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Abstract—Indoor localization remains a difficlut problem 

due to the lack of global positioning facilities. In this paper, 

we present an indoor localization system based on tightly 

coupling the stereo camera and the inertial measurement 

unit (IMU). To achieve the correct fusion, we strictly 

synchronized the sensors by compensating for all of system 

delays, including the varied exposure time of camera. The 

calibration datasets were carefully recorded to obtain the 

exact model of the stereo camera as well as the relationship 

between the camera and the IMU. After preparing, we 

performed the localization by utilizing the keyframe-based 

visual-inertial odometry. This algorithm works by 

minimizing the IMU error jointly with the camera 

reprojection, to get an optimal estimation of robot states. 

The visual landmarks are calculated by keypoint matching 

and triangulation between current frames and keyframes. 

The keyframes are selected to view keypoints from different 

angles to improve the depth uncertainty of landmarks. The 

algorithm was put into practice by an embedded computer 

which has enough processing ability, while presented in a 

small size for convenient deployment on mobile robots. The 

experimental results indicated that the developed system 

could achieve sufficient accuracy and robustness under real-

world conditions.
 
 

 

Index Terms—visual-inertial odometry, stereo camera, IMU, 

time synchronization, indoor localization, mobile robot 

 

I. INTRODUCTION 

Many mobile robots rely on their location information 

to operate autonomously. In indoor environments without 

any global positioning systems, a solution of 

Simultaneous Localization and Mapping (SLAM) [1]-[3] 

is required. In recent years, vision-based SLAM 

algorithms, or Visual Odometry (VO), are widely 

researched due to the popularity and cost-efficiency of 

cameras [4]-[6]. However, the low update rate caused by 

high computational cost usually makes it difficult for VO 

systems to track fast and dynamic motions. Integrating 

the inertial measurement unit (IMU) into the system 

could solve this drawback. By propagating the states in 

between two update cycles using IMU, the system could 

produce an approximate prediction that helps the 

estimation converge with higher precision and robustness. 

This methodology is known as Visual-Inertial Odometry 

(VIO). 

                                                           
Manuscript received February 17, 2020; revised March 13, 2020. 

Consider the level of integration, we can divide the 

VIO systems into loosely and tightly coupled. In loosely 

coupled systems, each sensor separately estimated its 

states and the fusion only happens at final stage. The 

advantage of this method is the simple design where 

sensors could be combined as modules without changing 

the inside operation. For instance, the work in [7] fused 

the output of the SVO algorithm [6] with the IMU 

estimator by using the Multi-Sensor Fusion approach [8]. 

The quadrotor low-level controller PIXHAWK [9] 

loosely integrated vision and IMU using the Extended 

Kalman Filter (EKF). However, the lack of consideration 

of internal relationships between sensors makes the 

loosely integrated systems not achieve high accuracy. 

Recent studies focused on tightly coupled systems, where 

the estimation is performed based on constraints between 

sensors to achieve the optimal result. The ROVIO 

framework [10] tightly fused the sensors by means of an 

Iterated Extended Kalman Filter (IEKF). In contrast, the 

optimization-based OKVIS method [11] jointly estimated 

the IMU and camera in a combined cost function. The 

comparison in [12] shown that tightly integrated visual-

inertial systems exhibit superior accuracy compared to 

the loosely ones under a same condition.  

Challenges of building a tightly coupled VIO systems 

comes from its complexity. First, all sensors must be 

strictly synchronized in time. When time delay exists, a 

sensor state would be wrongly estimated because it 

relates to the other sensor data. Similarly, intrinsic and 

extrinsic parameters of sensors should be accurately 

calibrated to avoid estimation error. The algorithm needs 

to be correctly configured to achieve good performance. 

Finally, the system hardware should be built with enough 

processing power to run the algorithm, but still stay in a 

compact form to deploy on mobile robots. 

In this work, we gradually handle those challenges. 

