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Abstract—This paper focuses on the mechanics of a 

compliant serial manipulator composed of the new type of 

dual-triangle elastic segments. Both the analytical and 

numerical methods were used to find the stable and unstable 

equilibrium configurations of the manipulator, and to 

predict the corresponding manipulator shapes. The stiffness 

analysis was carried on for both loaded and unloaded modes, 

the stiffness matrices were computed using the Virtual Joint 

Method (VJM). The results demonstrate that either 

buckling or quasi-buckling phenomenon may occur under 

the loading if the manipulator initial configuration is 

straight or non-straight one. Relevant simulation results are 

presented at last, which confirm the theoretical study.  

 

Index Terms—component, compliant manipulator, stiffness 

analysis, equilibrium, robot buckling, redundancy 

 

I. INTRODUCTION 

Currently, compliant serial manipulators are used more 

and more in many applications (such as inspection in 

constraint environment, medical fields etc.), because of 

their sophisticated motions and low weights. 

Conventional compliant manipulators are usually 

composed of rigid links and compliant actuators, like 

hinges, axles, or bearings. However, there is a lot of 

research in this area dealing with some new mechanical 

structures [1][2][3][4], which achieve compliant motions 

through tensegrity mechanisms. And one of them will be 

studied here. 

In general, the robotic manipulators are usually 

classified into three types [5], conventional discrete, 

serpentine, and continuum robots.  The first one is made 

of traditional rigid components. The second one uses 

discrete joints but combine very short rigid links with 

large density joints, which produce smooth curves and 

make the robot similar to a snake or elephant trunk [6]. 

While the continuum robots do not contain any rigid links 

or joints, they are very smooth and soft, bending 

continuously when working [7]. Many researchers have 

done studies on serpentine and continuum robots in 

recent years, designed flexible mechanisms for many 

applications [8]. However, the pure soft continuum robot 
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received little attention, as its small output force and 

design difficulty. Thus, combining rigid and elastic or 

soft components becomes a popular practice in designing 

a robot manipulator. The typical earlier hyper-redundant 

robot designs and implementations can be date back to 

the 1970s [9], which includes a series of plates 

interconnected by universal joints and elastic control 

components for pivotable action to one another. 

[10][11][12]  

Nowadays, a very promising trend in designing 

compliant robots is using a series of similar segments 

based on various tensegrity mechanisms, which are 

composed in an equilibrium of compressive elements and 

tensile elements (cables or springs) [13][14]. Some kinds 

of tensegrity mechanisms have been already studied 

carefully. Such as [15], the authors dealt with the 

mechanism composed of two springs and two length-

changeable bars. They analyzed the mechanism stiffness 

using the energy method, demonstrated that the 

mechanism stiffness always decreasing under external 

loading with the actuators locked, which may lead to 

“buckling”. And in [16], the cable-driven X-shape 

tensegrity structures were considered, the authors 

investigated the influence of cable lengths on the 

mechanism equilibrium configurations, which may be 

both stable and unstable. The relevant analysis of the 

equilibrium configurations stability and singularity can be 

seen in [17]. 

A new type of compliant tensegrity mechanism was 

proposed in our previous papers [18][19]. It is composed 

of two rigid triangle parts, which are connected by a 

passive joint in the center and two elastic edges on each 

side with controllable preload. The stiffness analysis of a 

basic dual-triangle was carried on, and the stable 

condition of the equilibrium was obtained. The results 

also showed that there may be a buckling phenomenon. 

