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Abstract— Modern bar and wire manufacturing plants are 

constantly seeking to achieve lower costs, higher product 

quality, higher efficiency, and greater flexibility, which in 

turn require a significant increase in the degree of 

automation. The lack of accurate models and measurements 

of process essential parameters affects the realization of 

innovative control strategies. Data-driven approaches have 

received a lot of attention from control engineering 

researchers owing to their outstanding performance as 

function approximators. Supervised, unsupervised, and 

reinforcement learning approaches have been successfully 

employed in system identification problems and control 

systems design. Reinforcement learning holds advantages 

over the other approaches owing to its ability to learn 

without having the desired ground truth state. In this paper, 

a data-driven model-free reinforcement learning algorithms 

are developed for model parameters identification and roll 

gab control of a bar and wire hot rolling process. The 

reinforcement learning algorithms are based on the Deep 

Deterministic Policy Gradients algorithm with the actor-

critic structure. The validation results of the developed 

solutions showed high performance and the agents were 

able to generalize to unseen scenarios.  

 

Index Terms— hot rolling, bar and wire process, roll gap 

control, parameter estimation, reinforcement learning, Deep 

Deterministic Policy Gradients 

 

I. INTRODUCTION 

Profile rolling is considered to be one of the oldest 

forming processes in metal forming where products such 

as bar, wire, beams, etc. are produced. In bar and wire hot 

rolling process, the material is processed at a temperature 

above its recrystallization temperature, which reduces the 

rolling forces and increases the material forming capacity 

[1]. Nevertheless, the forming process is rather complex 

owing to the nature of roll passes used (e.g., diamond, 

round, oval, square, etc.), the rolling technology 

employed (e.g., two, three, and four roll technologies), 

and the wide range of input materials which leads to 

cross-sectional variations and thus deteriorate end 

product tolerances [2]. This imposes a lot of challenges to 

construct mathematical models that describe the 

underlying dynamics accurately. 

                                                           
 Manuscript received January 4, 2021; revised March 11, 2021. 

The forming process can be described by calibration 

methods and stress distribution in the roll gap. The 

calibration methods are used to calculate the roll gab and 

material geometry. It can be classified into regular, 

simple irregular, and complicated irregular calibration [1]. 

In simple irregular calibration, the equivalent rectangle 

method can be used for simplification based on Lendl [3] 

or Hensel [4] for two roll technology and C. Overhagen, 

and P. J. Mauk [5] for three roll technology. The 

information obtained from the calibration method along 

with stress distribution in the roll gap are used as a basis 

for material spread, roll force, and torque calculations. 

For the calculation of the roll force and torque, several 

models are available [5-8]. Most of the developed models, 

however, are transferred from the theory of flat rolling, 

where the roll pass is converted into a rectangle of equal 

area for simplification. These models are uncertain owing 

to their inaccurate representation of process physics as 

well as unmodelled dynamics. 

The lack of accurate models and measurements of 

process essential parameters affects the realization of 

innovative control strategies for bar and wire hot rolling 

processes. Thus, an experienced operator is often used to 

control the entire process and intervene from time to time 

to adjust the process parameters. This makes the 

performance of the process entirely dependent on the 

experience of the operator which is prone to many 

limitations such as understanding the underlying process 

physics and making real-time decisions. This all puts 

engineers and operators of this plant in front of many 

challenges to cope with the higher degree of complexities 

and uncertainties of such highly nonlinear and coupled 

dynamic systems. 

Dynamic system identification is concerned with 

model structure and parameter identification problems. 

Based on prior information, models can be categorized 

into white-box, gray-box, and black-box models [9]. The 

identified models are used for system output prediction 

and control in a wide variety of engineering applications. 

The identification process of complex dynamic systems, 

however, is challenging owing to their nonlinear, 

dynamic characteristics, and the lack of physical insight 

in many plants. This poses a major challenge to classical 

identification methods to obtain optimal results. 
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Recent advances in deep learning have drawn 

researchers’ attention in control engineering field to its 

outstanding performance as function approximators. 

