the third phase called ‘Grasp & 

Pick Phase’ begins. In this phase, one of the potential 

pick XYZ coordinates is chosen, the linear path 

calculation is done, and grasping is performed after 

choosing the potential grasp pose. Fig. 4 below helps 

illustrates the movement from ‘pre-pick’ to ‘pick’ 

coordinates more easily. Each ball-like object represents 

a potential XYZ coordinate. XYZ Coordinates on the 

left-hand side (three adjacent rows) are potential pre-pick 

coordinates and the coordinates on the right-hand side 

(single row) are pick coordinates. This figure is used to 
describe the concept- the number and positions of 

coordinates in the actual implementation are different. So 

according to Fig. 4, our agent selected the red pre-pick 

XYZ coordinate and the green pick XYZ coordinate. 

Subsequently the robotic arm gripper will calculate the 

path to reach the red coordinate and then once it reaches 

this point successfully it will calculate the path to reach 

the green coordinate and advance for the grasping. 

Once the grasping is done successfully, the RL agent 

enters the last phase of the iteration, called “Place Phase”, 

wherein it calculates the path using motion planning to 
make the end-effector reach the placing position XYZ 

coordinates and release the gripper to place the object. 

This whole loop of the four phases continues as shown in 

Fig. 5. Rewards (0 and 1) are calculated on the basis of 

the end result i.e., successful pick and place or not. The 

agent has been trained and tested with negative 

reinforcement learning also. A reward bonus scheme was 

also tested. This scheme gave an additional reward given 

for choosing the best hand-marked coordinates for 

picking the object from the conveyor belt. A comparison 

of these reward schemes is shown in the results section. 

 

Figure 5. MDP overview 

The basic idea behind the formulation of the MDP for 

this episodic task of pick and place is to compute an 
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optimal policy by trial-and-error in order to maximize the 

later discounted reward. 

 

     𝐸𝑡 = 𝑟𝑡 + 𝜆𝑟𝑡+1 + 𝜆2𝑟𝑡+2 … 𝜆𝑇−1𝑟𝑇                     (7) 
 

This methodology and reward schemes are 

implemented using both off-policy Q-learning and on-

policy SARSA algorithms. How they differ technically is 

discussed in the next sub-section. 

B. Q-Learning vs SARSA 

As this study compares off-policy and on-policy 

temporal-difference control-based approaches, it is 

important to understand the key differences between 

them. In off-policy algorithms, agents tend to converge to 

an optimal policy by updating a policy different from the 

behavior policy. In this way, without actually following 

any greedy policy, the off-policy algorithm estimates an 

expected reward and allocates a new value to the 
expected new state [39]. On other hand, in on-policy 

algorithms, the agent sticks to the same optimal policy 

and follows it throughout. The policy that is being used 

for updating is the same policy that is being followed to 

choose actions in contrast to off-policy algorithms [39]. 

When we examine the pseudocode of the Q-learning 

and SARSA algorithms, we notice similarities but also 

certain differences [41]. The main difference between Q-

Learning and SARSA is in the way they update their Q-

values in the Q-table. In Q-learning, the updating of the 

Q-table is done by selecting the best available action in 

the next state agent has transitioned to. In SARSA, on the 
other hand, a new reward value is generated by selecting 

an action by following the same policy. In SARSA the 

future action selection will not always be perfect, and in 

case of the presence of some unwanted states, the agent 

could end up in any such undesired state. Therefore, 

SARSA follows a safer pattern to minimize the chances 

of any such transitions that can land the agent in an 

undesired state. Q-learning, however, doesn’t take this 

probability of the agent ending up in an undesired state 

into account and assumes to do action selection solely 

based on the Q-values of the state in the Q-table. This 
difference of behavior between Q-learning and SARSA 

can be clearly seen in [39] when they are applied to the 

famous cliff-walking problem. 

C. Motion Planning 

Many motion planning and control solutions are 

available for robotics. We considered different options to 
perform our motion planning task such as OpenRave and 

Trajpot [42], [43]. Open Motion Planning Library 

(OMPL) [44] proved to be the best approach as it 

provided us with a high degree of customization. OMPL 

contains a number of geometric and control-based 

planners. Some of the many sampling-based planners 

available are Single-query Bi-direction Lazzy (SBL), 

Expansive Space Trees (EST), Rapidly-exploring 

Random Trees (RRT), Probabilistic Roadmap Method 

(PRM) along with their many variants. The planner we 

used for motion planning and path calculations is a 
single-query planner, a bidirectional variant of Rapidly-

exploring Random Trees (RRT), known as the RRT-

Connect [45]. The key idea of RRT-Connect is to 

develop two RRT, one at the start point and the other at 

the end, then connecting them. For this reason, RRT-

Connect planner tends to outperform the RRT planner.  

