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Abstract—This paper proposes a reinforcement learning 

(RL)-based event-triggered robust optimal control method 

for mobile Euler-Lagrange systems with both dead-zone and 

saturation from actuators. Firstly, kinematics and dynamics 

of the system are integrated into the equivalent system, 

where both of the dead-zone and saturation inputs are 

treated. Secondly, event-triggered robust optimal control 

and dead-zone disturbance laws are designed, where their 

parameters are only updated when a triggering condition 

occurs. Via RL techniques, the new triggering condition is 

introduced. The method not only guarantees the stability of 

the closed system and the convergence of the cost function to 

the bounded 2 -gain optimal value but also relaxes 

identification procedures for unknown nonlinear functions. 

Additionally, it maintains the minimum inter-event time 

between two sequent triggering instants greater than zero, 

thus the Zeno’s behavior is avoided. Finally, the simulation 

of a nonholonomic wheeled mobile robot system with dead-

zone and saturated torques is implemented to verify the 

effectiveness of the proposed method.  
 

Index Terms—euler-lagrange systems, event-triggered 

control, reinforcement learning, dead-zone and saturation, 

optimal control 

 

I. INTRODUCTION 

In in the recent years, the control design of Euler-

Lagrange systems has received much attention due to the 

practical application ability, such as mobile robots [1], 

autonomous vehicles [2]. For the design, the system 

dynamics model is formulated by Euler-Lagrange 

equations [1]-[4], where identifying the correct model of 

nonholonomic constraint for the mobile systems is a 

major challenge. The second challenge is that the design 

not only takes into account the dynamics but also 

kinematics [1], [2]. The dynamics always contains 

disturbances such as external, unmodeled and 
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unstructured uncertain disturbances. Therefore, the main 

problem of controlling the Euler-Lagrange systems is to 

design the controllers that provide optimality and reject 

such disturbances. 

Practically, the control signals from the actuators of 

Euler-Lagrange dynamics are often constrained by the 

dead-zone phenomenon due to the physical limitation. In 

[5], the unknown dead-zone is considered and its 

uncertainty is compensated by a neural network (NN). 

Inspired by the work in [5], various control methods 

dealing with the dead-zone phenomenon are studied and 

reported [6]-[8]. In [9], the slope of dead-zone is 

defuzzified to a deterministic value and the adaptive 

control scheme for a robot manipulator is designed via 

fuzzy logic. The work in [10] separates the dead-zone of 

a robot manipulator into two parts, which are modeled by 

bounded disturbance. Unfortunately, the existing control 

schemes are not considered distributed optimal control 

with dead-zone inputs. Most recently, our previous work 

[11] proposes an H optimal control algorithm for 

physically interconnected mobile Euler-Lagrange systems 

with slipping, skidding and dead-zone. The algorithm can 

reject the dead-zone disturbance and approximate the 

optimal control, concurrently. 

Besides the dead-zone factors, the industrial actuators 

are also constrained by saturation due to the physical 

limitations of voltages, currents, flows, and torques, etc. 

That constraint can make the closed-loop unstable. 

Literature [12]-[16] consider the input constraints along 

with external disturbances, where however optimal 

control methods are not presented. Meanwhile, the work 

in [17] introduces an algorithm for both optimality and 

saturation. 

The above mentioned studies only consider the dead-

zone and the saturation independently of each other. In 

practice, there exist two kinds of factors in the particular 

actuators that must be dealt with. To the best of our 

knowledge, control of systems with both dead-zone and 

the saturation are rarely considered. Furthermore, the 

robust optimization control method for such systems is 
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not still introduced. That is the motivation of the work in 

this paper. 

Over the past decade, reinforcement learning (RL) [18] 

has been emerging as powerful techniques to support 

control designs. In Euler-Lagrange systems, RL is used to 

develop optimal controllers [19]. Additionally, RL 

exploits the zero-sum differential graphical game theory 

to design real controllers for Euler-Lagrange systems in 

the manner of distributed robust optimality [1]. RL, 

namely adaptive dynamic programming (ADP), is also 

employed to design H  optimal control schemes for 

systems with external disturbances and saturated-inputs 

[20]-[22]. In the schemes, there are two policies of two 

players in a differential game are built, one for the 

optimal control policy and the other for the worst 

disturbance policy. These policies are formed if solutions 

od Hamilton-Jacobi-Issac (HJI) equation is solved. 

Unfortunately, the solution of the HJI equation can not be 

found by analytic.  

Most recently, event-triggering mechanisms [23] have 

been employed for control design [24], [25]. Compared 

with the traditional event-time control methods based on 

periodical sample time, event-triggered controllers have 

many advantages since they only update parameters and 

send the control signal to the plants when a new event 

occurs. Hence, the burden of computation bandwidth and 

communication is significantly overcome (see an 

overview in [26]). In [24], event-triggered tracking 

control of Euler-Lagrange kinematics was researched. 