Supervised, and unsupervised methods have been 

employed in system identification problems and control 

systems design. In [10], the authors proposed an 

unsupervised learning approach for the identification of 

Piece Wise Smooth Hybrid Systems (PWS-HS). The 

authors in [11] designed three neural networks, each with 

three layers for system identification and optimal 

controller design of unknown discrete-time nonlinear 

systems. W. Yu and X. Li [12] examined the stability of 

dynamic neural networks in the identification of 

nonlinear systems using passivity theory. In [13], the 

authors designed a neural network with a single hidden 

layer for the identification of discrete-time non-linear 

systems.  Reinforcement Learning (RL) algorithms have 

also been successfully employed in system identification 

and controller design. In contrast to supervised and 

unsupervised learning, reinforcement learning learns by 

interacting with the environment and taking actions that 

maximize a cumulative reward [14].  In [15], the authors 

proposed a Continuous Action Reinforcement Learning 

Automata (CARLA) for the identification of multiple-

input multiple-output (MIMO) systems. The authors in 

[16] designed a low-level hover controller for a quadrotor 

using model-based reinforcement learning. Other 

implementations of reinforcement learning in the 

identification and control of dynamic systems can be 

found in [17-22]. 

Motivated by the aforementioned problems and work, 

in this paper, novel reinforcement learning algorithms are 

developed for model parameter identification and roll gab 

control of a bar and wire hot rolling process. The main 

advantage of reinforcement learning is its ability to learn 

without having a model of the environment and the 

desired model output. To the best of our knowledge, this 

is the first employment of reinforcement learning 

methods in the identification and control of bar and wire 

hot rolling processes. The performance of the trained RL-

Agents is evaluated using the regret metric. The identified 

process model is evaluated in simulation by measuring 

the overall identification error. Further, the effectiveness 

of the roll gap controller is tested in simulation. 

II. METHODS 

The nature of the forming process in bar and wire hot 

rolling processes poses a major challenge to construct 

models that represent process dynamics accurately. In 

[23], we presented a parametric dynamic model for the 

finishing mill stand block in a bar and wire hot rolling 

process. The mill stand block consists of six individually 

driven mill stands with 3-roll technology. The model 

structure is built using the physical insights of the process, 

i.e. white-box model. The model parameters, however, 

are not precisely known, and thus they must be estimated 

using observations. In this work, gray-box model is 

adopted where reinforcement learning algorithms are 

used to compensate for model inaccuracies using 

measured data from the real plant. The algorithm is used 

to adapt three essential process parameters; namely kappa, 

roll force, and torque. The dataset consists of multiple 

time series for 100CR6 material, each represents a 

process parameter measurement, e.g. input material cross-

sectional area, roll gab, roll force, motor toque, motor 

angular velocity, etc. 

 

Figure 1. Roll gap geometry. 

In bar and wire hot rolling process, there is a high 

demand for improved control concepts to reduce 

downtime and improve product quality and tolerances. 

The output material cross-sectional area and tolerances 

are highly influenced by many factors, e.g. roll gab of the 

mill stand, interstand tension, material temperature, etc. 

An experienced operator is often used in real plants to 

control the end product cross-sectional area and 

tolerances based on optimized setting values which are 

chosen based on experience. The optimized setting values 

include roll gab, motor angular velocity, and roll force 

values. In this paper, we present a data-driven model-free 

intelligent roll gab controller using reinforcement 

learning. The process optimized setting values are used as 

the initial setpoints for the process model. 

To apply reinforcement learning methods to 

continuous systems, the algorithms must deal with 

continuous action and state spaces. Therefore, Deep 

Deterministic Policy Gradients (DDPG) algorithm with 

the actor-critic structure is employed, which can handle 

high-dimensional continuous action and state space. The 

performance of the trained RL-Agents is evaluated using 

the regret metric. The identified process model is 

evaluated in simulation by measuring the overall 

identification error. Further, the effectiveness of the roll 

gap controller is tested in simulation. 