Usually, while designing a robot, researchers always try 

to avoid buckling, but such behavior can make 

improvements in some fields [20]. So this phenomenon 

must be taken into account. In this paper, we study a 

compliant serial manipulator composed of the dual-

triangle segments mentioned above, concentrate on the 

equilibrium configurations and their transformations 
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under the loading, which may be either continuous or 

sporadic that leading to buckling phenomenon. Both 

loaded and unloaded stiffness model of this manipulator 

were analyzed. The simulation of the manipulator 

behavior after buckling was obtained, which provides a 

good base of the design and relevant control algorisms of 

such manipulator 

II. MECHANICS OF DUAL-TRIANGLE MECHANISM 

Let us consider first a single segment of the compliant 

serial manipulator. It consists of two rigid triangles 

connected by a passive joint whose rotation is constrained 

by two linear springs as shown in Fig. 1. It is assumed 

that the mechanism geometry is described by the triangle 

parameters (a1, b1) and (a2, b2), and the mechanism shape 

is defined by the central angle, which is adjusted through 

two control inputs influencing on the springs L1 and L2. 

Let us denote the spring lengths in the non-stress state as 
0

1L and 0

2L ，and the spring stiffness coefficients k1 and k2. 

 
Figure 1.  Geometry of a single dual-triangle mechanism. 

 

Figure 2.  The torque-angle curves and static equilibriums for 
0 0

1 2L L  

( 0 0q  ). 

To find the mechanism configuration angle q 

corresponding to the given control inputs 0

1L and 0

2L , let 

us derive first the static equilibrium equation. From 

Hook’s law, the forces generated by the springs 

are 0( )i i i iF k L L   (i =1, 2), where L1 and L2 are the 

spring lengths |AD|, |BC|. These values can be computed 

using the formulas
2 2

1 2 1 2( ) 2 cos( )i i iL c c c c     (i=1, 

2). Here 
2 2

i i ic a b   (i=1, 2), and the angles 
1 ,

2   are 

expressed via the mechanism parameters as 
1 12 q   , 

2 12 q   , and 12 1 1 2 2atan( / ) + atan( / )a b a b  . The 

torques M1=F1·h1, M1=F2·h2 in the passive joint O can be 

computed from the geometry, so we can get  

0

1 1 1 1 1 1 2 1
0

2 2 2 2 2 1 2 2

( ) (1 ( )) sin( )

( ) (1 ( )) sin( )

M q k L L c c

M q k L L c c

 

 

  

  
 

where the difference in signs is caused by the different 

direction of the torques generated by the forces F1, F2. 

Further, taking into account the external torque Mext 

applied to the moving platform, the static equilibrium 

equation for the considered mechanism can be written as  

M1(q)+ M2(q)+Mext =0.  

Let us now evaluate the stability of the mechanism 

under consideration. In general, this property highly 

depends on the equilibrium configuration defined by the 

angle q, which satisfies the equilibrium equation M(q)+ 

Mext =0. As follows from the relevant analysis, the 

function M(q) can be either monotonic or non-monotonic 

one, so the single-segment mechanism may have multiple 

stable and unstable equilibriums, which are studied in 

detail [18][19]. As Fig. 2 shows, the torque-angle curves 

M(q) that can be either monotonic or two-model one, the 

considered stability condition can be simplified and 

reduced to the derivative sign verification at the zero 

point, i.e. 

 
0

0
q

M q


      (2) 

which is easy to verify in practice. It represents the 

mechanism equivalent rotational stiffness for unloaded 

configuration with q=0. 

Let us also consider in detail the symmetrical case, for 

which a1=a2=a, b1=b2=b, k1=k2, 
0

iL = 0L . Then as follows 

from the mechanism geometry, to distinguish the 

monotonic and non-monotonic cases presented in Fig. 2, 

we can omit some indices and present the torque-angle 

relationship as well as the stiffness expression in more 

compact forms: 

  0

12 1

0

121

2

2

2 cos sin cos( 2)s

2 cos cos cos c

in( 2)

( ) ( 2 )s) o ( 2

M q ck c q L q

M ck c q qLq 

 



 

  

 
 





  (3) 

It is also necessary to compute M’(q) for unloaded 

equilibrium configuration q=0, that let us obtain the 

condition of the torque-angle curve monotonicity: 

 0 22 1 ( )L b a b   for the further analysis. 

