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Abstract—In this paper, a robust adaptive trajectory 

tracking controller is proposed for an electrical wheeled 

mobile robot in the presence of dynamic disturbances. This 

method, based on the nonlinear dynamic model of the robot 

and its actuators, guarantees the stability and the 

convergence of the closed-loop system. Moreover, the 

developed controller ensures the robustness of the system 

against the bounded dynamic disturbances, the smoothness 

of the computing voltage against the chattering phenomenon, 

and the optimal convergence of the velocity and posture 

errors.  The Lyapunov theory is used to analyze the full 

stability of the control scheme. The simulation results 

further illustrate the effectiveness of the developed strategy. 

 

Index Terms— adaptive sliding mode controller, dynamic 

disturbances, computing voltage, electrical wheeled mobile 

robot, Lyapunov theory 

 

I. INTRODUCTION 

The Wheeled Mobile Robot (WMR) is the typical 

nonlinear, complex, and non-holonomic dynamic system. 

Robot’s movement and abilities on particular terrain are 

affected by many factors like geometry and type of 

locomotion system (wheeled, tracked, hybrid, legged, 

jumping), properties of effectors, mass properties of a 

robot, and constraints resulting from characteristics of 

drives [1]. Trajectory tracking is one of the complex and 

interesting research problems. Designing a controller that 

guarantees trajectory tracking and robustness against 

undesirable effects, due to the environment and modeling 

uncertainties, is a challenge for researchers [2]. In order 

to solve the trajectory tracking problem, several studies 

have been done using the development of computer 

technology and advanced control theory. In this context, 

many control strategies are developed based on kinematic 

and / or dynamic model of the robot platform. These 

strategies are based on classical techniques and 
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approaches in the control and automation field, such as 

the back-stepping method [3], the fuzzy logic systems 

[4]–[7], the sliding mode approach [8]–[11] and the 

mechanism of neuronal network (NN) [12], [13]. To deal 

with unmodeled bounded disturbances and/or 

unstructured dynamics in the robot, the NN controller is 

used in [12]. Moreover, in [5] and [6], an adaptive fuzzy 

strategy is employed to approximate the unknown 

nonlinear function that presents the dynamic disturbances 

and model uncertainties. In order to estimate the 

unknown dynamic effects and the model uncertainties the 

fuzzy logic technique is combined with the backstepping 

approach [4]. Others, Shojaei et al. ([14]) employ an 

adaptive backstepping method to guarantee robustness 

against parametric and non-parametric uncertainties. 

In terms of robustness, the Sliding Mode Control (SMC) 

is the most advantageous. This approach ensures 

convergence and insensitivity of the system to variations 

in the state model and to bounded disturbances when the 

switching gain is large enough. However, the chatter 

phenomenon is a major drawback of this approach [15]. 

In order to overcome the chattering problem, the so-

called Adaptive Sliding Mode Control (ASMC) has been 

developed. Focusing on that, the switching gain is 

adjusted adaptively by using fuzzy logic mechanism [7] , 

[11], [16], and adaptive theory [8]–[10] in order to reduce 

the chattering problem effects. Moreover, in [2] and [17] 

the adaptive strategy (ASMC) is used to estimate the 

bounded disturbances and uncertainties.  

Based on the above discussion, the main contributions 

of this work are: 

(i) Developing the control scheme to ensure the 

robustness by; compensate and weaken the effects of 

dynamic disturbance. 

(ii)  Synthesis of an improved adaptive switching 

control capable to mitigate the chattering phenomenon 

and optimize the convergence rate. 
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(iii)  Analyze the stability of the closed-loop system via 

Lyapunov criteria and demonstrate the performances of 

the proposed control scheme using numerical simulations. 

The rest of this paper is organized as follows. The 

kinematic and dynamic models of WMR and actuators 

are established in section 2. Section 3 presents the closed-

loop controller design and stability analysis. Simulation 

results are shown and discussed in section 4. Finally, 

conclusion is given in section 5. 

II. MODELING OF  WMR  

In this section we present the kinematic and dynamic 

models of the nonholonomic wheeled mobile robot. As 

shown in figure “Fig. 1”, the considered wheeled mobile 

robot is a differential vehicle with two wheels 

independently driven by two dc motors and castor wheel 

without driving force. The radius of all wheels is defined 

by r and two driving wheels are separated by 2b. d is the 

distance between the point C (center of mass) and the 

geometric midpoint P of the two driving wheels. φ is the 

angle between the heading direction and the X-axis.  

 

Figure 1. Wheeled Mobile Robot and coordinate systems. 