Particularly, we proposed a time synchronization method 

that explicitly derives each time delay in the system and 

compensates for them. The datasets for calibration were 

recorded according to specific criterions. We utilized the 

OKVIS [11] method to be the VIO algorithm. The 

method is based on batch optimization the reprojection 

and IMU errors to update the robot states. Its front-end 

employed the keyframe approach, keeping keyframes and 

current frames in a bounded optimization window.  

The remaining of this paper is organized as follows. 

Section II describes the method of time synchronization 
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and sensor calibration. Section III presents the visual-

inertial odometry algorithm. Experimental setup and 

results are shown in Section IV. Finally, we give the 

research conclusion in Section V. 

II. SYSTEM SYNCHRONIZATION AND CALIBRATION 

A. Time Synchronization 

Time synchronization is a crucial demand in tightly 

coupled systems where all sensors are jointly estimated. 

To start with, we program the IMU board to generate a 

periodic pulse signal for external triggering the stereo 

camera. The trigger signal uses the same clock source 

with the IMU polling, but is prescaled to match the 

camera framerate. Sensor data is timestamped at the 

received time on the computer. However, these 

timestamps have been delayed from the true timestamps 

due to camera shuttering, IMU filtering and data 

transmission. Consequently, the IMU and camera 

timestamps are misaligned. To solve this problem, we 

proposed a method that calculates the system delays, 

shifts the trigger pulse and corrects the timestamps to the 

synchronized position, as shown in Fig. 1. 

 

Figure 1. Time synchronization scheme between IMU and camera. Vertical bars mark the timestamps when data is received. Triangles show the true 
timestamps when the sensors capture the world. Trigger pulses are visualized by falling edges. Blue indicates the original trigger signal and camera 

data with exposure delay, while red shows the synchronized ones. IMU data is colored purple. The yellow rectangle marks a synchronized IMU-

camera data pair. 

On the symbol of timestamp 𝑡, let the subscripts 𝑟, 𝑞, 𝑝 

stand for the IMU data, the trigger pulse and the camera 

data, respectively. Additionally, superscripts represent the 

timeline where 𝑡  is expressed, including the IMU 

received time 𝐼, the camera received time 𝐶 and the true 

world time 𝑊. We define the system delays with respect 

to the world time as: 

 𝑇𝑑1
≔ 𝑡𝑟

𝐼 − 𝑡𝑞
𝑊, 𝑇𝑑2

≔ 𝑡𝐼 − 𝑡𝑊 = 𝑡𝑟
𝐼 − 𝑡𝑟

𝑊, (1a) 

 
𝑇𝑑3

≔ 𝑡𝐶 − 𝑡𝑊 = 𝑡𝑝
𝐶 − 𝑡𝑝

𝑊 =
𝑇𝑠ℎ𝑢𝑡𝑡𝑒𝑟

2
, (1b) 

where 𝑇𝑑1
 denotes the difference in transmission time 

between IMU and camera to the computer, which also is 

the difference from the trigger pulse to its contemporary 

IMU data; 𝑇𝑑2
 denotes the internal filter delay of IMU; 

and 𝑇𝑑3
 indicates the image delay which is a half of 

camera shutter time 𝑇𝑠ℎ𝑢𝑡𝑡𝑒𝑟 . Naturally, timestamping an 

image at its middle exposure will best represent the 

average motion captured.  

To find the system delays, we need to calculate the time 

differences: 

 
𝑑𝐿 ≔ 𝑡𝐼 − 𝑡𝐶 =

−𝑇𝑠ℎ𝑢𝑡𝑡𝑒𝑟

2
+ 𝑇𝑑2

, 
(2a) 

 𝑑𝑆 ≔ 𝑡𝑟
𝐼 − 𝑡𝑝

𝐶 = −𝑇𝑠ℎ𝑢𝑡𝑡𝑒𝑟 + 𝑇𝑑1
, (2b) 

where 𝑑𝐿 is the difference between the IMU and camera 

timeline, 𝑑𝑆  is the difference between the IMU and 

camera received timestamp. We simply obtain  𝑑𝑆  from 

the value of 𝑡𝑟
𝐼  and 𝑡𝑝

𝐶 . 𝑇𝑠ℎ𝑢𝑡𝑡𝑒𝑟  is read from the camera 

because the light condition changes continuously. 