III. MECHANICS OF SERIAL MANIPULATOR 

A. Manipulator Geometry and Kinematics 

Let us consider a manipulator composed of three 

similar segments connected in series as shown in Fig. 3, 

where the left hand-side is fixed and the initial 

configuration is a “straight” one (q1=q2=q3=0). This 

configuration is achieved by applying equal control 

inputs to all the mechanism segments. For this 

manipulator, it is necessary to investigate the influence of 

the external force Fe=(Fx, Fy), which causes the end-

effector displacements to a new equilibrium location 

( , ) (6 , )T T
x yx y b     , which corresponds to the 

nonzero configuration variables (q1, q2, q3). It is also 

assumed here the external torque Mext applied to the end-

effector is equal to zero. It can be easily proved from the 

geometry analysis that the configuration angles satisfy the 

following direct kinematic equations 
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1 12 123

1 12 123

2 2
2 2

x b bC bC bC
y bS bS bS

   
  

  (4) 

where  123 1 2 3cosC q q q   ,  123 1 2 3sinS q q q   , 

 12 1 2cosC q q  ,  12 1 2sinS q q  , 
1 1cosC q , 

1 1sinS q . These two equations include three unknown 

variables, and it allows us to compute two of them if the 

third one was known. For instance, if the angle
1q  is 

assumed to be known, the rest two angles 
2q , 

3q  can be 

computed from the classical inverse kinematics of the 

two-link manipulator as follows 

 
 3 3 3

31
2 1

1 3

atan
2

atan( ) atan( )
2 2

q S C
bSy bS

q q
x b bC b bC




  
  

 (5) 

where    
2 2 2 2

3 1 12 2 5 4C x b bC y bS b b      
 

, 

2

3 31S C   . The latter expressions provide two 

groups of possible solutions, which correspond to the 

positive /negative configuration angles
3 0q  and

3 0q  . 

 

Figure 3.  The torque-angle curves and static equilibriums for 
0 0

1 2L L  ( 0 0q  ). 

To find a stable manipulator configuration under the 

loading, let us apply the energy method. It is clear that the 

end-effector displacement caused by the external loading 

leads to the deflections of mechanism springs, which 

allows us to compute the manipulator energy as 

 
3 2

2
0

1 1

1

2
ij ij

i j

E k L L
 

     (6) 

where 
ijL and o

ijL  are the spring lengths in current and 

initial (unextended) states respectively. The above energy 

can be expressed via one of the three variables q1, q2 or q3. 

Assuming that variable q1 is chosen as an independent 

one, the desired stable configurations can be found by 

computing local minima of the energy function 

 
1

1( ) min
q

E q      (7) 

Examples of such energy curves 
1( )E q for several 

typical cases are presented in Fig. 4. 

 

Figure 4.  Energy curves 1( )E q  for different combinations of manipulator geometric parameters a/b, Lo/b: 

 “blue curves”─ positive configuration with q3>0;  “green curves” ─ negative configuration with q3<0;  
● ─ stable equilibrium;  ● ─ unstable equilibrium 

 

Figure 5.  Correspondence between the maxima/minima of the energy curves 1( )E q  and zeros of the external torque 1( )eM q . 
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Figure 6.  Force-deflection curves and stiffness coefficients for the “straight” initial configuration. 

B. Manipulator Stiffness Behavior 

An alternative way to compute the configuration 

angles q1, q2, q3 at the equilibrium state is based on the 

torque equation Me(q1)=0, which is implicitly used in the 

energy method. The latter is illustrated by combined plots 

of the energy-torque curves computed for the initial 

“straight” configuration presented in Fig. 5, which shows 

that the max/min of the energy E(q1) correspond to zeros 

of the torque Me(q1)=0. Further, to find the external 

forces corresponding to this end-point location, it is 

necessary to use the force-torque equilibrium equation  

 0M J F
T

q      (8) 

where M=(Mq1, Mq2, Mq3)
T
,  F=(Fx, Fy, Me)

