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Abstract— During the manufacturing process, high 

productivity and good quality are desired by every 

manufacturer. In this paper, the Response Surface 

Methodology (RSM) has been applied to optimize the 

surface roughness (Ra) and material removal rate (MMR) 

when milling hardened SKD 11 steel under nano-fluid MQL 

condition. The three cutting parameters including cutting 

speed, feed rate, and depth of cut were analyzed along with 

the hardness of the work-piece in order to build an 

empirical model that could predict the surface roughness as 

well as the material removal rate, hence easy to determine 

the optimum values of Ra and MMR. Experiments were 

conducted using the L27 orthogonal array of DOE method 

developed by G. Taguchi from three levels of four input 

factors above. Further analysis of variance (ANOVA) was 

used to evaluate the reliability of the method. Under optimal 

condition, Ra value is 0.249 µm and the MMR value is 

1498.09 mm3/min.  In addition, the feed rate was identified 

as the most influential factor on surface roughness, followed 

by the depth of cut.  

 

Index Terms— surface roughness, hard milling, Hardened 

SKD 11 tool steel, multi-objective optimization, SiO2 

nanoparticles 

 

I. INTRODUCTION 

JIS SKD11 steel is a high-carbon and high-chromium 

alloy tool steel that has good wear resistance, high 

hardness, and strength, especially after heat treatment [1]. 

It is often used for stamping dies, plastic molds, and also 

widely used in cold work die steel. Due to its 

characteristics, hardened SKD11 steel is not suitable for 

traditional machining techniques such as turning, milling, 

grinding, drilling, and so forth. Therefore, it has been 

subjected mostly to electro-discharge machining (EDM) 

[2-4]. In [4], T.Y. Tai and S.J. Lu pointed out that EDM 

is one of the most effective methods to process materials 

with high brittleness, such as hard alloys, quenched steel, 

aluminum alloys, and ultra-hard ceramic materials.  

Hard machining technology (i.e., hard milling) has 

been proved to be an effective alternative to traditional 
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machining [5, 6]. The success of implementing systems 

including the CNC machine, cutting tools and tool 

holders, and the computer-aided design/manufacturing 

system with some characteristics found in a high-speed 

machining center allowed to perform milling process on 

material that has as high as 45 HRC up to 64 HRC [7]. 

Although the development of cutting tools has helped to 

increase the tool life and high precision of the machined 

parts in hard milling [8], still there is a challenge with the 

heat generated during the machining process which led to 

tool wear and less satisfaction in the surface roughness [9, 

10]. The research of The-Vinh Do and Quang-Cherng 

Hsu [11] has shown that the Minimum Quantity 

Lubricant (MQL) application could remarkably help to 

increase the quality of surface roughness, improve tool 

life, reduce tool wear, decrease cutting temperature and 

reduce the cost of lubrication in hard milling. 

In the MQL technique, a small amount of cutting fluid 

less than 50ml/h is prayed with high pressure at the 

cutting zone with the help of a nozzle (i.e., external 

delivery system) [12-14]. Moreover, nanoparticles have 

also been implemented into the lubricant/coolant as the 

state of the art method to enhance the efficiency of the 

cutting fluid or so called aerosol (i.e., mixer of 

lubricant/coolant with air) of MQL.  AK Sharma et al. 

[15] reviewed many researches that used nanoparticles 

such as Al2O3, ND, MoS2, SiO2… in the varied 

machining process. They are proved to have extremely 

good thermal conductivity as well as tribological property 

and viscosity, which lead to the enhancement in the 

performance of MQL [16]. Moreover, using nanoparticles 

in MQL also reduces cost and negative effects on the 

environment [17]. SiO2 nanoparticles, which can generate 

a thin protective film on the machined work-piece surface, 

carry many promising advantages in the milling process 

[15, 18]. Further work on optimizing task is to find 

suitable parameters and adjust other factors of the 

machining process to get the ultimate goal. 