Moreover, 𝑑𝐿  are estimated by employing the temporal 

calibration function of the Kalibr toolbox [13]. From the 

above values, we found the system delays 𝑇𝑑1
, 𝑇𝑑2

 and 

𝑇𝑑3
 as well as the true timestamps 𝑡𝑟

𝑊 and 𝑡𝑝
𝑊. Then, we 

can align the camera and IMU timestamps by shifting the 

trigger pulse for an appropriate period 𝑇𝑡𝑟𝑖𝑔 as: 

 𝑇𝑡𝑟𝑖𝑔 ≔ 𝑡𝑞𝑎
𝑊 − 𝑡𝑞

𝑊 = 𝑇𝑎 − 𝑑𝐿 + 𝑑𝑆, (3) 

where 𝑡𝑞
𝑊  and 𝑡𝑞𝑎

𝑊  denotes the original and modified 

trigger timestamps. Instead of synchronizing at the first 

IMU timestamp 𝑡𝑟
𝑊, we choose a later timestamp 𝑡𝑟𝑎

𝑊 to 

keep 𝑇𝑡𝑟𝑖𝑔  always positive for simple implementation. 

The alignment offset, 𝑇𝑎 , is a constant multiple of the 

IMU cycle but not larger than the camera sampling time.  

B. Sensor Calibration 

Fig. 2 illustrates the calibration setup of the visual 

inertial sensor. ℱ𝒜  denotes the coordinate frame of 

calibration pattern. ℱ𝒞1
, ℱ𝒞2

 mark the coordinate frame of 

stereo cameras, and ℱℐ  stands for the IMU coordinate 

frame. Since the sensors are rigidly mounted, the 

transformations among ℱ𝒞1
, ℱ𝒞2

 and ℱℐ  are considered 

invariants. The calibration is divided into two stages: 

camera-camera calibration that estimates the camera 
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parameters, and camera-IMU calibration that estimates 

the camera-IMU transformation.  

 

Figure 2. Coordinate frames of visual inertial sensors and calibration 
pattern. The calibration pattern is formed by AprilTag [14]. 

In the camera-camera stage, we record a dataset of 

stereo image capturing the motion of calibration pattern 

in front of the standing-still camera. To obtain a good 

calibration, we move the pattern to different positions and 

orientations while passing it through the entire image area. 

Once again, we employ the Kalibr toolbox [13] to 

compute the calibration. The toolbox will estimate the 

intrinsic camera model, 𝐡(. ) , and the stereo 

transformation, 𝐓𝒞1𝒞2
, based on the pinhole camera model 

combined with equidistant distortion model. 

For the camera-IMU calibration, a dataset is collected 

by waving the sensor pair in front of the fixed pattern. 

The motion should be smooth and cover all the IMU 

linear and angular axes with sufficient speed to ensure 

that the IMU measurement is well observed. Besides, the 

camera needs good light condition and low shutter time to 

avoid blurring images. To provide the IMU noise 

characteristics for the toolbox, we conduct an experiment 

placing the IMU in standstill for 5 minutes and inspecting 

the data, as the real noises are usually larger than those 

specified in the datasheet. Finally, the Kalibr toolbox [13] 

estimates the camera-IMU transformation 𝐓𝒞1ℐ  together 

with the time-varying IMU pose, accelerometer and 

gyroscope biases in a batch optimization, where the IMU 

pose is represented by B-splines and biases are modeled 

as random walks. 

III. VISUAL-INERTIAL ODOMETRY ALGORITHM 

From the synchronized and calibrated system, we 

estimate the robot motion by utilizing the state-of-the-art 

Keyframe-based Visual-Inertial SLAM (OKVIS) 

algorithm [11]. This method is based on the tightly 

integration between IMU and camera by optimizing a 

joint cost function. Keyframes from different views are 

maintained in the process window to improve the system 

robustness. Furthermore, the window is bounded by 

marginalization to keep the problem computable in real-

time. The cost function is minimized using the Google 

Ceres nonlinear least-square solver [15]. The method is 

summarized as below. 