T
. They denote 

the internal torques Mq1, Mq2 and Mq3 in all manipulator 

segments and the force/torque at the end-point. In this 

equation, the internal torques can be computed using the 

previously derived expression from section II, 

2 2 02 ( )sin sin(0.5 ) ; 1,2,3qi i iM k b a q bL q i       (9) 

And the Jacobian matrix Jq can be computed using the 

standard technique for the three-link manipulator 

presented as follows 

1 12 123 12 123 123

1 12 123 12 123 123

2 2 2
2 2 2

1 1 1
q

bS bS bS bS bS bS
bC bC bC bC bC bC
      
    
  

J   (10) 

where S and C with corresponding indices have the same 

meaning as in (4). Assuming that the Jacobian is non-

singular (i.e. the loaded manipulator is already out of the 

straight configuration), the external force/torque can be 

expressed directly as T
q
 F J M , where the transport 

inverse matrix -T
qJ  can be computed analytically. Then we 

can get the following expression 

112 1 12 1

12 1 12 1 2

2 3 23 3 2 23 3

1

2 2

qx

y q

e q

MF C C C C
F S S S S M

bS bS bS bS bS bSM M

     
       
          

(11) 

The latter allows us to rewrite the system of the 

equilibrium equation (4) in the following extended form 

   

1 12 123

1 12 123

3 1 23 3 2 2 23 q3

2 2 0
2 2 0

2 0q q

b bC bC bC x
bS bS bS y

S M S S M S S M

     


   
     

 (12) 

Whose solution (q1, q2, q3) may correspond to either 

stable or unstable equilibriums of the manipulator 

configuration. Then, using expressions Fx (q1, q2, q3) and 

Fy (q1, q2, q3) obtained from (11), one can get the external 

loading (Fx , Fy) corresponding to the end-effector 

position (x, y), which finally allows us to generate the 

desired force-deflection curves. Examples of such curves 

for several case studies are presented in Fig. 6, where it is 

assumed that under the loading the manipulator moves 

along with x-axis, i.e. varx  , 0y  . As follows 

from this figure, in general cases (Fig. 6a), the force-

deflection curves are quasi-linear, but some of them may 

do not pass through the zero point. The latter means that 

the corresponding manipulator possesses very specific 

particularity known as the “buckling” property 

[18][19][20], for which the configuration angles may 

suddenly change while the external force increasing 

gradually. Besides, in the case presented in Fig. 6b, there 

is the “jumping” phenomenon, because of the unstable 

geometrical parameters of the manipulator segment (see 

section II and stable condition ), and the manipulator 

suddenly changes its shape even for extremely small 

loading. 

 

To compute the critical force 0

xF of the buckling, let us 

assume that the configuration angles (q1, q2, q3) are small 

enough but not equal to zero. This allows us to derive a 

linearized stiffness model in the neighborhood of qi=0 

(i=1, 2, 3). Under such assumptions, the first and second 

equations from (3.15) can be presented in the following 

form  

 
2 2 2

1 12 123

1 12 123

( 0.5 )

2 ( 0.5 )
x

y

b q q q

b q q q





  

  
   (13) 

Which allows us to present the condition δy=0 as 

q1+q12+ q123/2=0. Applying similar linearization to the 

third equation from (12), one can get the additional 

relation of the configuration angles 
2 2

1 3 2 2 3 3 0q q q q q q    , which ensures the equality 

Me=0. Further, combining these two obtained relations 

and considering q2 as an independent variable, it is 

possible to express q1, q3 in the way 
1 1 2q q  , 

3 3 2q q  , where 

   1 321 11 20; 21 1 4          (14) 
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The latter gives us four possible manipulator geometric 

configurations corresponding to the static equilibrium, 

two with U-shape and two with Z-shape (see Table I). 