Narayanan and Jagannathan [25] introduce event-

triggered distributed optimal control for affine nonlinear 

interconnected systems while Zhu et al. [27] propose 

event-triggered optimal control for saturated-input 

systems.  

By the above analytics, the event-triggering 

mechanism has not been considered the phenomenon of 

both dead-zone and saturation in actuators of the Euler-

Lagrange systems for optimal control. To obtain a 

comprehensive solution, we first propose a novel RL-

based event-triggered robust optimal control method for 

Euler-Lagrange systems with dead-zone and saturation 

actuators. The main contribution of this paper includes 

three aspects. 1) Kinematics and dynamics of the system 

are integrated into the equivalent system, where both 

dead-zone and saturation inputs are treated. 2)  Event-

triggered robust optimal control and dead-zone 

disturbance laws are designed, where their parameters are 

only updated when a triggering condition occurs. The 

event-triggering condition is designed such that the 

Zeno’s behavior is excluded. 3) The proposed method 

avoids the identification procedure and guarantees the 

stability of the closed system along with the convergence 

of the value function to the bounded 2 -gain optimal 

value. 

The rest of this paper is organized as follows: Section 

II describes the preliminary, system dynamics and event-

triggered feedforward control. Section III provides a 

design of RL-based event-triggered robust optimal 

control with input constraint of dead-zone and saturation. 

The simulation is conducted in Section IV, and Section V 

gives a brief conclusion. 

II. PRELIMINARY, SYSTEM DYNAMICS AND EVENT-

TRIGGERED FEED-FORWARD CONTROL 

A. Notation and Definition 

Notation: , 
n

, 
n m

 are the set of real numbers, 

the n -dimensional Euclidean space, and the set of all real 

n m  matrices, respectively. The symbol .  denotes 

the vector or matrix norm in 
n

 or 
n m

. The 

superscript  is used for the transpose. nI  denotes a n -

dimensional identify matrix.  Diag x  is a diagonal 

matrix.  2 0,  is the Banach space if there exists 

 2( ) 0,d t    then  
2

2
0

( ) 0,d t d


  . min (.) , 

max(.) denote the minimum and maximum eigenvalues, 

respectively. Note that the dimensions of all matrices in 

the paper are assumed to be compatible if they are not 

shown explicitly. 

Definition 1 (UUB [28]): The equilibrium point 0x  of 

system ( , ), nx f x u x   is said to be uniformly 

ultimately bounded (UUB) if there exists a compact set 
n  so that for all 0x  , there exists a bound B  

and a time 0( , )T B x  such that 0x x B   for all 

0t t T  . 

B. System Dynamics 

Considering a model of nonholonomic mobile Euler-

Lagrange systems, of which the kinematics is written by 

 ( )q J q v   (1) 

where 1 2[ , , , ] n
nq q q q    is a vector of generalized 

coordinates, n mv   is a velocity vector. The full-rank 

matrix 
( )( ) n n mJ q    induces from a set of smooth and 

linearly independent vector fields spanning the null space 

of an associated-constraint matrix ( ) m nA q  that holds 

( ) ( ) 0J q A q  [1]. 

Using the Euler-Lagrange formulation, system 

dynamics is presented as 

 ( ) ( , ) ( ) ( )dM q q C q q q G q BD A         (2) 

where the inertia matrix ( ) n nM q   is the symmetric 

positive definite. According to [1], the Coriolis and 

centrifugal matrix ,( , ) nC q q  the gravitational force 

( ) nG q  and the external disturbance 
n

d   are 

bounded. 
( )n n mB    is the input transformation matrix,

m  is the constraint force vector. The function 

( ( )) : n m n mD t  
(Fig. 1), where ( ) n mt   is 

the control torques, denotes the dead-zone factor, i.e., 
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( ),

0,

( ) ( )

,

( )

,

,

sat

sat

rr r

l r

l l l

bm b

b b

t D m b

D

b

D

 



    

 

 

 


  


       







  

 (3) 

where the right and left slopes 
rm ,

lm of the dead-zone 

are unknown positive, the breakpoints of the input 

nonlinearity
rb ,

lb are unknown positive,   is an upper 

bounded value of the torques due to the saturation 

actuator, satD is the saturated dead-zone value. This form 

is completely different from that found in [4] for robot 

control with dead-zone inputs.  

Equation (3) can be represented as follows: 

  ,(

,

) sat

sat

b

t D

D

m    

  

 

   


 
  

 (4) 

where 

,0
,

, 0

r

l

m
m

m

 

 

  
 

  

 

rr

r
b

l l

l

bmb

m b b

mb b

 

  

 

 


 

   

  

Assumption 1 [4]: mm b with max{ , }r l
mb m m , 

b  , where mb  and  are unknown positive 

constants. 