First, let 𝐱 denotes the state vector of robot as: 

 𝐱 ≔ [𝐫𝒲 𝐪𝒲ℐ 𝐯ℐ 𝐛ω 𝐛a]𝑇 , (4) 

where 𝐫𝒲and 𝐪𝒲ℐ  stand for the position and orientation 

of IMU in the world coordinate frame ℱ𝒲, 𝐯ℐdenotes the 

IMU body velocity in the IMU coordinate frame ℱℐ, 𝐛ω 

and 𝐛a mark the gyroscope and accelerometer biases. 

The states are propagated by using the nonlinear IMU 

model: 

 𝐫̇𝒲 = 𝐂𝒲ℐ𝐯ℐ ,

𝐪̇𝒲ℐ = −𝛀(𝛚ℐ)𝐪𝒲ℐ ,

𝐯̇ℐ =  𝐚ℐ + 𝐂ℐ𝒲𝐠𝒲 − 𝛚ℐ × 𝐯ℐ ,

𝐛̇ω = 𝐰bω
,

𝐛̇a = 𝐰ba
,

 (5) 

where 𝐂𝒲ℐ  denotes the rotation matrix from ℱ𝒲  to ℱℐ , 

𝛀(.) indicates the matrix that maps the angular velocity 

from Euler space to quaternion space, 𝐠𝒲  stand for the 

gravitational acceleration, 𝐰bω
 and 𝐰ba

 are the Gaussian 

random walk of the gyroscope and accelerometer biases. 

The actual IMU acceleration 𝐚ℐ and angular velocity 𝛚ℐ 

are related to their measurement value, 𝐚̃  and 𝛚̃ , as 

following: 

 𝐚ℐ = 𝐚̃ − 𝐛a + 𝐰a,

𝛚ℐ = 𝛚̃ − 𝐛ω + 𝐰ω,
 (6) 

where 𝐰ω and 𝐰a stand for the Gaussian white noise of 

measurements. 

Next, the update step is conducted by minimizing a 

cost function that combines the reprojection error 𝐞repj 

and the IMU error 𝐞imu: 

𝐽 ≔ ∑ ∑ ∑ 𝐞repj
𝑖,𝑗,𝑘 𝑇

𝐖repj
𝑖,𝑗,𝑘

𝐞repj
𝑖,𝑗,𝑘

𝑗∈𝒥(𝑖,𝑘)

𝐾

𝑘=1

𝐼

𝑖=1

+ ∑ 𝐞imu
𝑘 𝑇

𝐖imu
𝑘 𝐞imu

𝑘 ,

𝐾−1

𝑘=1

 

(7) 

where 𝑖 is the camera index, 𝑘 is the image frame index, 

and 𝑗 is the landmark index in the set 𝒥(𝑖, 𝑘). 𝐖repj  and 

𝐖imu  denote the information matrices derived from 

system uncertainty. The IMU error is the difference 

between the predicted state 𝐱̂𝑘+1and the actual state 𝐱𝑘+1: 

 𝐞imu
𝑘 = 𝐱̂𝑘+1 − 𝐱𝑘+1, (8) 

Moreover, the reprojection error is established as: 

 𝐞repj
𝑖,𝑗,𝑘

= 𝐳𝑖,𝑗,𝑘 − 𝐡𝑖(𝐓𝒞𝑖ℐ
𝑘 𝐓𝒲ℐ

𝑘 𝐥𝒲,𝑗  ), (9) 

where 𝐳𝑖,𝑗,𝑘 is the 2D keypoint location in the image and 

𝐥𝒲,𝑗  is the 3D landmark position. The landmarks are 

reprojected to 2D image by the calibrated camera model 

𝐡𝑖(. ) , the calibrated camera-IMU transformation 𝐓𝒞𝑖ℐ
𝑘 , 

and the current IMU pose 𝐓𝒲ℐ
𝑘 . 