The corresponding external forces Fx, Fy can be 

linearized for small configuration angles, which yields 

2 2 0

1 3 2

2

2( ) ( 2 ); 0
2

x y

k
F b a bL q q q F

bq
          (15) 

Further, taking into account (13) the desired critical 

force can be expressed in the following way 

 2 2 0

0
lim 2( )

i

o

x x
q

k
F F b a bL

b



         (16) 

where ( 21 14) 10 0.9417     for U-shape, and 

( 21 14) 10 1.8583      for Z-shape. 

It is worth mentioning that the obtained expression 

allows us to derive the static stability condition for the 

straight configuration. In fact, this configuration is stable 

if and only if 0 0xF  , which is equivalent to 

 2 2 02 b a bL  . It defining the monotonicity of the 

torque-angle curves for the manipulator segments. 

Finally, let us compare the U-shape and Z-shape 

equilibrium configurations for their static stability. It can 

be easily proved that for the small configuration angles qi, 

the end-effector deflection δx can be expressed in the 

following way 

2

2x q     (17) 

where ( 21 21) 20 1.2791    for U-shape, and 

( 21 21) 20 0.8209     for Z-shape. The latter 

means that for the similar deflections δx, the U-shape has 

the smaller configuration angles qi than the one of Z-

shape, which ensures smaller energy in agreement with 

(7). 

 

Figure 7.  Energy curves 1( )E q  for different (a, b, Lo ) for non-straight initial configuration and displacement    , 2,0x y b    

 “blue curves” ─ feasible configuration with q3>0;  “green curves” ─ feasible configuration with q3<0;   

“black curves”─ unfeasible configuration;  “red point ●”─ stable equilibrium;  “black point ●” ─ unstable equilibrium.. 

Let us consider now when the manipulator initial 

configuration is non-straight, which corresponds to the 

angles (
0 0, 1,2,3iq i  ). Similar to the above section, 

the equilibrium is defined by three equations (12), which 

are derived from the direct kinematics and the zero 

external torque assumption Me=0. It can be proved that 

the energy curves have the “∞-shape” similar to the 

straight configuration considered before. However, 

depending on the initial end-effector location (x, y), these 

energy curves may be non-symmetrical and can be even 

discontinuous and include cusp points. Typical examples 

of such curves corresponding to the end-point location 
T T( , ) (5.5 , 0)x y b are presented in Fig. 7, where the 

discontinuity caused by the geometric constraint is visible. 

In particular, the energy curve of cases (a) consists of two 

separate U-shape parts that yield two symmetrical stable 

equilibriums and four unstable ones. Such separation is 

caused by the geometric constraints 
max

i iq q . However, 

the energy curves for the case (b) cannot be treated in the 

same way, because the combination of a, b, 0

iL  provides 

non-monotonic torque-angle curves for the segments and 

even separate parts of the manipulator are unstable here. 

It should be stressed that in the cases (a), each segment of 

the mechanism is statically stable. It should be also noted 

that there are some unfeasible sections (black lines) 

inside of the curve, where at least one of the angles q2 or 

q3 is out of the allowable geometric limits. 

TABLE I.  POSSIBLE MANIPULATOR SHAPES IN STATIC EQUILIBRIUM 

 q1 q2 q3 Geometric configuration Stability  

Case of  “+√”  
‒ + + U-shape:   

q1

q2

q3

 Stable 

+ ‒ ‒ U-shape:      q1

q2

q3  
Stable 

Case of  “-√” 
‒ + ‒ Z-shape:   

q1
q2

q3

 Unstable 

+ ‒ + Z-shape: q1

q2

q3  Unstable 
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Figure 8.  Force-deflection curves and stiffness coefficients for “non-straight” initial configuration  

with different parameters (a, b, Lo ) and displacement    , 2,0x y b   . 

The above-presented case studies, corresponding to the 

end-effector initial position T T( , ) (5.5 , 0)x y b , can be 

also illustrated by the force-deflection curves presented in 

Fig. 8. As follows, there is no buckling phenomenon in 

the case (a), the curve is quasi-linear and passes through 

the zero point. Besides, the buckling detected in the case 

(b) cannot be observed in practice because of the non-

stability of the separate manipulator segments. 