Note that one can robustly estimates some lower 

bounds 0mb  , 0  , such that m mb b ,   [29]. 

Substituting the differentiation in both sides of (1) and 

(4) to dynamics (2), then multiplying both sides of the 

yielded result by ( )J q  one can obtains that 

  
 1 1

1 1

( , ) ( )

d

v M J MJ C q q J v M J G q

M J M J B 

 

 

   

 

 (5) 

where ( ) ( ) ( ) ( )M q J q M q J q . To facilitate the control 

design, a following nonlinear system is derived from (1) 

and (5): 

 

( )

( , ) ( , ) ( , )

q q q v

v v q v v q v v q v v

q

x g x x

x f x x g x x k x x d

y x



 


  
 

 (6) 

where y  is the system output, ,q vx q x v  , ,v dd   

( , )C MJ C q q J  ,
1( , )vk q v JM   , ( ) ( )q qg x J q , 

1( ),v q vg x x M J B  , 1( , ) ( )v q vf x x M J Cv G   . 

 

Remark 1: It is shown in [1] that for practical robotic 

systems, ( )q qg x , ( , ),v q vg x x  ,( )v q vk x x  are nominally 

known since the nominal matrices ,J B  and M  are well 

defined. 

To facilitate the later control design, the following 

lemma, assumptions and definition are introduced. 

Lemma 1 [1]: There exist positive constants Mb , Jb  

and Cb  such that 1
MM b  , JJ b , CC b . 

Assumption 2: From Lemma 1, one has q gqg b , 

v gvg b , v kvk b , where ,gq gvb b , kvb  are known 

positive constants. Furthermore, for unknown positive 

scalars fvb , dvb , one has ( , )v q v fvf x x b , v dvd b . 

 

 

Figure 1.  Dead-zone and saturation in actuators. 

C. Event-Triggered Feed-Forward Control 

In [30], the separate kinematics and dynamics can be 

integrated into an equivalent system to design a robust 

optimal control scheme. However, the scheme burdens 

computational bandwidth. In the paper, we therefore 

propose another scheme using an event-triggering 

mechanism to remove the drawback. 

Firstly, the coordinate of (6) is changed as 

 
0( ) ( ) ( )

( ) ( ) ( )

q

v v vd

z t y t y t

z t x t x t

 


 
 (7) 

where 0( )y t  is the reference trajectory, vdx  is the virtual 

control signal such that 
a

vd vd vdx x x  , where 
a
vdx  is the 

feedforward control input and vdx  is the feedback control 

input. 

Assumption 3: The reference trajectory 0( )y t  is 

smooth and bounded. 

Now, the event-triggering mechanism is introduced. 

Define a monotonically increasing sequence of aperiodic 

instants 0 1 1{ , ,..., , ,...}k kt t t t  , where , 0,1,...kt k   is a 

triggering instant on a certain event. If the states are 

sampled by ( )( , )h h kx x t h q v   at kt , the triggering 

errors between the current states and the sampled states 

are  

𝜏 

𝐷(𝜏) 

𝑚𝑙 

𝑚𝑟 

𝑏𝑟 

𝑏𝑙 

𝜏  

−𝜏  

𝐷𝑠𝑎𝑡 

−𝐷𝑠𝑎𝑡 
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 1,h h h k ke x x t t t      (8) 

It is easy to know ( ) 0h ke t   at , 0,1,...kt k  . Similarly, 

sampling  h h kz z t and using (7), (8) we obtain 

 1,h h h k ke z z t t t      (9) 

Then, the event-triggered virtual control law 

( )vd vd kx x t  and the event-triggered actual control law 

( )kt   at a triggering instant , 0,1,...kt k  , are given 

by  

 

a
vd vd vd

a

x x x

  

  


 

 (10) 

where vdx ,   are the event-triggered feedback control 

laws optimizing a cost function will be designed later. 

( )a a
vd vd kx x t , ( )a a

kt   are the event-triggered 

feedforward control laws updated at kt  using hz  and kept 

unchanged through a zero-order holder (ZOH) until the 

next event occurs at 1kt  . 
a
vdx  and

a  are designed as 

follows: 

 
0( )

( , )

a
q q vd q

a
v q v vd v

g x x y z

g x x x z



 

  


 

 (11) 

where 0 0( )ky y t , ( )vd vd kx x t , and  is the positive 

gain. The following Lemma is introduced to show the 

effectiveness of the event-triggered feedforward control. 

Lemma 2: Let the system dynamics be (6), the event-

triggered control laws be (10), where the the event-

triggered feedforward control laws 
a
vdx  and 

a are 

designed in (11), and the robust optimal control laws vdx  

and   are assumed to stabilize the closed system: 

 
0 0 0 0 0

0 0

q q vd

v v v v v

z g x

z f g k d

          
            

           

 (12) 

Suppose that the triggering condition satisfies the 

following inequality 

 , ,h he z h q v    (13) 

With 0 gb   , (2 1/ 4)gb   , 

max( , )g gq gvb b b . Then, the control problem of system 

(6) is transformed to the event-triggered distributed 

control problem of system (12).  