The posture of the robot is defined by:𝑞 = [𝑥, 𝑦, 𝜑]𝑇  

in the global coordinate system and by𝑞1 = [𝑥1, 𝑦1, 𝜑]
𝑇 

in the local coordinate system fixed to the mobile robot 

[17]. 

A. Kinematic Modeling 

This subsection presents the description kinematic of 

WMR. The relationship between 𝑞  and 𝑞1  is given by 

[18]: 

𝑞 = 𝑅(𝜑)𝑞1 = [−
cos(𝜑) sin(𝜑 0

sin(𝜑) cos(𝜑) 0
0 0 1

] [𝑥1, 𝑦1, 𝜑]
𝑇 (1) 

Where 𝑅(𝜑) is the orthogonal matrix rotation. 

Then the so-called nonholonomic constrains are given 

by A(q)q̇ = 0  where; A(q) = [sin(φ) , − cos(φ) , d]  and 

q̇  is the time derivative of q . By considering the 

nonholonomic constraints, the kinematic model of WMR 

can be expressed as follows [17]: 

q̇ = [

ẋ
ẏ
φ̇
] = 𝑇(𝑞)𝜂 = [

cos(𝜑) −𝑑sin(𝜑)

sin(𝜑) 𝑑cos(𝜑)
0 1

] [
𝑣
𝜔
] (2) 

Where 𝑣 and 𝜔 are the linear and angular velocities of the 

WMR, respectively. 𝑇(𝑞) is the Jacobian transformation 

matrix satisfying 𝐴(𝑞)𝑇(𝑞) = 0 . 

By principle of the differential motion of the mobile 

robot, we can write: 

{
𝑣 =

𝑣𝑟+𝑣𝑙

2
=

𝑟(𝜔𝑟+𝜔𝑙)

2

𝜔 =
𝑣𝑟−𝑣𝑙

2𝑏
=

𝑟(𝜔𝑟−𝜔𝑙)

2𝑏

                          (3) 

Where 𝜔𝑟  and 𝜔𝑙are the angular velocities of the right 

and left wheels, respectively. 

B. Dynamic Modeling 

In this subsection, the dynamic model of mechanical 

system and dc motors is presented. The state equation 

describing the dynamic model of the WMR robot is: 

𝑀�̇� + 𝐴(𝜂)𝜂 = 𝐵𝜏 + 𝐹                  (4) 

Where: 𝑀 = [
𝑚 0
0 𝐼

], 𝐴 = [
0 −𝑚𝑑�̇�

𝑚𝑑�̇� 0
],   

 𝐵 = [

1

𝑟

1

𝑟
𝑏

𝑟

−𝑏

𝑟

] and 𝜏 = [𝜏𝑟 , 𝜏𝑙]
𝑇 . 𝜏𝑟  and 𝜏𝑙 are the right 

and left torque input of the mobile robot, respectively. m 

represents the total mass of the robot and I its moment of 

inertia. The equation (4) becomes: 

�̇� = 𝐴(𝜂)𝜂 + 𝐵𝜏 + 𝐹                     (5) 

Where: 𝐴 = −𝑀−1𝐴, 𝐵 = 𝑀−1𝐵, 𝐹 = 𝑀−1𝐹. 

To complete the dynamic model, the actuator modeling 

is included. The WMR is driven by two DC motors 

assumed to be identical. The electromechanical equations 

of each motor are defined as follows [19]: 

{
𝑢𝑖 = 𝑅𝐼𝑎𝑖 + 𝐿

𝑑𝐼𝑎𝑖

𝑑𝑡
+ 𝑒𝑖

𝑒𝑖 = 𝑘𝑒𝜔𝑎𝑖
𝜏𝑖 = 𝑘𝜏𝐼𝑎𝑖

, 𝑖 = 𝑟, 𝑙  (6) 

Where 𝑘𝜏  and 𝑘𝑒  are the torque constant and the back 

electromotive force constant, respectively. 𝑅  and 𝐿 

denote the resistance and inductance of the armature 

circuit of each DC motor, respectively. 

By considering the gear ratios 𝑁  and ignoring the 

inductance𝐿, the equation (6) becomes: 

𝜏𝑖 =
𝑁𝑘𝜏

𝑅
𝑢𝑖 −

𝑁2𝑘𝜏𝑘𝑒

𝑅
𝜔𝑖 , 𝑖 = 𝑟, 𝑙 ,       (7) 

Then: 

{
𝜏𝑟 = 𝑘1𝑢𝑟 − 𝑘2𝜔𝑟
𝜏𝑙 = 𝑘1𝑢𝑙 − 𝑘2𝜔𝑙

                    (8) 

With; 𝑘1 =
𝑁𝑘𝜏

𝑅
 and 𝑘2 =

𝑁2𝑘𝜏𝑘𝑒

𝑅
. 