The response surface methodology (RSM) is a widely 

used mathematical and statistical method for modeling 

and analyzing a process in which the response of interest 

is affected by various variables (i.e., independent 

variables) and the objective of this method is to optimize 

the response (i.e., dependent variables) [18-21]. In the 
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milling process, cutting speed, depth of cut, feed rate and 

the hardness of the work-piece can be considered the 

independent variables while the quality characteristic of 

the machined part like its surface roughness can be used 

as the response – the dependent variable. The data are 

collected via different experiments. After that, they are 

put into the regression analysis in the form of a quadratic 

model of RSM. The determined empirical model of RSM 

is capable of predicting the surface roughness (i.e., output) 

with a different set of independent variables (i.e., inputs). 

The adequacy of the model is then verified by statistical 

analysis (ANOVA). The ANOVA quantifies not only the 

effects of each individual but also the interaction effect of 

the inputs on the output. Therefore, this method can 

validate the statistical significance of factors in the 

machining process and draw further conclusions. 

II. EXPERIMENT SETUP 

A brief description of the experiment set up can be 

found in Table I. The milling processes were carried out 

on a Victor V-Center-4 vertical machining center. An 

SKD 11 work-piece was attached to the machining table 

for every experiment. The material compositions of SKD 

11 are shown in Table II. Each work-piece block has 

dimensions of 150mm x 100mm x 40mm. The hardness 

of the work-piece (HRC) and the machining parameters 

including cutting speed (m/min), feed rate (mm/tooth), 

and depth of cut (mm) are presented in Table III. The 

cutting tool was Φ10 TiAlN coated end mill with four 

flutes, rake angle of 12
o
, and the helix angle of 35

o
. The 

based lubricant was cutting oil CT232. SiO2 particles 

with a size of 100nm were chosen to enhance the 

performance of MQL. The flow rate of the mixture was 

set to 50 ml/h and the pressure was 3 kg/cm
2
. The 

concentration of nanoparticles in the fluid was 2 wt%. A 

Noga–MC 1700 nozzle was used for MQL setup with an 

angle of 60
o
. Information on the MQL condition is given 

in Table IV. The surface roughness data was collected via 

Mitutoyo SJ-401 Surface Profilometer. Each experiment 

was repeated three times to eliminate the experimental 

error. 

TABLE I.  HARD-MILLING PROCESS INFORMATION 

Items Description 

CNC Machine  Victor V-Center-4 
Surface roughness measuring instrument Sj-401 

Cutting tool  Φ10 TiAlN 
Work-piece material SKD 11 

Work-piece dimensions 150mm x 50mm x 40mm 

MQL nozzle Noga - MC 1700 

TABLE II.  CHEMICAL COMPOSITION OF SKD 11 TOOL STEEL. 

C Si Mn Ni Cr Mo W V Cu P S 

1.4 - 1.6 0.4 0.6 0.5 11.0 -13.0 0.8 -1.2 0.2 - 0.5 ≤ 0.25 ≤ 0.25 ≤ 0.03 ≤ 0.03 

TABLE III.  CUTTING PARAMETERS WITH LEVELS 

Input factor 
Levels 

1 2 3 

Cutting speed (m/min) 40 60 80 
Feed-rate (mm/tooth) 0.01 0.02 0.03 

Depth-of-cut (mm) 0.2 0.4 0.6 
Hardness-of-workpiece (HRC) 45 50 55 

TABLE IV.  INFORMATION OF MQL CONDITION 

Items Description 

Fluid flow (ml/h) 50 

Pressure (kg/cm2) 3 

Based Lubricant Cutting oil CT232 

Nanoparticles SiO2 particle with a size of 100nm 

Concentration of nanoparticle 2wt % 

 

III. RESULTS AND DISCUSSIONS 

The data collected throughout the experiments are 

presented in Table V. The preset machining parameter 

including the cutting speed (v), the feed rate (f), the depth 

of cut (d), and the hardness of the work-piece (h) are 

selected by the L27 orthogonal array of Taguchi method. 