Proof: Choose the Lyapunov function as 

  1

2
q q v vz z z z   (14) 

Taking the time derivative of  along with (6) using 

(7)- (11), one obtains 

 

.

1

, ,

0 0 0 0

0 0

0

h h h h h

h q v h q v

q q vd

v v vv v

z z z g z

z g x

g k dz f







 

 
 

  

         
                        

 
 (15) 

where 
1q vz z  , 1 0vz   . The first term is computed 

based on (9):  

 ,

, , ,

h h h h h i h

h q v h q v h q v

z z z z z e  

  

       (16) 

The second term in (15) is transformed as 

1 1 1

, , ,

,

1 1

2 2
h h h h h h h h h

h q v h q v h q v

h h h

h q v

z g z z g z z g z

z g z

  

  



 



  


(17) 

Substituting (16) , (17) into (15) we have 

 

.

, ,

0 0 0 0

0 0

1
( )

4

0q q vd

v v vv

g h h h h

h q v h v

v

q

z g x

g k dz

b z z z e

f 

 
 

         
                     

 

 

 

  


 



 

 (18) 

Using the event-triggering condition (13) yields 

 

.

2

,

0 0 0 0

0 0

0

1
(1 )

4

0

0

0 0 0 0

0

q q vd

v v vv

g h

h q v

q q vd

v v v

v

vv

z g x

g k dz f

f

b z

z g x

g k dz



 





         
                       

 
    

 

         
                     

 
  

 

 
  

  


 (19) 

It can be seen that if there exists control inputs that 

stabilize the closed system (12), the first term in the right-

hand side of (19) becomes negative. Then, according to 

Definition 1, the tracking error ,q vz z z 
 

is UUB. 

The Proof is completed.  

Note 
a    and recall (4), we decompose the 

dead-zone disturbance such that
a

b b b    . The 

following lemma shows the constraints of
a and b . 

Lemma 3: Given the feedforward input 
a  and 

feedback control input  , let 
a and 

a

b  be constrained 

by 

 
(1 tanh(1)),

tanh(1),othewise

a
b

a
satD

    

 

     



 


 (20) 

and b ,  be approximated by the hyperbolic tangent 

function that is used to map  onto the intervals 
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( , )   and ( , )  . Then, there exist   ,  ,

satD  such that b   and satD  . 

Proof: Motivated by [31], one can approximate

(? tanh(?b   , ( ) tanh( )   where •  ,

 , and utilize (20) respectively along with the 

monotonic property of the functions tanh for completing 

the proof. 

If the minimum interval between events from the 

current to the next min 1min ( )k k kt t t  reduces to zero, 

the Zeno's behavior will happen [32]. As a result, the 

calculation will overload. The following theorem shows 

that the Zeno's behavior is excluded. 

Theorem 1: When using the event-triggered 

feedforward control laws in Lemma 2, the Zeno's 

behavior is avoided as the minimum inter-event time is 

lower bounded by a nonzero positive number. 

Proof: The proof follows from [17], [33] and is 

omitted here. 

III. EVENT-TRIGGERED ROBUST OPTIMAL CONTROL 

WITH INPUT CONSTRAINT BASED ON 

REINFORCEMENT LEARNING 

After designing the event-triggered feedforward 

control laws to transform (6) to (12), this section designs 

the robust optimal control laws. 

To facilitate the design, we rewrite the tracking 

dynamics (12) as 

 ( ) ( ) ( ) (, , ),zz f t g muq v vq kvg q d     (21) 

where ( ) [0, ]vzf t f , [ , ]vdu x  , [ , ]0 vd d , 

[0, ]b  ,   is actual optimal control input, b  is 

the worst dead-zone disturbance. ( , ) diag[ , ]q vg q v g g , 

( ) ( )diag[ , ]n n n m n mm I mI    , ( , ) diag[0, ]vk q v k . 

For robust optimal control with input constraint, the 

general disturbances including dead-zone and external 

disturbances need to be rejected. Inspired by [11], we use 

RL to design control with disturbance rejection. 

For robust control, the following bounded 2 -gain 

inequality for some attenuation constants 0   is 

satisfied: 

    2

0 0
( ) ( )mz Qz b U u dt U d d dt 

 

     (22) 

where Q  is a positive definite matrix, mb m . As u , 

  are constrained, inspired by [34], the costs are 

defined by nonnegative nonquadratic functions ( )U u

and ( )U   as 

 

0

( ) 2 tanh ( / )

u

U u s Sds    (23) 

 

0

( ) 2 tanh ( / )U s Rds



     (24) 

where R , S  are diagonal positive definite matrices. The 

cost function is then defined as 

  2

0
( ) ( )mJ z Qz b U u U d d dt 



     (25) 

Because the cost function (25) contains the 

disturbances, the two-player zero-sum game theory [35] 

is used to seek the optimal value V . That is, the control 

player finds the policy for u  to minimize the value 

while two disturbance players try to find the policies for 

  and d  to maximize it: 

 min max max
u d

V J


  (26) 

If the condition minmaxmax maxminmin
u dd u

J J


 holds, 

the saddle point exists. In this case, a minimum positive 

solution 0V   is the Nash equilibrium value. 