Using (5) and (8), the dynamic model can be described 

as follows: 

�̇� = 𝐴𝑎(𝜂)𝜂 + 𝐵𝑎𝜏 + 𝐹𝑎        (9) 
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Where: 𝐹𝑎 = [𝑓𝑎1, 𝑓𝑎2]
𝑇 presents the disturbances and 

parameter uncertainties, 

 𝐴𝑎 = [

−2𝑘2

𝑟2𝑚
𝑑�̇�

−𝑚𝑑�̇�

𝐼

−2𝑘2

𝐼
(
𝑏

𝑟
)2
], 𝐵𝑎 = [

𝑘1

𝑟𝑚

𝑘1

𝑟𝑚
𝑏𝑘1

𝑟𝐼

−𝑏𝑘1

𝑟𝐼

]and 

 𝑢 = [𝑢𝑟 , 𝑢𝑙]
𝑇  is the voltage control input. 

III. CONTROLLER DESIGN AND STABILITY ANALYSIS 

In this section, two controllers are designed. The first 

one is the kinematic controller based on back-stepping 

approach that was proposed in [20]. The second one is the 

dynamic algorithm, which is based on the sliding mode 

control strategy. 

A. Kinematic Controller 

The objective of this controller is to computing the 

virtual velocity control law 𝜂𝑐 = [𝑣𝑐 , 𝜔𝑐]
𝑇 which 

converges towards the desired one 𝜂𝑑 = [𝑣𝑑 , 𝜔𝑑]
𝑇  in 

order to ensure the trajectory tracking (𝑒𝑝(𝑡 → ∞) → 0).  

In the robot frame, the trajectory error is expressed as: 

𝑒𝑝 = [

𝑒𝑥
𝑒𝑦
𝑒𝜑
] = [

cos(𝜑) −sin(𝜑 0

sin(𝜑) cos(𝜑) 0
0 0 1

] [

𝑥𝑑 − 𝑥
𝑦𝑑 − 𝑦
𝜑𝑑 − 𝜑

] 

Where 𝑒𝑞 = 𝑞𝑑 − 𝑞 = [𝑥𝑑 − 𝑥, 𝑦𝑑 − 𝑦, 𝜑𝑑 − 𝜑]
𝑇  denotes 

the deviation of the robot in the (x,y) plan,  

The virtual velocity vector is given by: 

{
𝑣𝑐 = 𝑣𝑑cos(𝑒𝜑) + 𝑘𝑥𝑒𝑥

𝜔𝑐 = 𝜔𝑑 + 𝑘𝑦𝑒𝑦 + 𝑣𝑑𝑘𝜑sin(𝑒𝜑)
    (10) 

𝑘𝑥, 𝑘𝑦 and 𝑘𝜑 are the positive constants. To study the 

convergence of this control law the Lyapunov theory is 

employed.  Let 𝑉0   the candidate function defined by 

([20]: 

𝑉0 =
(𝑒𝑥

2+𝑒𝑦
2)

2
+

1−cos(𝑒𝜑)

𝑘𝑦
            (11) 

The derivative of 𝑉0 is given by the follow equation. 

𝑉0̇ = 𝑒�̇�𝑒𝑥+𝑒𝑦̇ 𝑒𝑦 +
𝑒�̇�sin(𝑒𝜑)

𝑘𝑦
       (12) 

By some manipulations, we obtain: 

𝑉0̇ = −𝑘𝑥𝑒𝑥
2 −

𝑣𝑑𝑘𝜑sin(𝑒𝜑)
2

𝑘𝑦
      (13) 

It’s clear that 𝑉0 ≥ 0 and 𝑉0̇ ≤ 0. Hence, the kinematic 

controller is asymptotically stable. 

B.  Dynamic  Controller 

In this subsection, an adaptive controller based on 

dynamic sliding mode is designed. This control strategy 

consists to compute the control law 𝑢  such that the 

measured velocity 𝜂  of the robot converge to the input  

one 𝜂𝑐. The velocity error is expressed as: 

𝑒𝑣 = [𝑣𝑐 − 𝑣,𝜔𝑐 − 𝜔]
𝑇 , the sliding surface is selected 

as : 

𝑆(𝑡) = [𝑆1(𝑡), 𝑆2(𝑡)]
𝑇 = 𝑒𝑣 + 𝐶 ∫ 𝑒𝑣𝑑𝑡 (14) 

With 𝐶 = 𝑑𝑖𝑎𝑔(𝐶1, 𝐶2) , 𝐶1  and 𝐶2  are the positive 

constants. 