Before the optimization, landmark’s locations must be 

initialized by the front-end, which is an image processing 

program. First, image keypoints are extracted using the 

BRISK feature detector [16]. Given the propagated state 

from IMU measurement, the front-end considers the 

previous landmarks that could be visible in the current 
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frame for 3D-2D matching with current keypoints. Next, 

the 2D-2D matching and triangulation is performed 

across all images in the process window. Potential 

landmarks will go through a RANSAC step [17] to 

remove outliers and only qualified landmarks are 

transferred to the optimization. New keyframe is selected 

by a heuristic rule that helps the landmarks to be viewed 

from different angles. Finally, the process window is 

marginalized out to ensure a limited number of most 

current frames and previous keyframes. The keypoint 

matching step is demonstrated in Fig. 3. 

 

 

Figure 3. Example of the keypoint matching between the most recent stereo keyframe (above) and current stereo frame (below). Green indicates 3D-
2D matching, yellow show 2D-2D matching, and blue marks the stereo matching only. 

IV. EXPERIMENTS 

A. System Setup 

The 3D model of our experimental system is visualized 

in Fig. 4. The system consists of a Point Grey 

Bumblebee2 stereo camera, an ADIS16488 factory-

calibrated IMU, and an IEI NANO-HM650 Core-i5 

embedded computer. The camera streams 2x640x480 

pixels grayscale images to the computer at 20 Hz. With a 

rate of 500 Hz, the IMU broadcasts raw inertial 

measurements which has noise characteristics as 

specified in Table I. The processing board of IMU also 

sends a set of well-estimated rotation angles, which will 

be used for evaluating the developed system. The IMU 

and camera are synchronized by a custom-made device, 

which adjusts the camera trigger pulse (emitted by IMU) 

using the proposed synchronization method. An 

embedded Wi-Fi router is installed for remote monitoring. 

The system can work standalone since the embedded 

computer is able to process the VIO algorithm in real-

time. Moreover, all devices are compacted in an 

18x16.5x12 cm box, making it convenient to install on 

mobile robots.  

TABLE I.  IMU NOISE CHARACTERISTICS 

Accelerometers Gyroscopes 

𝜎a 2 × 10−3 𝑚 𝑠2 √𝐻𝑧⁄⁄  𝜎ω 5 × 10−3 𝑟𝑎𝑑 𝑠 √𝐻𝑧⁄⁄  

𝜎𝑏a
 2 × 10−5 𝑚 𝑠3 √𝐻𝑧⁄⁄  𝜎𝑏ω

 5 × 10−5 𝑟𝑎𝑑 𝑠2 √𝐻𝑧⁄⁄  

The computer software was designed with 3 layers: the 

driver layer that communicated with IMU, camera and 

other devices, the VIO layer that runs the VIO algorithm, 

and the graphic layer that displays the estimated robot 

motion in 3D. We programmed the software on Robot 

Operating System (ROS) for a concrete platform while 

using C++ language for high speed performance. The 

ROS-node feature was exploited for efficient data transfer 

among layers, saving the developing time.  

 

 

Figure 4. Visualization of the developed visual-inertial system. 

In all of the experiments below, we configured the 

algorithm to keep 4 keyframes and 3 current frames in the 

optimization window, as well as detect maximum 150 

keypoints per image. This light-weight configuration was 

chosen to ensure the real-time operation on our embedded 

computer, while keeping the result as good as possible. 

B. Slider Experiment 

In this experiment, we tested the VIO system on a 

single forward-backward motion generated by a custom-
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made linear slider, as depicted in Fig. 5. The system was 

mounted on top of the slider moving part which was 

pulled by a servo motor. The motion was created in form 

of a sine wave at 0.3 Hz on the trajectory of 0.6 m with a 

maximum speed of 0.56 m/s. The motor’s encoder was 

read synchronously with the VIO system and would be 

used as ground-truth position to evaluate the estimation 

result. The slider was placed indoor under artificial light 

sources. To examine the system ability to reject motions 

happened in the environment, one person has stayed in 

the camera view and performed casual actions across the 

dataset. The dataset lasted about 6 minutes and crossed 

the distance of 120 m. 

