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Abstract—In this work, deep learning is employed for 

accurate and fast detection of vine trunks in vineyard 

images. More specifically, six well-known object detectors, 

Faster regions-convolutional neural network (Faster R-

CNN), You Only Look Once version 3 (YOLOv3) and 

version 5 (YOLOv5), EfficientDet-D0, RetinaNet and 

MobilNet, are tested for real-time vine trunk detection. The 

models are trained with an in-house dataset designed for the 

needs of this study, containing 1927 manually annotated 

vine trunks in 899 different images. Comparative results 

indicate EfficientDet-D0 as the configuration that allows the 

faster and most accurate vine trunk detection, achieving 

Intersection over Union (IU) of 71% and overall Average 

Precision of 77.9% in 38 ms. The high precision combined 

with the fast runtime performance, indicate EfficientDet-D0 

detector as the most suitable to be integrated into an 

autonomous harvesting robot for real-time vine trunk 

detection.   

 

Index Terms—object detection, harvesting robot, deep 

learning, trunk detection, computer vision, precision 

agriculture, Cyber-Physical System (CPS) 

I. INTRODUCTION 

Wine industry has greatly developed in the last few 

decades [1]. In wine industry, eonologists seek to 

maximize the quality of the harvested grapes, while field 

managers try to minimize all operational costs. These two 

opposite objectives are met in the implementation of 

viticultural practices; on one hand, there are the annual 

canopy management practices aiming at maintaining and 

improving vineyards’ health, leading to optimized wine 

quality, while on the other hand, there is the 

mechanization of these practices by agricultural robots, 

namely agrobots, aiming at reducing all labor costs [2]. 

 Agrobots are capable of a longer duration of work, as 

an autonomous and automatic robot may outlast a human 

worker, increase productivity, application accuracy and 

operation safety [3]. In the aforementioned context, 

agrobots are adopted to perform a variety of vineyard 

management practices, including pruning, defoliation or 

green harvest [4]. Our interest here is in the development 

of an autonomous robot for grape harvest, namely ARG, 

able to support viticulture tasks such as harvest, cluster 

thinning (green harvest) and basel leaves removal 
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(defoliation) [5]. ARG is designed as a Cyber-Physical 

system (CPS), integrating intelligence, communication 

and functionality, towards sensor awareness and decision 

making. In this context, ARG needs to navigate in the 

vineyard and to detect the vine trees so as to perform the 

selected viticulture tasks.  

In vineyard, especially in those build in steep slope 

hills, there are several challenges regarding robots’ 

navigation and localization, mainly due to terrain 

irregularities and inaccuracies of the signals emitted by 

the global navigation satellite system (GNSS), which is 

usually used for these purposes. Feature-based 

localization, i.e. extraction of reliable and persistent 

features or landmarks from vineyards, is therefore 

considered. Knowledge about the vineyards patterns is 

currently the most accurate, cheap and fast solution to 

facilitate agricultural tasks that need to be precise. Vine 

trunks can be selected as stable landmarks that exist in all 

vineyards. It makes sense to provide the robot with the 

ability to recognize vine trunks as high-level features of 

vineyards, to use in localization and mapping procedures. 

More analytically, detection of the vine trunks can help in 

building a precise vineyard map that the agricultural 

robot may rely on, to navigate safely and perform a wide 

range of agricultural tasks. Moreover, locating the vine 

trunk is the first step to automatically control the position 

and orientation of the robot in order to execute basel 

defoliation, and to center on the vine to perform harvest 

or green harvest evenly spaced on both sides. Therefore, 

vine trunks need to be located precisely for two main 

reasons: 1) to facilitate the navigation of ARG in the 

vineyard corridors and 2) to locate the working point of 

ARG regarding the performance of the selected 

viticulture tasks. 

The problem of vine trunk detection is challenging due 

to the fact that during both basel defoliation and green 

harvest season, vineyard corridors and vine trunks are 

occluded by shoots and leaves [6], making it difficult to 

determine either the vineyard corridors or to discriminate 

the vine trunks (Fig. 1.). 
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Figure 1.  Vine trunk detection challenge due to foliage occlusions. 