Accordingly, 27 experiments were carried out to study 

the effect of these parameters on the surface roughness 

Ra. Meanwhile, the values of material removal rate MMR 

can be calculated by the following formula (1) [22]. 

V f z 1000

3.14

ed a
MRR

D

    




 (1) 

Where d is the depth-of-cut (mm), ae is the width-of-cut 

(mm) v is the cutting speed (m/min), f is the feed rate 

(mm/tooth), z is the flute of the cutter, D is the diameter 

of the cutting tool (mm). 
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TABLE V.  THE RESULT OF THE EXPERIMENT 

Runs v (m/min) f (mm/tooth) 
d 

(mm) 
h (HRC) Ra (µm) 

MRR 

(mm3/min) 

1 40 0.01 0.2 45 0.142 101.911 

2 40 0.01 0.4 50 0.19 203.822 

3 40 0.01 0.6 55 0.31 305.732 

4 40 0.02 0.2 50 0.2 203.822 

5 40 0.02 0.4 55 0.31 407.643 

6 40 0.02 0.6 45 0.288 611.465 

7 40 0.03 0.2 55 0.29 305.732 

8 40 0.03 0.4 45 0.287 611.465 

9 40 0.03 0.6 50 0.448 917.197 

10 60 0.01 0.2 50 0.132 152.866 

11 60 0.01 0.4 55 0.234 305.732 

12 60 0.01 0.6 45 0.188 458.599 

13 60 0.02 0.2 55 0.259 305.732 

14 60 0.02 0.4 45 0.211 611.465 

15 60 0.02 0.6 50 0.311 917.197 

16 60 0.03 0.2 45 0.238 458.599 

17 60 0.03 0.4 50 0.35 917.197 

18 60 0.03 0.6 55 0.49 1375.796 

19 80 0.01 0.2 55 0.13 203.822 

20 80 0.01 0.4 45 0.171 407.643 

21 80 0.01 0.6 50 0.21 611.465 

22 80 0.02 0.2 45 0.18 407.643 

23 80 0.02 0.4 50 0.23 815.287 

24 80 0.02 0.6 55 0.37 1222.930 

25 80 0.03 0.2 50 0.302 611.465 

26 80 0.03 0.4 55 0.41 1222.930 

27 80 0.03 0.6 45 0.328 1834.395 

 

In this research, the goal is to minimize the surface 

roughness while maximizing the material removal rate. 

However, the value of MRR can be calculated as in (1) 

after using a set of initial parameters. Therefore, the RSM 

model was focused on predicting the dependent variable 

Ra. The mathematical equation was determined as below: 

 

Ra = 0.831 + 0.00057 v - 16.58 f - 0.569 d - 0.0261 h - 

0.000004 v*v + 73.3 f*f + 0.042 d*d + 0.000200 h*h + 

0.0374 v*f - 0.00353 v*d + 0.000004 v*h + 5.44 f*d + 

0.344 f*h + 0.01871 d*h                                                (2) 

 

Then the predicted values of Ra and MRR are 

determined and compared to the measured values as 

shown in Fig. 1. Fig. 1a visualized the correlation 

between the predicted and the measured values of Ra 

while Fig. 1b visualized the correlation between the 

predicted and the calculated values of MMR. As shown in 

Fig. 1, the experimental and predicted results have a fine 

correlation. Therefore, the mathematical models 

established in the study are reliable. 

Further analysis of variance (ANOVA) was conduct in 

Minitab 17 software to analyze the influence of input 

parameters and the fitness of the model. The P-value 

column in Table VI indicates the significant of each 

parameter of the milling process to the response (i.e., the 

surface roughness) of the model. As long as that value is 

less than 0.05, the corresponding parameter has statistic 

significant. Hence, the feed rate (f) clearly has the most 

effect with a 50.2% contribution to the model, following 

by the depth of cut (d) and the hardness of the work-piece 

(h) with 27.9% and 14.4%, respectively. The total 

coefficient of determination R-sq of the model is 98.3%. 