In RL, value functions are predefined by state feedback 

policies. We therefore derive it from (25) as 

  2( ( )) ( ) ( )
t

mV z t z Qz b U u U d d dt 


     (27) 

Using the infinitesimal version of (27) subject to (12), 

the Hamiltonian is given by 

   

2( ) ( )

( , ) ( , ) ( , ) 0

m

z

H z Qz b U u U d d

V f g q v mu g q v k q v d

 



   

     
(28) 

Define the event-triggering errors as 

 ( ) ( )e z t z t   (29) 

where ( ) ( )kz t z t , 1k kt t t   , k  . Then, the event-

triggered robust optimal control law u , the event-

triggered disturbance law   and the time-triggered 

disturbance law d  are given by 

 
11

tanh( ), ( , ) ( )
2

u M M S g q v V z


     (30) 

 11
tanh( ), ( , ) ( )

2
N N R g q v V z 



     (31) 

 
2

1
( , ) ( )

2
d k q v V z


   (32) 

where /V V z   . 

Using (30)-(32) for (28), the event-triggering HJI 

equation is obtained as 
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   

2( ) ( )

( , ) ( , ) ( , ) 0

m

z

H z Qz b U u U d d

V f g q v mu g q v k q v d

 



   

    
 (33) 

The HJI (33) cannot be solved analytically. Thus, an 

NN-based event-triggered control scheme is designed to 

approximate its solutions. 

Given a compact set ( )z t  , the smooth solution 

1( ( )) ( )V z t C   can be approximated by a NN as [34] 

 ( ) ( ) ( )V z W z z    (34) 

 ( ) ( ) ( )V z z W z     (35) 

where ( )z  is the activation function of  neuron units 

in the hidden layer, W   are the ideal weights,   is a 

partial derivative operator, and ( )z  is the approximation 

error. If ( )z  is a completely independent basis set, then 

( )z b  , ( ) ( ) /z z z b        , ( )z b  , ( )z

( ) /z z b      , where b , b  , b , b   are 

positive upper bounds. Additionally, ( )z  is Lipschitz 

for a positive constant L  

 ( ) ( )z z L z z L e         (36) 

Then, the NN-based event-triggered HJI equation is 

given by 

 
 

2

( )

( ) 0

z m

H

z Qz W f gmu g kd b U u

U d d e

 

 

     

   
 (37) 

where He  is the HJI approximation error, and 

 
11

tanh ( , )  ( )
2

+ ( )u S g q v z W z  


 
    

 
 (38) 

 

11
tanh ( , ) ) ( )

2
+(  R g q v z W z   



 
    

 
 (39) 

 
 2

1
( , ) ( ) ( )

2
d k q v z W z 


    (40) 

From the function approximation theory [34], 

( ) : su0 p
He H Hb e b   . Furthermore, if  , 

He  converges uniformly to zero. 

To avoid identifying the function ( )zf t  when online 

approximating the solutions to (37), the modified version 

of RL [36] is used, i.e., the integral of HJI equation (37) 

is taken as 

 
  ( )

t

z H
t T

W z f gmu g kd r d   


      (41) 

where 0T  , 
t

H H
t T

e d 


   is the approximation error. 

For a positive constant Hb , one has H Hb  , and 

 

2 2
( ) ( )mr z Qz b U u dU       (42) 

As the ideal weights of NN are unknown, the 

approximation of value function and its partial derivative 

are approximated by 

 

ˆ ˆ ˆ ˆ,   V W V W  (43) 

Using the event-triggered control law (38), the event-

triggered disturbance laws (39) and (40), the time-

triggered disturbance laws are approximated by 

 

11ˆ ˆ ˆˆ tanh( ), ( , ) ( )
2

  


   u M M S g q v z W  (44) 

 

11ˆ ˆ ˆˆ tanh( ), ( , ) ( )
2

   


   N N R g q v z W  (45) 

 
2

1ˆ ˆ( , ) ( )
2

d k q v z W


   (46) 

Using (44)-(46) for the dynamics (12) yields 

 

ˆˆˆ( ) ( , ) ( , ) ( , )zz f t g q v mu g q v k q v d     (47) 

On the other hand, substituting (43) to (41), we have 

the residual error re  :  

 
 ˆˆ ˆˆ ˆ( )( )  