III. BAR AND WIRE PROCESS MODEL 

The process model presented in [23] is based on 

Lippmann and Mahrenholtz roll model [8], where the roll 

pass is converted into a rectangle of equal area for 

simplification. The roll gap and material geometry are 

calculated using the equivalent rectangle method [1]. The 

roll force P and torque M can be calculated, as in: 

 P=b kep √R ∆h ⋅ fp. (1) 

 M=b keM R ∆h ⋅ fM. (2) 

Where b is the material width, R is the roll radius, ∆h is 

the change in height, kep  is the yield stress, keM  is the 

mean yield stress for a forming step, and fp ,  fM  are 

auxiliary functions, which are dependent on the 
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compressive stresses in the rolling direction, strain, and 

neutral point angle. 

Throughout the rolling process, the rolled stock enters 

the mill stand with a cross-sectional area A0  and exits 

with a cross-sectional area A1 . The reduction in cross-

sectional area results from the applied pressure forces 

within the roll gap. The reduction in material cross-

sectional area is followed by an increase in material speed. 

Throughout the forming zone, one encounters three 

different and important velocities: the circumferential 

speed of the rolls Vu, the input speed of the rolling stock 

V0  and the exit speed V1.  In the entry section, the roll 

circumferential speed exceeds the input material speed V0. 

The material speed then gradually increases as it 

progresses through the roll gap until it reaches the same 

speed as the rolls at the neutral point [1]. As the stock 

progresses beyond this point, its speed gradually 

increases beyond the roll speed. As there is no mass 

exchange with the environment, the mass remains 

constant before and after the forming process. For 

constant volume flow rate, 

 V ̇ = V0 A0 = V1 A1= Constant. (3) 

 V1= (1 + κ) Vu. (4) 

 κ =
AF

A1
cos(αF) - 1. (5) 

The relationship between the circumferential speed of 

the rolls Vu and the exit speed of the rolling stock V1 can 

be identified by (4) and (5), where AF  is the material 

cross-sectional area at the neutral point and αF  is the 

neutral point angle. 

IV. REINFORCEMENT LEARNING 

 

Figure 2. The learning scheme of the reinforcement learning algorithm. 

 

Figure 3. DDPG training architecture. 

Reinforcement Learning (RL) is an area in machine 

learning in which the model (Agent) learns the optimal 

actions that maximize a cumulative reward R by 

interacting with the environment [24]. Fig. 2 illustrates 

the learning scheme of the reinforcement learning 

algorithm, where At is the action executed by the agent 

based on its current state St , and makes it transition to 

state St+1. The states can be discrete or continuous based 

on the system structure. 

Reinforcement learning methods can be categorized 

into Model-Free and Model-Based algorithms. In Model-

Based learning, the optimal policy is chosen based on the 

learned internal model of the system. On the other hand, 

Model-free learning uses experience for setting up the 

optimal policy without having an environment model. 

Based on the nature of the environment different RL 

algorithms can be chosen, e.g. Q-Learning, State-Action-

Reward-State-Action (SARSA), Deep Q-Network (DQN), 

and Deep Deterministic Policy Gradient (DDPG). In 

contrast to DQN, Deep Deterministic Policy Gradient 

(DDPG) [25] can be employed in continuous action space. 

The algorithm uses actor-critic architecture where the 

actor outputs an action based on the input state. The critic 

function criticizes the action based on the state and 

reward. DDPG consists of four networks; namely actor, 

critic, target actor, and target critic networks, Fig. 3. 

To evaluate the performance of the agents, regret 

metric is used. Regret is the difference between the 

learned policy cumulative reward and the cumulative 

reward for the optimal policy (6) [26]. In case of optimal 

policy, the maximum reward is considered for the regret 

calculation. The agent with a smaller regret value is the 

best. 

 RT= maxaT∈A

1

T
∑ r(at)T

t=1 - 
1

T
∑ r(ȧt)T

t=1 . (6) 

Where R is the regret value calculated for an episode with 

T steps, r(at) represents the reward gained for the optimal 

policy and r(ȧt) represents the reward gained for learned 

policy. 