It means that the model perfectly fits with the measured 

Ra. 
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Figure 1.  (a) Measure Ra vs Predicted Ra; (b) Calculated MMR vs Predicted MMR 

TABLE VI.  ANOVA STATISTICAL TABLE 

Source DF Adj_SS Adj_MS F-Value P-Value %C 

Model 14 0.224267 0.016019 48.90 0.000a 98.3 

Linear 4 0.212103 0.053026 161.86 0.000a 92.9 
v 1 0.000998 0.000998 3.04 0.107 0.4 

f 1 0.114561 0.114561 349.69 0.000a 50.2 
d 1 0.063606 0.063606 194.15 0.000a 27.9 

h 1 0.032939 0.032939 100.54 0.000a 14.4 

Square 4 0.000506 0.000126 0.39 0.815 0.2 
v*v 1 0.000017 0.000017 0.05 0.825 0.0 

f*f 1 0.000323 0.000323 0.98 0.341 0.1 
d*d 1 0.000017 0.000017 0.05 0.825 0.0 

h*h 1 0.000150 0.000150 0.46 0.511 0.1 

2-Way_Interaction 6 0.011658 0.001943 5.93 0.004a 5.1 
v*f 1 0.000631 0.000631 1.93 0.190 0.3 

v*d 1 0.002247 0.002247 6.86 0.022a 1.0 
v*h 1 0.000002 0.000002 0.01 0.936 0.0 

f*d 1 0.001334 0.001334 4.07 0.067 0.6 

f*h 1 0.003328 0.003328 10.16 0.008a 1.5 
d*h 1 0.003939 0.003939 12.02 0.005a 1.7 

Error 12 0.003931 0.000328 - - 1.7 
Total 26 0.228198 - - - 100.0 

R-sq=98.28%  
a Significant  

TABLE VII.  THE RESULTS OF MULTI-OBJECTIVE OPTIMIZATION 

Response Goal 
Optimal values 

Predicted Measured Error (%) 
V f d h 

Roughness Min. 
80 0.0245 0.6 45 

0.278 0.249 11.65 

MRR Max. 1517.54 1498.09 1.3 

Composite desirability = 0.6936 

 

Based on the empirical model, the desirability function 

was applied to extract the optimum values for both Ra 

and MMR as shown in Table VII. 

Since the multi-objective optimization is the goal of 

the research, the achieved result is a trade-off where the 

min value of surface roughness is 0.249 µm and the max 

value of material removal rate is 1498.09 mm
3
/min. The 

machining parameters are set to 80m/min for the cutting 

speed, 0.0245 mm/tooth for the feed rate, 0.6 mm for the 

depth of cut, and the hardness of the SKD 11 work-piece 

is 45 HRC. The composite desirability of 0.69 is a 

reasonable value for the two optimum targets. Additional 

comparison between the predicted and 

measured/calculated values of Ra and MRR shows the 

percentage of error at 11.65% and 1.3% respectively.  

More information on the optimization work can be 

observed in Fig. 2. 

The plot helps to visualize and analyze how different 

experimental settings affect the predicted responses of the 

model. The vertical red lines on this graph and the red 

parameter values are fixed on the composite optimal 

value. The trade-off characteristic of this value is clearly 

shown when comparing the two curves of the depth of cut 

(d). 
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Figure 2.  Optimization plot for surface roughness and MRR 

IV. CONCLUSION 

This research mainly focused on optimizing the surface 

roughness and material removal rate in hard milling of 

hardened SKD 11 steel under nanofluid MQL condition 

by applying the Taguchi method and Response Surface 

methodology. The experimental results indicate that: 

- The mathematical model of Response Surface 

methodology built to find the minimum value of the 

surface roughness can obtain the reliability of up to 

98.28%. 

- The feed rate is the most influential factor in Ra 

value, following by the depth of cut. 

- The multi-objective optimization for the surface 

roughness Ra and the material removal rate MMR can 

only be achieved with a trade-off. The composite 

desirability value of 0.69 is acceptable as the Ra value is 

only 0.249 µm and the MMR value is 1498.09 mm
3
/min. 
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