     

t

r z
t T

e W z f gmu g kd r d  (48) 

where 

 

2
2

ˆˆˆ ˆ( ) ( )    mr z Qz b U u U d  (49) 

Dynamics (47) can be changed to (50) (see (50) below) 

by multiplying both sides of (47) with ( )z and then 

taking the integral: 

 

 ˆˆˆ( ) ( )

( )
( ( )) ( ( ))

( ( ))

t

z
t T

t

t T

z f gmu g kd d

z
zd z t z t T

z

z t

  


  







  


 



 



 



  (50) 

The residual error (48) becomes 

 

ˆ ˆ
t

r
t T

e W rd 


     (51) 

Now, we propose a NN weight-tuning law that brings 

Ŵ  to W such that the squared function of the residual 

error 1/ 2( ) 0r rE e e   when t  . By using the a 

gradient-descent method we have 

 

ˆ ˆ ˆ
ˆ ˆ

     


   
         

   
t

r

t T
r

eE E
W W rd

eW W
 (52) 

where 0   denotes an update rate. The NN 
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approximation error dynamics ( ˆW W W  ) is written as 

 
 HW W         (53) 

The triggering law for the parameter update of (44) and 

(45) is designed as 

 

2

22 2
min

2

min

ˆˆˆ(1 ) ( ) ( ) ( )
(1 )

1 ˆ1 ( )

Te E

Q z U u U d

Q W

   


 




   
 

 
  

 

 (54) 

where 0 , 1   ,   is defined in Appendix. It is worth 

emphasizing that updating the parameters of (44) and (45) 

only occur when the squared norm of the event-triggering 

error exceeds a threshold TE defined in (54). 

The stability and convergence of the proposed control 

method needs to be proven. 

Proof of the stability and convergence: Consider the 

Lyapunov function candidate: 

 
1 2 3L L L L    (55) 

where 

 

 

1

2

3

( )

( ( ))

1
trace

2

t

t T

t

t T

T

L V

L V d

L W W d

z

z
























 



 (56) 

Case 1: The system is within inter-event intervals: 

( )V z  is unchanged, thus the derivative of 1L  is zero. 

Taking the derivative of 2L  along the trajectories of (47) 

and utilizing ( ) zV z f  from the optimal HJI equation, 

ones has 

 
22

t

t T
L dL 


   (57) 

where 

  

 

2
2 ( ) ( )

ˆˆˆ

mL z Qz b U u U d d

V gmu g kd

V gmu g kd

 





    

  

  

 (58) 

Substituting u ,   from (30) to (23) 

and (31) into (24) one has 

 

 
2

2

2

1

2 2 1

( ) 2 tanh / ln 1

1
( ) tanh

2

1
ln 1 tanh

2

u
U u u Su S

V g S g V

S S g V

  













 
    

 

 
   

 

  
 


  

  



 (59) 

 
2

2

2

1

2 2 1

( ) 2 tanh / ln 1

1
( ) tanh

2

1
ln 1 tanh

2

U R R

V g R g V

R R g V


     














 
    

 

 
   

 

  
 


  

  



 (60) 

where  1 1,...,1 , S , R  is a row vector containing the 

main diagonal elements of S , R . Using (30), (31) and 

(60), 2L  can be rewritten as 

 

   

2
2

2 2 2 2

ˆˆˆ

ln 1 tanh ( ) ln 1 tanh ( )

z Qz d d

V gmu kd gmu g kd

S M R

L

N





 

  

    

   

(61) 

The terms in (61) can be rewritten as 

 2 2

ˆ
ln 1 tanh ( ) 2 tanh ( / )

ˆ( ) tanh( )

u

u
S M s Sds

U u V g M

  



 

  

  (62) 

 2 2

ˆ
ln 1 tanh ( ) 2 tanh ( / )

ˆ( ) tanh( )

R N s Rds

U V g N




  

 

 

  


 (63) 

ˆ

ˆ 2 tanh( )
u

u
M SV gu ds V g M      (64) 

ˆ

ˆ 2 tanh( )V g Rds V g NN



     

 

(65) 

 
22k V d   (66) 

 2 2 2ˆ ˆ ˆ2   d d d d d d  (67) 

 

2

1
(1 ) 1

iiz Qz z Qz z Qe e Q e

z Qz e Qe


  

 
    

 

 (68) 

Substituting (62)-(68) into (61) yields  

 

2 2

2 min min

2
2

1 2

1
(1 ) ( ) 1 ( )

ˆˆ( ) ( )

Q z QL e

U u U d

  


   

 
     

 

    

 (69) 
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where 

 1
1

ˆ
2 tanh ( / )

u

u
s M Sds    , 

 1
2

ˆ
2 tanh ( / )s N Rds




    . 