V. MODEL PARAMETER ADAPTATION 

Three essential parameters are adapted using DDPG 

algorithm; namely kappa, roll force, and torque. The 

DDPG Algorithm has an actor-critic network 

configuration. The actor-critic network of the kappa, roll 

force, and torque agents have the same architecture. 

 

Figure 4. Kappa adaptation. 

The actor-network takes an input of size 5X1 and 

consists of four fully connected layers with 80, 60, 40, 

and 1 unit respectively, each is followed by an activation 

layer. The first three activation layers have ReLU 

activation and the last layer has Tanh activation. The 
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critic network has two branches; namely State and Action 

branches. The state branch takes an input of size 5X1 and 

consists of two fully connected layers with 80, 60 units 

respectively and one ReLU activation layer. The action 

branch takes as an input the action taken by the actor-

network with size 1X1 which is then followed by a fully 

connected layer with 60 units. The output of both 

branches, i.e. State and Action branches, are then 

concatenated and the output is given as an input to ReLU 

activation layer, which is followed then by a fully 

connected layer with one unit. 

As the state and action spaces are continuous, a 

continuous reward function (7) is used, where T is the 

error tolerance and E is the error of the parameter being 

adapted, i.e. flow rate Eq, roll force EF, and roll torque 

EM [27]. 

 R=√(
T

50
) -√(

|E|

50
). (7) 

A. Kappa Adaptation 

Since the material moves within the system as an 

elastic body and experiences spatial and temporal 

changes similar to flowing fluids, the conservation of 

mass law from fluid mechanics holds (3). In the process 

model presented earlier the material output volume flow 

rate deviates from the input material flow rate. To ensure 

a constant volume flow rate, Kappa is adapted with the 

help of DDPG algorithm. In this case, the kappa agent 

provides an action based on the observed states which is 

used to adapt the kappa value calculated by the model, 

see Fig. 4. The observed states are input material cross-

sectional area, input material speed, motor speed, roll gap, 

and flow rate error. Five agents in total are used to adapt 

the kappa parameter of the first five mill stands in the 

mill stand block. The sixth mill stand is not used in our 

dataset. 

The agents are configured to collect the maximum 

reward, i.e. long-term reward over an episode by setting 

discount factor to 0.99. The actor and critic networks are 

trained from the random samples stored in the experience 

replay buffer. The experience replay buffer size is set to 

1000000. And the mini-batch size is set to 256. The target 

smooth factor (𝜏) to transfer the weights to the target 

network is 0.001. The exploration factor of the agent is 

determined using the noise factor which is set to 0.01. 

Each episode starts when the material enters the mill 

stand and terminates when the agent has generated 

actions for 1.5 secs (1500 steps). The training is stopped 

when the agent achieves an average of 50 episodes’ 

reward of 100 or above. 

To evaluate the performance of the trained Kappa 

agents, they are deployed in simulation, see Fig. 5. The 

identified process model is evaluated by measuring the 

overall identification error (8), where ‖𝑥𝑟𝑒𝑓‖2𝑎𝑛𝑑 ‖𝑥‖2 

are the norms of the identified and true system [28]. The 

kappa agents achieved an identification error close to 

zero. 

 E𝑟 =  
‖xref‖2- ‖x‖2

‖x‖2
. (8) 

To evaluate the model performance further, regret is 

calculated for the five agents. The five agents achieved 

regret score of 0.24, 0.87, 1.38, 0.55, and 0.7 respectively.

 

Figure 5. Adapted flow rate using DDPG Kappa agents. 

 

B. Roll Force Adaptation 

In bar and wire hot rolling process, the material is 

subjected to different forces within the roll gap; namely 

the resultant pressure exerted over the area of contact and 

resultant friction forces. The resultant force, i.e. roll force 

is normal to the area of contact. An accurate prediction of 

the roll force depends mainly on the stress-strain 

distribution within the roll gap. 
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Figure 6. Roll Force adaptation. 