To evaluate the manipulator stiffness matrix for the 

non-straight configuration, let us first find the joint 

torques for all manipulator segments using the method 

from section II,  

 
 

2 2 0

1

0

2

2 ( )sin( ) cos( 2) sin( 2)

cos( 2) sin( 2) ; 1,2,3
qi i i i i

i i i

M k b a q kL a q b q

kL a q b q i

   

  
 

(18) 

And compute the derivatives providing equivalent 

stiffness coefficients in the joints qi qi i
K dM dq  

 2 2 0

1

0

2

2 ( )cos( ) cos( 2) sin( 2) 2

sin( 2) cos( 2 ) 2; 1, 2, 3
qi i i i i

i i i i

K k b a q kL b q a q

kL a q b q i

   

     

(19) 

This allows us to apply the VJM method and to 

express the unloaded stiffness matrix of the considered 

manipulator as 

 
1

0 1 T

F o qo o


K J K J   (20) 

where the subscript “o” denotes the variables 

corresponding to the unloaded initial configuration. 

Further, if we express the 2x3 submatrix of the (10) for 

this configuration as 

 
11 12 13

21 22 23 2 3

o

J J J

J J J


 
  
 

J   (21) 

The desired compliance matrix of the unloaded mode 

can be expressed analytically in the following way 

22 2

1311 12

0 1
1 2 3 22 2

2321 22

1 2 3

*

*

T
q q q

F o qo o

q q q

JJ J

K K K
JJ J

K K K



 
  

   
  
  

C J K J (22) 

where 
1 2 3( , , )qo q q qdiag K K KK is the matrix of size 3×3. 

 
Figure 9.  Force-deflection relations of three-segment mechanism for 

non-straight initial configuration with    , 5.5 , 0
o

x y b . 

For the loaded mode, the manipulator stiffness matrix 

can be computed using the extended VJM technique 

proposed in [21]. Within this technique, let us assume 

that there is a non-negligible deflection T( , )x y     

caused by the external force T( , )x yF FF , and there is a 

small deflection T( , )x y   caused by this force 

variation T( , )x yF F  F  that corresponds to the joint 

angle variations T
1 2 3( , , )q q q q    . As follows from 

the equilibrium equation T= M J F , the corresponding 

variation of the joint torque can be expressed as 

 
T

T
d

d
  

 
    
 

J
M q F J F

q
        (23) 

where the part Td dqJ , which includes the Jacobian 

derivative, can be rewritten as 
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3T T

1

i g

i i

d
q

d q
  



   
      

   


J J
q F = F K q

q   

 (24) 

where gK  is the 3×3 matrix describing the influence of 

loading F on the manipulator Jacobian J 

1 2 3 3 3

T T T

g
q q q



   
    

   

J J J
K F F F    (25) 

That can be also written in the extended form as 

21 11 22 12 23 13

22 12 22 12 23 13

23 13 23 13 23 13 3 3

x y x y x y

g x y x y x y

x y x y x y

J F J F J F J F J F J F
J F J F J F J F J F J F
J F J F J F J F J F J F



      
       
       

K
(26) 

Further, after expressing the virtual joint torque 

variation as q  M K q  and its substitution to (23), the 

variable q can be presented as 

 
1

T
q g 



   q K K J F   (27) 

Which allows us to find the end-effector deflection 

 J q , and finally to obtain the desired loaded 

compliance and stiffness matrices 

 
 

1
T

1
1

T

F q g

F q g






 

  
 

C J K K J

K J K K J

             (28) 

It is worth mentioning that all the Jacobian and the 

joint stiffness matrices Kq, Kg must be computed for the 

loaded equilibrium configuration, which is different from 

the initial unloaded one (It requires relevant solutions of 

the non-linear equations considered above). 