Toward this end, methods for reliable visual vine 

trunks detection are currently under investigation. Vine 

trunk detection is performed in [7] by adopting a new 

methodology, software and procedure of data acquisition, 

using 3D point clouds taken by laser scanning equipment. 

In [8], two laser sensors are used to detect vine trunks and 

provide their position and size measurements. A vision-

based detector for natural feature detection is proposed in 

[9]. The proposed algorithm includes local binary pattern 

(LBP) image extraction and support vector machine 

(SVM) classification of extracted descriptors. Ιn a later 

research [10], the same authors suggest LPB and hue, 

saturation and value (HSV) image extraction and SVM 

classification, exploring parallelization capabilities of 

pressing units in order to accelerate the processing time 

of the algorithm. 

Deep learning-based techniques have demonstrated 

their ability to learn higher-level features and detect 

objects with higher accuracies than traditional machine 

vision systems [11]. 

Deep learning models [12] are widely used for object 

detection for agricultural-related tasks such as fruit 

detection [13], [14], leaves detection [13], plant disease 

detection [15], weed detection [16] and roots detection 

[17]. However, there are hardly no references in the 

literature for the use of deep-models in vine trunk 

detection. Deep learning has been used for vine trunks 

detection only recently, in [18], where pre-trained 

versions MobilNet V1, MobilNet V2 and Tiny YOLOv3 

were examined. Results indicated MobilNet V2 as the 

most fast and accurate vine trunk detector, achieving an 

overall Average Precision of 52.98%. In their later work 

[19], the same authors used MobileNets, Inception, and 

lite version of YOLO to detect vine trunks in real-time. 

Results, once again, pointed out MobilNet V2 as the most 

effective model among them with the same 52.98% 

overall average precision. Αn other team of researchers 

also presented two versions of their work on vine trunk 

detection. The study in [6], presented a deep learning-

based approach which first employs deep residual 

network (ResNet)-based Faster region-based 

convolutional neural network (Faster R-CNN) network to 

detect the visible segments of grapevine canopies. Then, 

position information of the detected visible segments of 

grapevine canopies are used, to estimate the cordon 

trajectories. Each canopy included two cordons coming 

from the trunk, growing along the trellis wires in to two 

opposite sides. Detecting visible parts of the trunk 

provided the reference point to differentiate right and left 

sides of the cordons. To eliminate overlapping bounding 

boxes and selecting only the strongest bounding boxes 

with high level of confidence, a non-maximal suppression 

(NMS) algorithm was used. The average precision of 

trunk detection for R-CNN was 26%, and improved to 

76% with NMS. In their later research [2], the authors 

again tried to accurately determine the cordon shapes 

using deep learning networks. A color camera was used 

to acquire canopy images, and two different deep 

learning-based semantic segmentation techniques, 

segmentation network (SegNet) and fully convolutional 

network (FCN), were used for cordon detection and 

determination. Reported average pixel classification 

accuracy on trunk detection for both SegNet and FCN 

was about 90%. Three deep-learning models, Faster R-

CNN, YOLOv3 and YOLOv5 are tested for real-time 

trunk detection in [20]. Results indicate YOLOv5 as the 

detector that outperforms the rest in terms of inference 

accuracy and runtime performance, achieving an overall 

Average Precision of 73.2% in 29.6 ms. 

Based on the encouraging results of [20], this work 

comes as a continuation, adding to the investigation of 

the optimal vine-trunk detector for ARG, three more 

well-known deep learning models; EfficientDet-D0, 

RetinaNet and MobilNet. The models are trained in the 

same in-house designed dataset containing approximately 

1927 annotated vine trunks in 899 different images. 

Comparative results are presented for all six models. 

Experimental results indicate EfficientDet-D0 as the 

configuration that allows the most accurate vine trunk 

detection, achieving an overall Average Precision of 

77.9%. Going one step further, this work uses the 

detection results in combination with depth information 

acquired from a stereoscopic camera to determine the 

movement of ARG towards the detected vine trunk. 