D. V-REP 

The Virtual Robot Experimentation Platform (V-REP) 

is a 3D robotic simulator with an integrated development 

and coding support [46]. It also uses physics engines 

Bullet and ODE for real-time emulation of the objects 

involved in the simulation. The API and threaded/non-

threaded Lua scripting functionalities make it a good 

choice for combining multiple platforms such as python, 

java, C++ etc. for experimentation.  Using this API, we 

were able to make our python-based RL agent 

communicate with the Lua-scripted simulated 
environment. 

V-REP provides various calculation modules including 

the forward and inverse kinematics module. Forward 

kinematics means using kinematic equations, taking 

joints parameters as input, to calculate the position of 

end-effector, whereas inverse kinematics is the reverse 

process, calculating joint parameters for a given position 

of end-effector [47]. The collision detection module is 

another important module in V-REP to highlight 

collisions if any. We used the JACO robotic arm [48] for 

our experiments. This is a six (6) degrees of freedom 

robotic arm, and we used an RG2 gripper for grasping 
purposes. Fig. 6 shows various grasp poses for various 

objects from our approach. 

 

Figure 6. Various grasping poses 

V.  EXPERIMENTAL RESULTS & DISCUSSION 

The Q-learning and SARSA RL agents described in 

the previous section were extensively trained and 

evaluated in our experimentation phase. 
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A. Training & Testing on Individual Shapes 

Firstly, we trained and evaluated the performance of 

the Q-learning and SARSA agents individually for each 

shape. Later we also evaluated the performance of off-

policy and on-policy agent on random objects at random 
position alignments moving at a random speed in order to 

get a better view of the performance. 

While dealing with each object’s shape individually, 

we also trained and evaluated both off-policy and on-

policy agents for each of the speeds (slow, medium, fast) 

and position alignment (left, center, right) separately. The 

success rates of the Q-learning agent picking an object 

from the conveyor belt and placing it at a designated 

place position, for each object type, at each position 

alignment, while moving at three different speeds (slow, 

medium, fast) are shown in Tables I, II, and III 
respectively. 

We can clearly see from Table I, II, and III that the Q-

learning RL agent has learned throughout the training 

phase elements such as suitable XYZ coordinates for 

picking and placing, different position alignments, speeds, 

and shapes of the objects. We can draw a number of 

inferences from these results such as that the agent seems 

to struggle with pick and place of spherical objects as 

compared to others. This holds true for all speeds. 

TABLE I.  Q-LEARNING AGENT’S INDIVIDUAL SUCCESS RATE (%)  

AT SLOW SPEED 

Objects 
Training Testing 

Left Center Right Left Center Right 

Cuboid 89% 95% 91% 95% 99% 96% 

Cylinder 92% 91% 88% 94% 93% 93% 

Sphere 83% 88% 85% 92% 95% 91% 

 

TABLE II.  Q-LEARNING AGENT’S INDIVIDUAL SUCCESS RATE (%)  

AT MEDIUM SPEED 

Objects 
Training Testing 

Left Center Right Left Center Right 

Cuboid 91% 93% 93% 96% 98% 96% 

Cylinder 89% 94% 90% 96% 99% 97% 

Sphere 84% 90% 87% 93% 94% 94% 

 

TABLE III.  Q-LEARNING AGENT’S INDIVIDUAL SUCCESS RATE (%) 

AT FAST SPEED 

Objects 
Training Testing 

Left Center Right Left Center Right 

Cuboid 91% 95% 96% 97% 99% 95% 

Cylinder 93% 91% 90% 95% 95% 96% 

Sphere 78% 83% 85% 90% 91% 93% 

 

In the same way, the Q-learning agent has shown 

better performance with all objects that were center-

aligned at medium speed i.e., the most suitable 

coordinates and grasp poses were found and learned by 

the agent for the center-aligned objects moving at 

medium speed. Testing results clearly depict the level of 

learning achieved during the training phases. 

The results of the SARSA agent picking an object 

from the conveyor belt and placing it at a designated 

place position, for each object type, at each position 

alignment, while moving at three different speeds (slow, 

medium, fast) are shown in Tables IV, V, and VI 

respectively. 