To adapt the deviation observed in the calculated roll 

force in each mill stand, five DDPG agents are used. In 

this case, the roll force agent provides an action based on 

the observed states which are used to adapt the roll force 

value calculated by the model, see Fig. 6. The observed 

states are input material temperature, input material speed, 

actual motor speed, input material cross-sectional area, 

and the roll gap. 

The roll force agent training configuration remains the 

same as kappa agents with a slight variation in the 

discount factor, which is set to 0.01 and exploration is set 

to 0.9 with a decay rate of 0.02. All the agents are trained 

for 1 sec (1000 steps). The agent training is stopped when 

the agent achieves the average of 5 episodes’ reward of 

200 or above. The agent training is started when the 

materials enter the respective mill stand. 

To evaluate the performance of the trained Roll force 

agents, they are deployed in simulation. The agents 

showed high performance with a small deviation from the 

measured roll force, see Fig. 7. The roll force agents 

achieved an identification error close to zero. To evaluate 

the model performance further, regret is calculated for the 

five agents. The five Roll force agents achieved regret 

score of 1.32, 0.61, 0.97, 0.93, and 0.87 respectively. 

 

Figure 7. Adapted roll force using DDPG roll force agents. 

 

C. Roll Torque Adaptation 

The dataset obtained from the real plant does not have 

roll torque measurement data. To adapt the calculated roll 

torque (2) we used roll force measurement value to back-

calculate the roll torque (9), where ld is the compressed 

length and Fa is measured roll force. 

 Mr= 0.5 * ld * Fa. (9) 

To adapt the deviation observed in the calculated roll 

torque in each mill stand, five DDPG agents are used. In 

this case, the roll torque agent provides an action based 

on the observed states, which are used to adapt the roll 

torque value calculated by the model, see Fig. 8. The 

observed states are input material temperature, input 

material speed, actual motor speed, input material cross-

sectional area, and the roll gap. The roll torque agents’ 

configuration remains the same as the roll force agents. 

The training is stopped when the agent achieves the 

average of 5 episodes’ reward of 150 or above. 

 

Figure 8. Roll torque adaptation. 

To evaluate the performance of the trained roll torque 

agents, they are deployed in simulation. The agents 

showed high performance with a small deviation from the 

back-calculated roll torque, see Fig. 9. The roll torque 

agents achieved an identification error close to zero. To 

evaluate the model's performance further regret is 

calculated for the five agents. The five Roll torque agents 

achieved a regret score of 0.8, 0.9, 1.2, 1.0, and 0 

respectively. 
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Figure 9. Adapted roll torque using DDPG roll torque agents. 

 

VI. ROLL GAP CONTROL 

The output material cross-sectional area and tolerances 

are highly influenced by many factors, e.g. roll gab of the 

mill stand, interstand tension, material temperature, etc. 

An experienced operator is often used in real plants to 

control the end product cross-sectional area and 

tolerances based on optimized setting values. The setting 

values are selected based on trial, error and the 

experience of the operators and engineers of this plant, 

which makes them vulnerable to being inaccurate and 

unreliable. Pass scheduling is used to determine the 

optimum number of passes to obtain a product with 

specific dimensions [29]. It takes into consideration the 

desired reduction percentage in each pass and the shape 

and size of the roll pass. Nevertheless, the method is not 

accurate as the setting values are obtained based on trial 

and error experience. 

To reduce the downtime and improve product quality 

and tolerances, we propose an intelligent roll gab control 

using DDPG algorithm with actor-critic network 

configuration. The roll gap agent provides five control 

actions based on the observed states “20 states” which are 

used to adapt the roll gap setpoint value of each mill 

stand, see Fig. 10. The observed states are the roll force, 

roll torque, output temperature, and the cross-sectional 

area error for stands 1 to 5. The first three observations 

for all stands are available in the real plant dataset. In the 

process under study, however, there is no measurement 

available for the material cross-sectional area between the 

mill stands. Two sensors are only available which are 

placed at the beginning and the end of the mill stand 

block. To overcome this problem, the desired reduction 

percentage of the material cross-sectional area in each 

mill stand is used. The percent reduction of area for each 

mill stand can be easily obtained from the roll gap setting 

values available in the dataset and the roll gap model 

using (10), where  A0 is the original cross-sectional area 

of the material and Ar is the material cross-sectional after 

reduction. With the percent reduction of area, the output 

cross-sectional area error can be distributed to the five 

mill stands. 