Based on the principle of the sliding mode control 

method and using the dynamic model defined in (9), the 

SMC based on the control inputs is given as follows: 

𝑢 = 𝑢𝑒𝑞 + 𝑢𝑠𝑤 = 𝐵𝑎
−1(�̇�𝑐 + 𝐶𝑒𝑣 − 𝐴𝑎(𝜂)𝜂 + 𝛾𝑠𝑔𝑛(𝑆)) (15) 

Where: 

 𝑢𝑒𝑞  is the equivalent control law. It is designed by 

solving the equation �̇� = 0 

 𝑢𝑠𝑤 is the switching control law, which needs to be 

properly designed. The classical switch control is given 

by 𝑢𝑠𝑤 = 𝐵𝑎
−1𝛾𝑠𝑔𝑛(𝑆) , in which 𝛾 = 𝑑𝑖𝑎𝑔(𝛾1, 𝛾2) , 𝛾1 

and 𝛾2 are the positive constants. 

In the sliding mode control method (SMC) , the 

robustness property is derived from the switching item. 

However, for the important values of 𝛾, the switching of 

the system around the sliding surface causes the 

chattering phenomenon. To solve this, an adaptive 

controller is designed [17]. In the switching control law, 

the component 𝛾𝑠𝑔𝑛(𝑆) ,  is replaced by the function 

𝜎(𝑆) given as follows. 

𝜎(𝑆) = 𝛾𝑇𝑠𝑔𝑛(𝑆) + 𝛽𝑆       (16) 

Where 𝛽 = 𝑑𝑖𝑎𝑔(𝛽1, 𝛽2) , 𝛽1  and 𝛽2  are the positive 

constants, and 𝛾 is the adaptive gain given as follows: 

𝛼1�̇� + 𝛼2𝛾 = |𝑆|                   (17) 

The PI term 𝛽𝑆 contributes to the optimization of the 

convergence rate and to the improvement of the precision 

and robustness of the system [19]. Hence, the proposed 

controller is given as: 

𝑢 = 𝐵𝑎
−1(�̇�𝑐 + 𝐶𝑒𝑣 − 𝐴𝑎(𝜂)𝜂 + 𝜎(𝑆)) (18) 

Consider a Lyapunov candidate function as: 

𝑉1 =
1

2
𝑆𝑇𝑆  (19) 

The time derivative of  𝑉1 is :  

𝑉1̇ = 𝑆
𝑇�̇� = 𝑆𝑇(�̇�𝑐 − �̇� + 𝐶𝑒𝑣)          (20) 

Inserting (9) and (18) in (20), we obtain: 

𝑉1̇ = −𝑆
𝑇𝛾𝑇𝑠𝑔𝑛(𝑆) − 𝑆𝑇𝛽𝑆 − 𝑆𝑇𝐹𝑎       (21) 

Assumption 1: Suppose that the dynamic disturbances 

are bounded and satisfying the condition |f𝑎𝑖| ≤ 𝛿𝑖, 𝑖 =
1,2 and 𝛿𝑖 > 0. 

The equation (21) can be written in the following form: 

𝑉1̇ = ∑ [−𝛾𝑖|𝑆𝑖| −
2
𝑖=1 𝛽𝑖𝑆𝑖

2 − 𝑆𝑖𝑓𝑎𝑖]     (22) 

Considering the Assumption 1, we obtain the 

following inequality: 

𝑉1̇ ≤ −∑ |𝑆𝑖|[𝛾𝑖 +
2
𝑖=1 𝛽𝑖|𝑆𝑖| − 𝛿𝑖]        (23) 

Suppose that exist 𝜓 = 𝑑𝑖𝑎𝑔(𝜓1, 𝜓2) satisfying 

 𝜓𝑖 = min(𝛾𝑖 + 𝛽𝑖|𝑆𝑖| − 𝛿𝑖) , (𝑖 = 1,2), so the inequality 

(23) becomes : 

𝑉1̇ ≤ −∑ 𝜓𝑖
2
𝑖=1

|𝑆𝑖|

√2
= −𝜓𝑉1

1/2                 (24) 
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According to the Lemma 4.2 in [14], and by selecting 

properly the control parameters, we get𝑉1̇ + 𝜓𝑉1
1/2 ≤ 0̇ . 