Results shown in Table IV, V and VI clearly indicate 

that, as with the Q-learning agent, our on-policy SARSA 

agent has also managed to learn suitable XYZ 

coordinates for picking and placing, different position 

alignments, speeds, and shapes of the objects during the 

training phase. The overall results shows that our SARSA 

agent has not performed as well as our Q-learning agent. 

We can also see the deterioration in the performance of 

the SARSA agent as the speed of objects increased. 

Similar to the  Q-learning agent, the SARSA agent also 

has difficulty to  deal with spherical objects during 

training and testing phases. The results also highlight that 

the SARSA agent has performed well in the case of left 

and center-aligned objects at all speeds as compared to 

the objects which were right-aligned.  

TABLE IV.  SARSA  AGENT’S INDIVIDUAL SUCCESS RATE (%) AT 

SLOW SPEED 

Objects 

Training Testing 

Left Center Right Left Center Right 

Cuboid 83% 81% 80% 82% 82% 80% 

Cylinder 82% 80% 78% 80% 81% 78% 

Sphere 80% 79% 79% 78% 79% 77% 

TABLE V.  SARSA  AGENT’S INDIVIDUAL SUCCESS RATE (%) AT 

MEDIUM SPEED 

Objects 
Training Testing 

Left Center Right Left Center Right 

Cuboid 81% 78% 75% 79% 77% 73% 

Cylinder 80% 78% 76% 78% 80% 77% 

Sphere 77% 77% 73% 78% 77% 72% 

 

TABLE VI.  SARSA  AGENT’S INDIVIDUAL SUCCESS RATE (%)  AT 

FAST SPEED 

Objects 

Training Testing 

Left Center Right Left Center Right 

Cuboid 79% 78% 72% 78% 78% 71% 

Cylinder 77% 78% 73% 78% 77% 72% 

Sphere 75% 72% 71% 76% 71% 69% 
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B. Training & Testing on Random Objects 

After training and testing specific objects at individual 

position alignments and speeds, we proceeded to train 

and evaluate the performance of the both Q-learning and 

SARSA RL agents on episodes of random objects at 

random position alignments moving at a random speed. 

In order to evaluate the performance of the RL agents in 

this manner, we designed 5 test cases, each having 50 

iterations/objects. In test case 1, each alignment position 

was assigned one-third of the random objects moving at a 

random speed. In test case 2, each speed option was 

assigned to one-third of the random objects at random 

position alignments. Test cases 3, 4, and 5 had at least 40% 

cuboid, sphere, and cylinder objects respectively moving 

at a random speed at random alignment positions. The 

testing process can be seen in Fig. 7. The success rate for 

these test cases for both off-policy and on-policy agents 

is shown in Table VII. The average success rate for Q-

learning results shown in Table VII is around 93%. Our 

Q-learning RL agent has performed well in all test cases 

but comparatively lowly in test case 4. The reason is that 

test case 4 includes a greater proportion oof spherical 

objects more than 40%. As the RL agent performance 

was seen to be poorer in individual testing in the case of 

spherical objects, it also affected our random testing in 

test case 4. On the other hand, the average success rate 

for SARSA agent according to Table VII is around 80%. 

As might be expected the SARSA agent also performed 

least well in test case 4. In overall performance, it can be 

clearly witnessed that our Q-learning agent outperformed 

the SARSA agent. The fact that the SARSA agent failed 

to perform at the higher belt speed and also on right-

aligned objects are the major factors in its poorer 

showing.  

 

Figure 7. Training process 

TABLE VII.  RANDOM TEST-CASES SUCCESS RATE (%)  

Test Case 
Q-Learning Agent’s 

Success Rate           

SARSA Agent’s 

Success Rate           

Test Case 1 93% 
82% 

Test Case 2 95% 
81% 

Test Case 3 99% 
80% 

Test Case 4 83% 
77% 

Test Case 5 97% 
81% 

 

A comparison of Q-learning and SARSA agents’ 

performance in random testing of up to 3000 timesteps is 
given in Fig. 8, where the success rate (%) has been 

plotted against the number of steps. The figure clearly 

indicates that the Q-learning agent outperforms the 

SARSA agent. In the initial time steps, it seemed SARSA 

agent is having an edge over Q-learning agent, maybe 

due to practicing more exploitation over exploration, but 

gradually the scenario is reversed.  

 

 

Figure 8. Performance comparison of Q-learning and SARSA agents 

C. Reward Scheme Variations 

As we discussed earlier in the methodology section, 

we trained both off-policy and on-policy agents with a 

reward system of 1 if the pick and place task is 

accomplished, 0.5 if only the grasping part is done 

successfully but failed to place it at the designated 

location, otherwise 0. 