The aim of this work is to test well-known deep 

learning models that are employed for the first time to 

resolve the specific problem of vine trunk detection. The 

proposed approach is accurate and fast and it is 

considered suitable to be integrated to an autonomous 

harvesting robot to facilitate navigation and precise 

agricultural tasks implementation. The rest of the paper is 

structured as follows. In Section II the image dataset 

acquisition and annotation are described and the 

examined models are presented. Experimental results are 

discussed in Section III. Section IV describes the 

integration of the trunk detector into the ARG. Finally, 

Section V concludes and suggests directions for further 

research. 

II.  MATERIALS AND METHODS 

A. Image Acquisition 

The images of the used dataset [21] are collected from 

three vineyards of North Greek wine producers as part of 

a national research program [5]. Images are acquired 

under natural daylight counting disturbances such as 

varying illumination and shadowing, so as to give 

diversity to the training procedure and robustness to the 

inference final result. The challenge in vine-trunk 
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detection is that the trunks possess the same brown colour 

with the terrain, making them difficult to be discriminated. 

Moreover, in most of the cases, more than one trunk is 

depicted in one image, causing great occlusions. Image 

acquisition is in line with ARG’s operation plan. The 

robot will navigate in the vineyard lines, searching for the 

closest vine trunk on its left-side using machine vision 

provided by the mounted camera on the robotic arm. 

Then, it will stop in front of the detected vine trunk and it 

will perform one of the selected viticulture tasks.  

Thus, the capturing height matches the dimensions of 

the mobile harvesting robot. The capturing distance takes 

into account the average size and maximum opening 

angles of the mounted robotic arm. Finally, all images are 

captured by following the same protocol; from a distance 

between 30 cm to 100 cm from the crops line, and from a 

height of 50 cm to150 cm. The original dataset consists of 

899 different images; 629 for training, 180 for validation 

and 90 for testing, keeping the same settings as in [20] for 

comparative reasons. The original dataset is augmented in 

order to generate sufficient number of images for training 

the CNN models. All images are resized to 416×416 

before applied to the models.  

In Fig. 2. are shown some representative images of the 

dataset, in order to point out the diversity and difficulties 

of the vine trunk detection task. The most common of 

them, are occlusions due to vegetation or leaves on the 

trunk, blur effects due to the movement of the camera, 

illumination and shadowing conditions. 

 

  

  
Figure 2.  Representative images of the fnal dataset depicting difficult 

detection cases due to occlusions or varying illumination. 

B. Image Annotation 

All ground truth images are manually annotated using 

the Labellmg [22] online graphical image annotation tool. 

Fig.3. shows an example of a vineyard image with the 

respective annotations. The output of this process is a set 

of bounding boxes for each image. Bounding boxes are 

represented in a .txt file containing the label class 

considered and the four corners location of each 

bounding box. All annotated images used in this work are 

publicly available along with the training images [21].  

 
Figure 3.  Image of the testing data with annotated trunks. 

C. Examined Deep Learning Models 

In total six object detection deep learning models are 

investigated in this work: Faster R-CNN, YOLOv3, 

YOLOv5, EfficientDet-D0, RetinaNet and MobilNet. The 

selected architectures use a feed-forward CNN that 

produces a set of bounding boxes and assigns a score for 

each one of them. The CNN contains convolutional 

feature layers to the end of the base network in order to 

detect objects of different sizes in images.  

R-CNN models [23] can achieve high object detection 

accuracy by combining bottom up region proposals in 

order to localize and segment objects, and CNNs. 

Reported drawbacks included the fact that training is a 

multi-stage pipeline and, thus, it was time and space 

consuming, and additionally that object detection was 

slow since it performed a convolutional network forward 

pass for each object proposal, without sharing 

computation. Spatial pyramid pooling networks (SPPnets) 

[24] were proposed to speed up R-CNN by sharing 

computation. SPPnet accelerates R-CNN by 10 to 100 

times at test time and by 3 at training time due to faster 

proposal feature extraction. Yet, training remained a 

multi-stage pipeline. A new training algorithm to 

overcome the disadvantages of R-CNN and SPPnet, was 

the Fast R-CNN [25]. More specifically, Fast R-CNN 

architecture provided higher detection quality, training as 

a single-stage process, could update all network layers 

and no disk storage was required for the features caching. 