By changing tanh( )s    , 1  can be presented as 

 

 

   

2
1 ˆ

2

2
2

2

ˆ ˆ

ˆ

   





 

  

 


M

M
M Sd

M

S

M S M M

M M

 (70) 

Similarly, 2  is changed as 

 

 

   

2
2 ˆ

2

2
2

2

ˆ ˆ

ˆ

   





 

  

 


N

N
N Rd

N N R N N

R N N

 (71) 

Using ( )V z  from (35) for M  and N  in (30) and 

(31), M̂ and N̂  from (44) and (45) into (69), note that

ˆW W W  , one obtains  

 

 

2 1 1
1

2
1

22
2

2
1

2

1 1ˆ ˆ( , ) ( ) ( , ) ( )
2 2

1
( , ) ( ) ( )

2

1 ˆ( , ) ( ) ( , ) ( )
2

( , ) ( ) ( )

   

 

  

 

 





   

  

   


   








S S g q v z W R g q v z W

S g q v z W z

S S g q v z g q v z W

g q v z W z

 (72) 

 

 

2 1 1
2

2
1

22
2

2
1

2

1 1ˆ ˆ( , ) ( ) ( , ) ( )
2 2

1
( , ) ( ) ( )

2

1 ˆ( , ) ( ) ( , ) ( )
2

( , ) ( ) ( )

   

 

  

 

 





   

  

   


   








R R g q v z W R g q v z W

R g q v z W z

R R g q v z g q v z W

g q v z W z

  (73) 

Using the inequality 
2 2 2 2 2( ) 2 ( ) 2 ( )ab cd a b d d a c      and Assumption 2 

and (36), one yields 

2

2 22 2

22 2 2 2

( , ) ( ) ( , ) ( )

2 ( , ) ( ) ( ) 2 ( ) ( , ) ( , )

2 4g g

g q v z g q v z

g q v z z z g q v g q v

b L e b b

 

  

 

  

     

 

 (74) 

From  (72)-(74), one can rewrite (69) as 

 

2

2 min

2 2 2

i

1

n 2
2

m

2

ˆˆ(1 ) ( ) ( ) ( )

1ˆ ˆ1 ( )

L Q z U u U

d Q W e

W W

  

  


 

    

  
     

  

 

 (75) 

where 

 1 2
2 2 1 1b S R   

  ,  2 2 2 1 2 1
gb b S R   

  , 

Let’s take derivative of 3L  along the trajectories of 

(53), we have 

  3

t

H
t T

L W W W d   


      (76) 

where 0      . Using the Young inequality we 

have: 

 
. 2

3 min( 1) ( )
t

t T
L W d  


      (77) 

Substituting (77) and (75) into (55) we have: 

 


.

2

2

2

min

2 2
2

1
2

min

2

ˆˆ(1 ) ( ) ( ) ( )

1ˆ ˆ1 ( )

2

t

t T

L Q z U u U

d Q W e

W d

  

  



 





 

    

 
   

 

 


  
 


 










 (78) 

where 2 1 1     . Select 1 1   then 2 0  ,

 2
1 24   .  

Applying the triggering condition (54) for (78) one 

obtains 

  


.

2 2

min min

2
2

1
ˆ(1 ) ( ) ( )

ˆˆ( ) 0,

L Q z S v
T

U d t

   


   



   

 

 (79) 

if only if 

 1 22/ / 2
W

W b        (80) 

Thus, the closed dynamics is UUB stable. Note that by 

properly adjusting , ,R S , it can be made 
W

b  be a 

considerably small value. 

Case 2: In the case of the system at event-triggering 

instants, ,kt t k    . Taking the difference of the 

Lyapunov function candidate (35) one has 
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















 

   

 





  (81) 

From (78) since 0L   and the state of the system 

along with the function approximation are continuous, it 

can be shown that 

 ( ( )) ( ( ))
k k

k k

t t

k
t T t T

V z t d V z t d 






 
   (82) 

 

( ( )) ( ( ))
k k

k k

t t

k
t T t T

V z t d V z t d 






 
   (83) 

Then, L becomes 

 

1

1

1 1

( ( )) ( ( ))

( ( )) ( ( ))

( ) ( ) ( )

k k

k

k k

L V z t V z t

V z t V z t

K z t z t K e t







 

  

 

   

 (84) 

where K  belongs to a class-   function [37]. Thus, 

Lyapunov function (84) is still decreasing at arbitrary 

triggering instant ,kt t k  . 

From (84) and (79), it can be seen that the closed 

tracking error dynamics is asymptotically stable. 

The Proof is completed.   