To experiment with the reward scheme, we also 

trained and tested a variant of our both Q-learning and 

SARSA agents with negative reinforcement learning 
where -1 was awarded on failing the task completely and 

a bonus reward of 1 for some best suitable coordinate’s 

selection. Fig. 9 shows the performance comparison 

between the Q-learning agent with normal reward scheme 

and its variant trained with negative reinforcement 

learning and in the same manner, Fig. 10 shows the same 

for the SARSA agent. The blue line in both diagrams 

represents the agent trained with the normal reward 

scheme while the orange line represents the variant 

trained with negative rewarding as well as bonus 

rewarding scheme.  
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In the case of the Q-learning agent, Fig. 9 reveals 

better performance of the variant trained with negative 

reinforcement learning. However, for the case of the 

SARSA agent, Fig. 10 shows the ups and downs of both 

normal reward scheme agent and negative reward scheme 

agent.  This comparison clearly shows that the negative 

reward scheme in Q-Learning performs better over the 

same number of training steps. 

D. Discussion 

We trained and tested our both Q-learning agent and 

SARSA agent on the same testbed. Agents were trained 

and tested for both individual shapes task and random 

shapes task. In all cases the Q-learning agent 

outperformed the SARSA agent in our testing. 

 

Figure 9. Performance comparison of Q-learning normal reward scheme 

agent and the negative reward scheme agent 

The SARSA agent has faced difficulties in maintaining 

success as the speed of the conveyor belt increases. Its 

lack of performance can be also be witnessed in the case 

of all right-aligned objects for both individual and 
random shapes. Spherical objects remained problematic 

for both our agents but the Q-learning agent still managed 

to deal with them better than the SARSA agent. 

 

Figure 10. Performance comparison of SARSA normal reward scheme 

agent and the negative reward scheme agent 

The reason behind the lack of performance in our 

experimentation by SARSA in comparison to Q-learning 

can be seen as the exploration-exploitation dilemma. 

SARSA follows a safer pattern to minimize the chances 

of any such transitions that can land the agent in an 

undesired state while earning itself a large negative 

reward. But by doing so, it becomes conservative and 

loses chances of exploration and finding optimal options 

to move forward. Meanwhile, the Q-learning agent 

doesn’t take this probability of the agent ending up in an 

undesired state into account much and assumes to do 

action selection solely based on the Q-values of the state 

in the Q-table. This difference of behavior led to the 

optimal convergence and better performance of Q-

learning agent over the SARSA agent.   

VI.  CONCLUSION 

In this paper, we have presented an approach to 
address the problem of industrial robotic pick and place 

in a non-visual environment. We formulated the problem 

as an MDP for which Reinforcement Learning provides a 

very extensive framework for dealing with such tasks. 

We deployed both model-free off-policy temporal 

difference RL algorithm (Q-Learning) and on-policy 

temporal difference RL algorithm (SARSA). We trained 

and tested Q-learning and SARSA agents on different 

shaped objects at different position alignments moving at 

different speeds. 

We designed test-cases to evaluating the performance 
of our Q-learning and SARSA agents on different objects, 

which resulted in an average success rate of 93 percent 

and 80 percent respectively. We also improved the 

performance by retraining the Q-learning and SARSA 

agents with negative and bonus rewards. 

In this paper, we present a novel approach that allows 

learning and performing of pick and place operation in a 

non-visual industrial environment where deployment of 

vision-based system is difficult due to various 

requirements such as high cost which can restrict its use. 

For instance, the space available for installing an 
industrial vision system may be only a few centimeters. 

Other factors that can affect the use of vision system in 

some particular settings can be vibrations, dust, or even 

wash-up from water jets.  Known limitations of our 

approach are the excessive time periods required for 

training for various objects with different parameters 

(about 4 to 5 hours for each object class on Intel Core i7-

3770 @ 3.40 GHz with 12 GB RAM), run-time path 

computation overhead, difficulties to understand the 

geometric features of certain objects like spheres due to 

the absence of vision sensors in the setup. 

So, for future work, we plan to address these 
limitations by using a camera, and deploying deep 

reinforcement learning to handle the state and action 

complexity. In order to increase the efficiency, a hybrid 

approach combining on-policy and off-policy algorithms 

such as backward Q-learning presented in [49] and [50]  

is also being worked on. We also plan to explore the 

possibility of deploying a multi-query planner for motion 

planning instead of a single-query planner in order to 

have multiple options computed on the run, hence 

increasing the chances of higher efficiency. 
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