However, both of the, R-CNN and Fast R-CNN, used 

selective search, a slow and time-consuming process, to 

find out the region proposals, affecting the performance 

of the network.  

Faster R-CNN [26] was introduced as the updated 

version of Fast R-CNN, where a Region Proposal 

Network (RPN) was introduced, aiming to eliminate the 

selective search algorithm. An RPN is a fully-

convolutional network that simultaneously predicts object 

bounds and objectness scores at each position. Faster R-

CNN enables a unified, deep-learning-based, even faster 

object detection system. Additionally, the learned RPN 
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improves region proposal quality and overall object 

detection accuracy. 

The above sequel algorithms for object detection use 

regions to localize the object within the image. This 

means that the network does not look at the complete 

image, but parts of the image which have high 

probabilities of containing the object. YOLO [27] is 

much different from the region-based algorithms seen 

above. In YOLO a single convolutional network predicts 

the bounding boxes and the class probabilities for these 

boxes. It takes an image and it splits it into an S×S grid 

that contains m bounding boxes, assigned with a class 

probability and offset values. The bounding boxes that 

have the class probability above a threshold value are 

selected and used to locate the objects in the image. 

YOLO is demonstrated to be faster than other object 

detection algorithms. Its main disadvantage is that, it 

might face difficulties in detecting small objects.  

The most popular and stable version of YOLO is 

YOLOv3 [28], [29]. In YOLOv3 the softmax function is 

replaced with logistic regression and threshold, and it 

displays a higher accuracy. The model associates the 

objectness score 1 to the bounding box anchor which 

overlays a ground truth object more than others. At the 

same time, it ignores others anchors that overlap the 

ground truth object by more than a chosen threshold. 

Thus, it allocates one bounding box anchor for each 

ground truth object. The use of prediction across scales 

using the concept of feature pyramid networks (FPNs), is 

considered as an additional improvement of the model. 

YOLOv3 is able to predict boxes at 3 different scales, 

from which it extracts features. The final outcome of the 

network is a 3-d tensor that includes bounding box, 

objectness score and prediction over classes. Moreover, 

YOLOv3 uses the CNN feature extractor Darknet-53, 

which is a 53 layered CNN that uses skip connections 

network encouraged from ResNet [30]. State-of-the-art 

accuracies have been reported for YOLOv3, with less 

floating-point operations and enhanced speed [31].  

The latest version of YOLO, YOLOv5, outperforms all 

previous versions. YOLOv5 has been released recently, 

on the 9th of June 2020. The model’s configuration is 

available [32] but no official research article is reported 

yet in the bibliography. YOLOv5, passes training data 

with every training batch through a data loader, which 

augments the data online. Three kinds of augmentations 

take place: scaling, color space adjustments, and mosaic 

augmentation. YOLOv5 allows for the reduction to half 

the floating-point precision in training and inference from 

32 bits to 16 bits precision. This is able to significantly 

speed up the inference time of the metwork. 

RetinaNet is a single, unified network composed of a 
backbone network and two task-specific subnetworks. It 
uses ResNet and FPN as the backbone networks [33]. The 
backbone is responsible for computing a convolutional 
feature map over an entire input image and is an off-the-
self convolutional network. The first subnet performs 
convolutional object classification on the backbone’s 
output, while the second subnet performs convolutional 
bounding box regression. RetinaNet proposes a new loss 
function that acts more effectively compared to previous 

approaches for dealing with class imbalance. The loss 
function is a dynamically scaled cross entropy loss, where 
the scaling factor decays to zero as the confidence in the 
correct class increases. Intuitively, this scaling factor can 
automatically down-weight the contribution of easy 
examples during training and rapidly focus the model on 
hard examples. Experiments demonstrated that focal Loss 
enables training a high-accuracy, one-stage detector that 
outperforms the alternatives of training with the sampling 
heuristics or hard example mining, the previous state-of-
the-art techniques for training one-stage detectors. 

As the name applied, MobileNets are designed to be 

used in mobile applications [34]. MobileNet uses 

depthwise separable convolutions. It significantly reduces 

the number of parameters when compared to a network 

with regular convolutions with the same depth in the nets. 