 

 

Figure 5. The slider used for the experiment. 

 

Figure 6. Estimated X position in comparison with encoder ground-
truth for the Slider Dataset. 

We show the system estimated position in Fig. 6 and 

Fig. 7. Note that the system coordinates had been aligned 

with the slider motion on the X axis, so that the Y and Z 

axes only contained vibrations. The estimated result was 

consistent with real motion, although slight differences 

can be observed on transition points of direction. The 

translation and orientation errors were measured 

statistically and expressed in relation to the traveled 

distance. To obtain the error statistics of each traveled 

distance, we first determined a set of sub-paths by sliding 

the respective distance window throughout the entire path, 

then calculated the accumulated error between each 

estimated and true sub-path. The number of samples used 

for each distance was 101. In particular, Fig. 8 and Fig. 9 

visualize the statistic errors of VIO estimation by means 

of boxplots, which contain 5 quantities: maximum, 

minimum, median, 25
th

 and 75
th

 percentiles. The 

translation error increased with respect to the distance, 

but its median was maintained around 5 cm after 110 m 

traveled. Besides, the yaw error was mostly kept below 

0.3 degree on the entire path. Note that the yaw error was 

not enlarged because the motion in this experiment was a 

pure translation.  

 

 

Figure 7. Estimated Y and Z position maintained around zero for the 
Slider Dataset. 

 

Figure 8. Error statistics of translation error for the Slider Dataset. 

 

Figure 9. Error statistics of yaw error for the Slider Dataset. 

C. Walking Loop Experiment 

In order to evaluate the system on real motions with 

translation and rotation combined, we conducted the 
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experiment of carrying the system and walking around 

the room in loops. The trajectory was drawn on the floor 

as a 6x3 m rectangle with 0.6 m turning radius, which 

were tracked by the carrying person. The total path length 

was about 220 m with 11 loops passed in 5 minutes. 

Since there was no available position ground-truth data 

for indoors, we manually picked a starting point and 

calculated repeating error each time the system went back 

to this point. On the other hand, the orientation ground-

truth was provided by the processing board of IMU with 

just 0.1 degrees on yaw drift over 5 minutes. We could 

not apply the sub-path scheme to calculate errors 

statistics as in the previous experiment due to the lack of 

position ground-truth. Instead of that, we collected the 

error sets by running the VIO algorithm again for 51 

times on the same dataset. 

 

 

Figure 10. The trajectory of VIO system plotted on XY plane, for the 
Walking Loop Dataset. The red triangle and circle mark the beginning 

and end point of the trajectory, respectively. 

 

Figure 11. The Z position for the Walking Loop Dataset. 

Fig. 10 shows that the estimated trajectory was very 

similar to the desired at the beginning, but then became 

further and skewer due to the accumulated error, which is 

clearly observed in Fig. 11. In spite of that, the errors per 

traveled distance were consistent, with a translation error 

about 0.5 % and an orientation error smaller than 0.1 °/m, 

starting from the 4
th

 loop, as depicted in Fig. 12 and Fig. 

13. We can further improve the system repeating error by 

applying a loop-closure method which will realign the 

robot location again whenever a closed-loop is detected. 

However, this approach is computational costly and 

might require a more powerful embedded computer to 

handle the current update rate. 

 

Figure 12. Translation error for the Walking Loop Dataset. 

 

Figure 13. Yaw error for the Walking Loop Dataset. 

V. CONCLUSION 

In this paper, we have presented a visual-inertial 

system that tightly coupled the stereo camera and the 

IMU. We have proposed a timing method that is used for 

strict synchronization between sensors, despite the 

variation of the environment illumination. The system 

calibration has been performed through camera-camera 

and camera-IMU stages. The utilized algorithm has been 

summarized into two steps of states propagation and 

update. We have built a real system to examine our 

method. Experimental results have shown that the system 

performance was accurate and robust in practice. The 

developed VIO system can be applied on mobile robots 

for indoor localization. 
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