As a result, the proposed controller is asymptotically 

stable. 

IV. SIMULATION RESULTS 

In order to evaluate the performance of this controller, 

numerical simulations are performed in the 

Matlab/Simulink environment. The inputs of this 

simulator are; the desired velocities 𝑣𝑑 = 0.3𝑚. 𝑠−1 , 

𝜔𝑑 = 0.1 sin(0.07𝑡) 𝑟𝑎𝑑. 𝑠−1  and the disturbances and 

parameter uncertainties 𝐹𝑎 = [𝑓𝑎1, 𝑓𝑎2]
𝑇 are shown in 

figure “Fig. 2”. The desired trajectory 𝑞𝑑(𝑡) =
[𝑥𝑑 , 𝑦𝑑 , 𝜑𝑑]

𝑇  (shown in “Fig. 3”), is calculated by the 

following expression: 

{
 
 

 
 𝑥𝑑(𝑡) = ∫(𝑣𝑑 cos(𝜑𝑑) − 𝑑𝜔𝑑sin(𝜑𝑑))𝑑𝑡 + 𝑥𝑑(0)

𝑦𝑑(𝑡) = ∫(𝑣𝑑sin(𝜑𝑑) + 𝑑𝜔𝑑 cos(𝜑𝑑))𝑑𝑡 + 𝑦𝑑(0)

𝜑𝑑(𝑡) = ∫𝜔𝑑 𝑑𝑡 − 𝜑𝑑(0)

 

And 𝑞𝑑(0) = [0,0,0]𝑇 . The robot’s initial posture 

(position and orientation) is 𝑞(0) = [0.3,0.4,0]𝑇 

I. 

TABLE I.  SIMULATION PARAMETERS 

Kinematic 

parameters 
d = 0.15m, b = 0.09m, r = 0.03m 
 

Dynamic 

parameters 
m = 4Kg, I = 2Kgm−1 

Actuator 
parameters 

N = 34,R = 5Ω,ke = kτ = 0.08N.m
−1 

Controller 

parameters 

C = diag(50,50), α1 = 0.1,  

 α2 = 10, β = diag(30,30), kx = 1, ky = 1, 

kφ = 1.5 

 

As illustrated in figures “Fig. 4”, “Fig. 5” and “Fig. 6”, 

all signals are bounded. The speed and posture errors 

converge to zero and the effects of the disturbances are 

attenuated (figures “Fig. 4”and “Fig. 5”). The computed 

voltages (right and left) are presented in figure “Fig. 6”. It 

can be seen that the proposed controller eliminates the 

chattering phenomenon. 

Moreover, the robustness and stability of the system is 

improved and increase for the high values of 𝛽 . The 

adaptive switching function that contributes to correct 

and compensate the effect of dynamic disturbances is 

presented in “Fig. 7”. 

From a quantitative point of view, we consider the 

integral of the absolute value of the error (IAE) defined 

by: 

IAEi = ∫ |𝑒𝑣𝑖|𝑑𝑡
𝑡𝑓
0

, 𝑖 = 1,2           (25) 

In this study, IAE1 = 0.1122 And IAE2 = 0.1201. 

In this work, the convergence time and the problem 

related to singularities are not studied in this work. In 

addition, the speed of the system depends on the input 

speeds while stability and precision depend on the choice 

of command parameters. 

 

Figure 2. Disturbances and uncertainties 

 

Figure 3. Desired and robot’s trajectories. 

 

Figure 4. Position and orientation errors. 

 

 Figure 5. Linear and angular velocity errors. 

 

Figure 6. Right and left voltage inputs. 
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. 
The simulation parameters are defined in Table 



 

Figure 7. Corrective switching function. 

V. CONCLUSION 

In this paper, an adaptive trajectory tracking controller 

of an electrically wheeled mobile robot is discussed. The 
kinematic model is used to compute the virtual velocity 
which converges to the desired velocity. Based on the 
dynamic model of the robot and its actuators, an adaptive 
sliding mode controller is developed to compute the 
electrical inputs (voltages). The proposed control strategy 

is capable to: suppress the chatter phenomenon, attenuate 
the disturbances and uncertainties, and improve the 
convergence of the posture and speed errors in terms of 
precision ( IAE1 = 0.1122  And IAE2 = 0.1201 ). The 
proposed controller is asymptotically stable according to 
Lyapunov theory. The simulation results illustrate the 

performances of this method. The next work will be 
dedicated to implementing this algorithm in a mobile 
robot platform. 
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