This results in lightweight deep neural networks. More 

specifically, two simple global hyperparameters that 

efficiently trade-off between latency and accuracy are 

introduced; width multiplier α and resolution multiplier ρ. 

These hyper-parameters allow the model builder to 

choose the right sized model for their application based 

on the constraints of the problem uniformly at each layer. 

More specifically, the first is used to reduce the size of 

the CNN and the second to reduce the computational cost. 

When MobileNets were applied to a wide variety of tasks 

and were compared with different popular models, they 

demonstrated superior size, speed and accuracy 

characteristics. 

Only recently, two optimizations have been proposed; 

a weighted bi-directional feature pyramid network 

(BiFPN) which allows easy and fast multi-scale feature 

fusion, and a scaling method that uniformly scales the 

resolution, depth, and width for all backbone, feature 

network, and box/class prediction networks at the same 

time. Based on these optimizations and EfficientNet 

backbones [35], a new family of object detectors, namely 

EfficientDet, have been introduced, achieving 

significantly better accuracy and efficiency across a wide 

spectrum of resource constraints [36]. ImageNet-

pretrained EfficientNets form the backbone network. The 

proposed BiFPN serves as the feature network, which 

takes level 3-7 features {P3, P4, P5, P6, P7} from the 

backbone network and repeatedly applies top-down and 

bottom-up bidirectional feature fusion. These features are 

fed to a class and box network to produce object class and 

bounding box predictions, respectively [36]. Here, a new 

compound scaling method for object detection is 

proposed. It uses a simple compound coefficient ϕ to 

jointly scale-up all dimensions of the backbone network, 

BiFPN network, class/box network, and resolution. Thus, 

for ϕ={1, 2, .., 7}, there are 7 backbone networks of 

width/depth scaling coefficients of EfficientNet, B0 to B6. 

In this work, D0 (ϕ=0) is selected. 

III. EXPERIMENTAL STUDY 

A. Experimental Setup 

The 629 images of the original data set are augmented 

for training Faster R-CNN, YOLOv3, EfficientDet-D0, 
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RetinaNet and MobileNet. Three data augmentation 

techniques are used: rotation (between -22o and +22o), 

brightness (between -55% and +55%) and blur (up to 3.5 

pixels). Thus, the final training dataset contains 2516 

images (629 original and 1887 augmented). YOLOv5 

augments the data online using also three kind of 

augmentation techniques. 

All models conclude to the same number of training 

images. For the validation and testing of the models are 

used 180 and 90 images, respectively. 

All models are implemented in Python 3.7 using 

TensorFlow. The GPU hardware used for training is 

provided by Google Colab [37]. For YOLOv3 and 

YOLOv5, the batch size is 16. Batch size for Faster R-

CNN is 12, for EfficientDet-D0 and MobileNet is 16 and 

for RetinaNet is 8. All the models have been pretrained 

using the COCO dataset [38] and they are retrained with 

the designed dataset to detect vine trunks for 8000 steps.  

The evaluation of the performance of the models to 

detect vine trunks, is established by calculating the 

intersection over union (IU) and the mean average 

precision (mAP). Since the implementation in this work 

refers to real-time vine trunk identification for a 

harvesting robot, the runtime performance of the models 

is also considered crucial and therefore it is evaluated. 

B. Experimental Results  

The experimental results are summarized in Table I. 

As it can be observed from Table I, all models perform 

well and the results obtained range from the same scale. 

EfficientDet-D0 reports the higher mAP value, reaching 

77.9%, with Faster R-CNN competing with very little 

difference, ranging at 77.2%. The higher IU is 89.3% for 

YOLOv3, followed by YOLOv5 with 88.6%. Regarding 

the average inference time per image, the lower time is 

reported for YOLOv5 with 29.6 ms, followed by 

MobileNet with 36 ms.  

 However, YOLOv5, does not report the higher 

performance in either of the two metrics; mAP is 73.2% 

and IU is 88.6%. Yet, the aforementioned evaluation 

metrics for YOLOv5 are high and close to the higher 

reported performances of the rest of the models.  