IV. SIMULATION STUDY 

Consider a wheeled mobile robot (WMR) defined in 

[1]. The state vectors and parameters of WMR are

 , ,q X Y  ,  ,v    , where X, Y are the point of 

the robot centered position on the global Cartesian 

coordinate system,   is the direction,  and   are the 

linear and rotational velocities, and 

 

 

1

1 1

1 1

1 1

1
cos 0

0
( ) sin 0 , ,

0 1
0 1

b

r rm
S q M B

I b

r r





 
                  

   

where m , 1I denote the value of the mass and the 

moment of inertia of the platform, motors and wheels, 

respectively, with 1 0.05r m 1 0.5b m , 10m kg , 

2
1 5 .I kg m . One assumes that the robust optimal control 

torques of the right and left actuators are saturated by 

l  and r  , where the indexes {l,r} denote 

the left and right torques, respectively, and 1.5N.m  . 

The torques are also affected by the dead-zone actuators 

with 1.25r lm m  , 1 0.85rb  , 1 1.0lb  , 2 1.0rb  , 

2 0.85lb  , 2mb  . The external disturbance is

0.05rand(t)d  .   

The smooth desired eight-shaped trajectory of the 

virtual robot for tracking  , ,d d d dq X Y  is generated 

by the velocities rdv : 

 

2 2

2 2

cos 4cos (2 )

2sin cos(2 ) 4sin(2 )cos (cos 4cos (2 ))

rd
rd

rd

t t
v

t t t t t t





  
   
     

  

It is initial at (0) [0.1, 0.6, / 6]dq   .  

The weight vector of NN is defined as 

1 2 15
ˆ ˆ ˆ ˆ, , , 

 
W W W W  whose initial values are zeros. 

The adaptive gains are selected as 100  .  The  

activation  function  vector  of  critic  NN  with 15 

elements is chosen as 
2 2( ) , , , , , , ,X X Y X X X Y Yz z z z z z z z z z z z z    


 

2 2 2, , , , , , ,Y Yz z z z z z z z z z z z z          

 4 4R I  , 5  ,

5 5Q I  , 4 4S I  5  . The initial position and 

velocities of WMR are (0) [0.5, 0.5,0]q   , 

(0) [0,0]v  , respectively. The integral interval T is 

chosen as 0.01s . The parameters of the triggering 

condition is 0.2  , 0.8  , 10  . 

 

 

Figure 2.  Convergence of NN weights. 

 

Figure 3.  Position tracking errors. 

It is shown in Fig. 2 that the NN weights fast converge 

to the suboptimal values during the online learning and 

control. Fig. 3 shows the position tracking errors 

, ,X Yz z z  and Figs. 4-6 show the centered position q of 
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robot on the global Cartesian coordinate system. It can be 

seen that the tracking trajectory between the system 

output and the desired one satisfies the desired control 

performance. 

 

 

Figure 4.  Evolution of X-position. 

 

Figure 5.  Evolution of Y-position. 

 

Figure 6.  Evolution of  -position. 

The triggering error and threshold are presented in Fig. 

7. It is shown that the threshold is kept constant during 

inter-event interval, while the triggering error grow 

beneath the threshold all the time so that when it passes 

over the threshold, it is reset to zero. It can be also seen 

that the high triggering frequency occurs at the earlier 

stages of the control process but gradually reduces to the 

lower over time (see subplots in Fig. 7). Obviously, the 

sampled virtual velocities for the feedforward control 

laws, depicted in Figs. 8, 9, are held during inter-event 

intervals. Therefore, it can be concluded that the burden 

of the computational cost is mitigated. 

 

 

Figure 7.  Evolution of sampling error and triggering threshold. 

 

Figure 8.  Evolution of sampled rotational velocity. 

 

Figure 9.  Evolution of sampled linear velocity. 

 

Figure 10.  Robust optimal torques with dead-zone and saturation. 

The even-triggered robust optimal torques with dead-

zone and saturation is shown in Fig. 10, where the 

subplot shows the saturated left and right torques when 

they reach the maximum and minimum saturation limits 

  and  . During the online evolution, the torques 

decrease to the suboptimal values to make the value 

function (Fig. 11) be bounded and converged to the 2 -
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gain optimal value. Then, the solution of the even-

triggering HJI equation is solved. 

 

Figure 11.  Convergence of the approximate optimal value function. 

V. CONCLUSION 

This paper provided a novel event-triggered robust 

optimal control method for mobile Euler-Lagrange 

systems in the presence of dead-zone and saturation 

actuators. The event-triggered feedforward control law 

was designed to transform the control problem with 

separate kinematics and dynamics into the equivalently 

integrated control problem. Based on the RL technique 

and the three-player differential game theory, the 

feedback robust optimal control scheme was then 

designed. The scheme included the event-triggered dead-

zone disturbance law and the event-triggered constrained 

control law, where the parameters were only updated 

when a triggering condition held. Thanks to using RL, the 

proposed method relaxed the system identification 

procedure. The event-triggering condition was designed 

so that not only the Zeno phenomenon was excluded but 

also the closed system was guaranteed the stability while 

the cost function converged to the 2 -gain optimal. 

Future work will be concentrated on designing even-

triggered controllers for completely unknown systems or 

multi-agent systems in consensus. 
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