 Percent reduction of area= 
Ao-Ar

Ao
. (10) 

 

Figure 10. DDPG roll Gap Controller. 

As mentioned earlier the roll gab DDPG-Agent has an 

actor-critic network configuration. The actor-network 

takes an input of size 20X1 and consists of four fully 

connected layers with 100, 80, 60, and 5 units 

respectively, each is followed by an activation layer. The 

first three activation layers have ReLU activation and the 

last layer has Tanh activation. The critic network has two 

branches; namely State and Action branches. The state 

branch takes an input of size 20X1 and consists of two 

fully connected layers with 100, 80 units respectively and 

one ReLU activation layer. The action branch takes as an 

input the action taken by the actor-network with size 5X1 

which is then followed by a fully connected layer with 80 

units. The output of both branches, i.e. State and Action 

branches are then concatenated and the output is given as 

an input to ReLU activation layer which is followed then 

by a fully connected layer with one unit. As the state and 

action spaces are continuous, a continuous reward 

function (7) is used. 
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The agents are configured to collect the maximum 

reward, i.e. long-term reward over an episode by setting 

the discount factor to 0.99. The actor and critic networks 

are trained from the random samples stored in the 

experience replay buffer. The experience replay buffer 

size is set to 1000000. And the mini-batch size is set to 

256. The target smooth factor (𝜏) to transfer the weights 

to the target network is 0.001. The exploration factor of 

the agent is determined using the noise factor which is set 

to 0.05. Each episode starts when the material enters the 

last mill stand and terminates when the agent has 

generated actions for 1 second (1000 steps). The training 

is stopped when the agent achieves an average of 50 

episodes’ reward of 200 or above. Further, the agent is 

trained for an Area in the range of 38.5 to 41.5 𝑚𝑚2. 

To evaluate the performance of the trained roll gap 

agent, the agent is deployed in simulation. Fig. 11 

illustrates the roll gap controller response for a setpoint 

change. The roll gap controller achieved a steady-state 

error of 0.12. Fig. 12 depicts the system output cross-

sectional area for multiple setpoint changes. Further, the 

roll gap controller is tested against disturbances and was 

able to suppress disturbances with a slight increase in the 

steady-state error. To evaluate the roll gap agent 

performance further, regret is calculated. The agent 

achieved a regret score of 0.17. 

 

Figure 11. Roll gap controller response for setpoint change. 

 

 

Figure 12. System output cross-sectional area for multiple setpoint 
changes. 

VII. CONCLUSIONS 

Although bar and wire hot rolling process is one of the 

oldest forming processes, it still lacks models that 

describe their underlying dynamics accurately. Most of 

the developed models assume a rectangle roll pass with 

an equal area for simplification, similar to flat rolling. 

These models, however, are uncertain owing to their 

inaccurate representation of process physics as well as 

unmodelled dynamics. Further, there is a high demand for 

improved control concepts to reduce downtime and 

improve product quality and tolerance. In this paper, 

gray-box model is adopted where reinforcement learning 

algorithms are employed to compensate for model 

inaccuracies using real plant measurement data. In 

addition, we presented an intelligent roll gab controller to 

reduce downtime and improve product quality and 

tolerance. The RL-agents are based on the Deep 

Deterministic Policy Gradients algorithm with the actor-

critic structure, which can handle high-dimensional 

continuous action and state space. The developed DDPG 

agents showed high performance in model parameter 

identification achieving an overall identification error 

close to zero. Further, the roll gap controller was able to 

track setpoint changes and reject disturbances with a 

slight increase in the steady-state error. 

In our future research, we intend to examine RL-agents 

with dynamic network architectures, e.g. Long Short-

Term Memory (LSTM). Further, we will generalize the 

DDPG agents for different materials and mill stand block 

configurations. 
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