The IU metric is a method to quantify the percent 

overlap between the target and the prediction bounding 

box. However, IU cannot describe adequately the 

behaviour of the model’s precision-recall curve. For this 

reason, mAP to effectively integrate the area under a 

precision-recall curve, is considered as a more 

representative metric of the model’s performance. In 

other words, mAP expresses the detection accuracy, 

while IU expresses the localization accuracy. In fact, the 

Microsoft COCO challenge’s [23] primary metric for the 

detection tasks evaluates the average precision score 

using IU thresholds ranging from 0.5 to 0.95. In our case, 

IU threshold is set to 0.5. Thus, the mAP is selected as 

our primary performance criterion.  

TABLE I.  IU, MAP AND RUNTIME PERFORMANCE FOR THE 

EXAMINED MODELS 

Model 

Evaluation Metrics 

IU (%) mAP (%) 

Average Inference 

Time per Image 

(s) 

Faster R-CNN 71.0 77.2 1.2519 

YOLOv3 89.3 60.2 0.0804 

YOLOv5 88.6 73.2 0.0296 

EfficientDet-D0 71 77.9 0.038 

RetinaNet 72 72.54 0.087 

MobileNet 73 71.79 0.036 

 For this reason, EfficientDet-D0 may be considered as 

the most efficient model, since it detects the vine trunks 

more precisely, yet, it lags behind in locating them, 

compared to YOLOv3. 

This works addresses the problem of vine trunks 

detection for robot localization and mapping. In this 

context, the requirement is primarily to detect vine trunks 

and then to locate them on images, in real-time.  In this 

context, and in conjunction with the above requirement, 

the most appropriate model would be the one of high 

mAP and low runtime performance.   

Thus, as it can be seen from Table I, the optimal mode 

in our case should be EfficientDet-D0, combining higher 

mAP among all models (77,9%) in 38 ms, which is a very 

satisfying performance for real-time applications. 

Faster R-CNN also displays high mAP (77,2%). 

However, the average inference time per image is 1,2519 

second, which means that, comparatively, Faster R-CNN 

is 32.94 times slower than EfficientDet-D0.  

According to the above, the similar mAP performance 

as Faster R-CNN combined with the large difference in 

average inference time per image, emerges EfficientDet-

D0 as the best detector for the problem under study. 

EfficientDet-D0 achieves mAP of 77.9% and IU of 71%. 

In terms of inference runtime performance, the average 

testing time per image for EfficientDet-D0 is 38 ms, 

which corresponds to 26.3157 frames per second. The 

model achieves high mAP in a very little time. This is 

very important for the selected real-time application, 

since the in-field detection of vine trunks needs to be fast 

and accurate.  

Fig. 4-9. include vine trunk detection results of the 

testing set for all models. Additionally, Fig. 10. illustrates 

the results obtained for all models under the same testing 

image. The ground truth image is the one of Fig. 3.  
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Figure 4.  Detection results on the testing set with Faster R-CNN. 

 

   

   

Figure 5.  Detection results on the testing set with YOLOv3. 
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Figure 6.  Detection results on the testing set with YOLOv5. 

 

   

   

Figure 7.  Detection results on the testing set with EfficientDet-D0. 
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Figure 8.  Detection results on the testing set with RetinaNet. 

 

   

   

Figure 9.  Detection results on the testing set with MobileNet. 
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 10.  Comparative results of all models under the same testing image: (a) Faster R-CNN, (b) YOLOv3, (c)YOLOv5, (d) 
EfficientDet-D0, (e) RetinaNet and (f) MobileNet. Ground truth image is illustrated in Fig.3. 

IV. TRUNK DETECTOR INTEGRATION 

It is worth mentioning that in conjunction with the 

deep learning models, a depth map estimation algorithm 

based on stereoscopic vision, is also applied. The latter is 

to facilitate the robot to locate and navigate towards the 

closest vine trunk and perform the selected agricultural 

operation.  