To illustrate the importance of the loaded stiffness 

analysis, the obtained expressions were applied to several 

cases study, which focusing on the manipulator stiffness 

changing under the external loading. For all considered 

cases, it was assumed that the initial manipulator 

configuration is a non-straight one, with the endpoint 

location (x0, y0)=(5.5b,0). Under the loading the 

configuration angles corresponding to the external force 

F=(Fx, Fy)
T
 were computed from (11) numerically (using 

Newton’s Method). There are three combinations of the 

geometric parameters a/b ϵ{0.75; 0.9; 1.1}, relevant 

results are presented in Figs. 9 and 10. As follows from 

these figures, in most cases the manipulator stiffness 

essentially changes if the external loading is applied. In 

particular, the manipulator resistance in the x-direction 

becomes lower and lower while the force Fx is increasing 

(see Fig. 9a). In contrast, the resistance in the y-direction 

with respect to the force Fy becomes higher and higher 

while this force is increasing (see Fig. 9b). These results 

are also confirmed by the Kxx and Kyy plots presented in 

Fig. 10, which show an enormous loss of x-direction 

resistance under the Fx loading (it can be treated as a 

“quasi-buckling”, see Fig. 10a for the stiffness coefficient 

Kxx). On the other side, while increasing the force Fy, the 

stiffness coefficient Kyy is very small at the beginning, 

then it is increasing until reaches the maximum value, 

and then it is decreasing (see Fig. 10b). In this figure, an 

evolution of the manipulator configuration under the 

loading are also presented, with relevant stiffness 

coefficients Kxx and Kyy plots (corresponding to the case 

a/b=0.75). They demonstrate the above mention results 

from the geometrical and physical point of view, which 

are corresponded to the stiffness coefficient and force 

relation. There are four representative configurations 

presented here, which showing the shapes of all segments 

and their position with respect to the joint limits. As 

follows from them, the observed sudden change of the 

stiffness (see Figs. 9 and 10) occurs if one of the 

segments is close to its joint limits, where the equivalent 

rotational stiffness coefficient is very low. Hence, in 

practice, it is necessary to avoid applying too high 

loading, or the manipulator will approach its joint limits 

and lose stiffness. 

 
Figure 10.  Evolution of the manipulator configuration under the loading. 

Therefore, as follows from the above study, the 

mechanical properties of a serial manipulator based on 

dual-triangle segments have several particularities, which 

are different from a classical serial structure composed of 

rigid links and compliant components. These 

particularities must be obligatory taken into account in 

control algorism, for ensuring desired motions of such 

manipulator, which is in the focus of our future research. 

IV. CONCLUSION 

The paper focuses on the compliant serial manipulator 

composed of a new type of dual-triangle tensegrity 

mechanism, which is composed of rigid triangles 

connected by passive joints. In contrast to conventional 

cable-driven mechanisms, here there are two length-

controllable elastic edges that can generate internal 

preloading. So, the mechanism can change its equilibrium 

configuration by adjusting the initial lengths of the elastic 

components.  

The energy method was used to find the equilibrium 

configurations for different combinations of geometrical 

and mechanical parameters.  The results show that both 

stable and unstable equilibriums may exist, and the 

manipulator shape will be an essential evolution if the 

external loading is applied. Some analytical results are 
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presented, which allow us to find the manipulator shape 

under the loading and to estimate the stability of the 

corresponding configuration. 

The manipulator stiffness analysis for both loaded and 

unloaded mode was done using the VJM method, and the 

relations between the end-effector deflection and the 

external force were obtained. Similar to the single dual-

triangle segment, the buckling phenomenon occurs if the 

manipulator initial configuration is straight. Besides, for 

the non-straight initial configuration, the sudden change 

in deflection was also observed in some cases, which was 

treated as quasi-buckling. These particularities of the 

manipulator stiffness behavior were also observed in 

simulation.  

The obtained results allowing to predict manipulator 

complicated behavior under the loading, and to avoid the 

buckling or quasi-buckling phenomenon by proper 

selection of the mechanical parameters, which will be 

used in the future for the development of relevant  control 

algorisms and redundancy resolution. 
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