The optimal detector, EfficientDet-D0, performs at 

high frame rate, of approximately 26 frames per second 

(fps). For the main trunk detection, ARG will use an 

embedded Orbbec Astra stereo camera, mounted in the 

front of the wheeled robot, with limiting frame rate to 30 

fps. However, when the detector will be integrated into 

the ARG, will run on a Jetson TX2 with 8GB memory 

and 59.7GB/s of memory bandwidth. The model 

architecture then, will be further optimized with 

TensorRT optimization. Moreover, using an 

asynchronous parallel execution, i.e. one thread for 

reading the data from the camera, one for running the 

inference and one for rendering the results, could speed 

even more the detection rate. Thus, the final optimized 

streaming trunk detector, is expected to achieve the 

maximum detection performance, as defined by the 

device’s hardware limits. 

The detector will then be applied to the stereo camera 

system. Stereo-vision could benefit from hardware 

shaders and perform the disparity map calculation in real-

time. The proposed detector can be used to extract vine 

trunks’ depth information using the disparity map. The 

detected vine trunks on the stereo images will be 

projected on the disparity map. The depth of each trunk 

could be calculated by computing the depth of the center 

of mass of each detected bounding box. This information 

will be fed to ARG, in order to construct a vineyard map, 

to localize itself and navigate safely towards the nearest, 

or any other, detected trunk.   

More specifically, the detector integration is a two-step 

procedure. The first step of the process is illustrated in 

Fig.11.The front camera of the robot will provide live 

stream, creating the disparity map of each frame. The 

trunk detector model will be applied to the captured 

image frames. The robot is supposed to work only in one 

side of the vineyard, e.g. on the left side. Then, the 

closest trunk on the left side of the robot will be defined. 

The robot will move gently until the closest detected 

trunk will be located on the left edge of the acquired RGB 

image, at the closest possible detectable distance. If the 

robot moves closer to the trunk, following a parallel 

direction along the vineyard corridors, the trunk will no 

longer be on site.  

The main purpose is for the robot to stand parallel to 

the vineyard and with the trunk perpendicular to it, 

centered, so that it can work accurately on it or 

symmetrically with respect to it. For this reason, the 

camera mounted on the robotic arm, sited on the left side 

of the vehicle, will provide lateral vision.  
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Figure 11.  First step of detecor integration process. 

The second step of the process regards the movement 

of the robot to the exact desired position in relation to the 

trunk, based on the live stream of a ZED mini side 

camera mounted on the robotic arm. The process is 

presented in Fig.12 

 
Figure 12.  Second step of detecor integration process. 

The side camera of the robot will provide live stream, 

creating the disparity map of each frame. The Trunk 

detector model will be applied to the frames. The closest 

detected trunk must then be centered in relation to ARG. 

The robot will move adequately until the trunk is finaly 

located on the center of the image and at the closest 

detected distance. Then ARG will start to perform the 

selected agricultutal task. 

V. CONCLUSIONS 

In this work, deep learning methods are investigated to 

accurately determine vine trunks, to facilitate navigation 

and operation plans of a grape harvesting robot. Six 

models are tested on an in-house vine trunks dataset 

owning detection difficulties, such as similarities in 

colour, occlusions and lighting variations. Moreover, the 

detector is combined with a depth map estimation 

algorithm based on stereoscopic vision, to guide the robot 

to the nearest vine trunk. 

Experimental results point out EfficientDet-D0 as the 

most robust detector for the problem under study, able to 

detect vine trunks with mAP of 77.9% in 38 ms. 

Experimental results indicate that the proposed detector 

can be used to determine vine trunks in real-time in field 

operations even when the corridors are heavily occluded, 

to precisely position a harvesting robot and orient its end 

effector for automated viticultural tasks.  

Future work includes increasing the size of the dataset 

with additional images, also considering thermal images, 

and consideration of other state-of-the-art CNN models 

towards investigating and adapting the optimal detector. 

Finally, future work includes the integration of the most 

adaptive and robust detector to ARG’s sensing system. 

The objective is to develop a robot able to interact with 

the real world by means of computation, communication 

and controls. Integration of computational and physical 

units would be the final step for the development of a 

next generation computational CPS able to use intelligent 

methods associated with the physical world, towards 

mechanization of viticulture operations. 
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