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Abstract—The rotating machine contains the many rotating 

parts and one rotating part produces additional noise to the 

others. As a result, fault signatures of the rotating machine 

are turned out to be quite weak. This paper proposed an 

effective method to detect the fault signatures of rotating 

machines based on improved adaptive filter, fuzzy logic and 

spectrum analysis. An improved adaptive filter is used to 

remove the noises from the faulty signal. Since the 

performance of the adaptive filter depends on the step size, 

a new technique is proposed to select the step size effectively 

based on entropy and fuzzy logic. To determine the fault 

signature of rotating machines of vibration signals 

effectively, demodulation is often required. Both squared 

envelope and Hilbert based envelope analysis are performed 

to identify the fault signature accurately. The effectiveness 

of the proposed adaptive filter is shown by simulation.  

Performances of the improved adaptive are also verified by 

real experimental data. Experimental results show that the 

proposed method can effectively detect the fault signatures 

of the rotating machines.  

 
Index Terms—improved adaptive filter, entropy, Hilbert 

transform, squared envelope, fuzzy logic, SNR 

 

I.  INTRODUCTION 

In today’s industries, the rotating machine is one of the 

major parts. Due to the hazardous location and 

installation issues, rotating machines fail sooner than the 

excepted lifetime. The unexpected failures of the rotating 

machine cause economic loss as well as human causality. 

Therefore, it is important to prevent the failure of rotating 

machines. As a result, fault detection of a rotating 

machine in the early stage is an important research field. 

Among the many other techniques, the signal-processing 

technique is most important in this research field. In this 

technique, signals that often contain the information are 

collected from different parts of the machine. There are 

thousands of methods have been proposed so far to detect 

the rotating machine fault in the early stage [1]-[3].    

Sever background noise and measurement noise can 

                                                           
Manuscript received July 7, 2020; revised January 7, 2021. 

distort the fault signal of rotating machines. Moreover, 

these sever noise can lead to the wrong calculation for the 

fault detection process. Therefore, it is obvious to reduce 

theses noise from the vibration signal. Many digital 

filters have been proposed so far. However, adaptive 

noise cancellation is widely used in this research [4]. It 

automatically updates the parameters based on the 

characteristics of noise [5]. The performance of the 

adaptive filter is mainly depending on the selection of the 

step size [6]. Many algorithms have been proposed to 

select the step size of the adaptive filter [7]-[9]. 

This paper proposed an improved adaptive filter to 

reduce the noises from rotating machine signals. A new 

technique is proposed to select the optimum step size of 

the adaptive filter based on wavelet entropy and fuzzy 

logic. The rest of the paper organized as follows: 

Literature review is given in section II. Section III 

describes the proposed mechanical fault detection method, 

Verification of Speed and WE based adaptive filter is 

described in section III and section IV presents the 

performance of the proposed method using real 

experimental data.  Finally, conclusions are given in 

Section V.  

II.  LITERATURE REVIEW 

A. Vibration Signal 

For condition monitoring and diagnosis of rotating 

machine faults, vibration signal analysis is an effective 

method. Vibration signals can provide plentiful 

information about the system dynamics. Therefore, faults 

of the rotating machine can be easily detected from the 

vibration signal. It is the most common and widely used 

method to detect and diagnosing of rotating machine 

faults [10].  

B. Envelope Spectrum Analysis  

After reducing the noises from the vibration signal, 

spectrum analysis is used to detect the fault signature of 

the rotating machine. Envelope analysis is an efficient 

tool for a separating modulating signal from its carrier 
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[11]. Fig. 1 shows the upper envelope (red line), 𝐸𝑢𝑝𝑝 

and the lower envelope, 𝐸𝑙𝑜𝑤  (green line). From this 

figure, the modulating signal, 𝑚(𝑡)  and carrier signal, 

𝑐(𝑡) can be calculated as follows: 

  𝑚(𝑡) = 𝐸𝑢𝑝𝑝 − 𝐸𝑙𝑜𝑤                            (1) 

𝐶(𝑡) = 𝐸𝑢𝑝𝑝 + 𝐸𝑙𝑜𝑤                              (2) 

In this paper, both the squared envelope and Hilbert 

based envelope are applied for spectrum analysis to 

determine the magnitude of the fault signatures.   

 

Figure 1. Envelope analysis [12].  

i)   Hilbert transform  

Hilbert transform (HT) introduced by German 

mathematician David Hilbert is a widely used tool in 

many areas like edge detection, theory of modulation 

[13-15]. HT is a linear operator and defined for function 

f(x) 

𝐻(𝑡) =
1

𝜋
∫

𝑓(𝑥)

𝑡−𝑥
𝑑𝑥

∞

−∞
                            (3) 

The analytic signal, X(t) can be constructed using 

Hilbert transform 

𝑋(𝑡) = 𝑥(𝑡) + 𝑗h(𝑡)                           (4) 

For constructing the analytic signals, the Hilbert 

transform is a well-known tool. For example, to obtain 

the envelope of a signal in the signal demodulation, 

amplitude modulation and so on. Hilbert transform is 

used in the demodulation process. Hilbert based envelope 

analysis can separate the fault signature properly from 

adjacent components.  

ii)  Squared envelope 

Due to the existing random components during the 

envelope analysis, it is difficult to identify the fault 

signatures clearly. That why the signal to noise ratio 

plays a vital role here. However, this limitation can be 

overcome by using the squared envelope analysis. It is 

defined as a convolution of an analytic signal and its 

complex conjugate. The squared envelope provides a 

higher harmonic reduction [12]. It can calculate by the 

convolution process easily. 

III.   PROPOSED MECHANICAL FAULT DETECTION 

METHOD 

The main objective of this proposed method is to 

detect the fault signatures of the rotating machine 

effectively using the proposed adaptive filter. In this 

proposed approach, the faulty vibration signal is used. 

Since this vibration signal contains noise as well as the 

components from the other parts of the machine, adaptive 

filter this used to reduce noise and other effects. To select 

the proper step size of the adaptive filter, an entropy and 

fuzzy based new approach is proposed in this paper. 

Finally, squared envelope and Hilbert based envelope 

analysis are used to identify the fault signatures. The 

flow chart of the proposed method is shown in Fig. 2. 

 

Figure 2. The proposed fault detection technique. 

A.  Noise Reduction by the Proposed Adaptive Filter  
Magnitudes of the fault signatures of the rotating 

machines are quite weak when surrounded by strong 

noise. Additional random noise can be added to the fault 

signals if the rotating machine contains additional 

rotating parts. These noises should be reduced to detect 

the fault signatures accurately. Many noise reduction 

techniques have been proposed so far. Adaptive noise 

cancellation is widely used in this field. To design an 

adaptive filter, the step size of it plays an important rule. 

Because the step size of an adaptive filter governs the 

speed of tracking ability as well as the rate of 

convergence. Several methods have been proposed for 

choosing the step size of the adaptive filter [6, 9]. 

However, Noise has a great impact on the identification 

of the fault signatures accurately. A new technique has 

been proposed in this paper to select the optimum step 

size. To reduce the noise from the faulty vibration signal, 

entropy and fuzzy logic based step size of the adaptive 

filter is proposed.  

 i) Step Size selection using fuzzy and entropy  

The entropy is defined as a measure of complexity and 

disorders of signal. If 𝐸𝑗𝑘 is wavelet energy spectrum at 

scale j and instant k, wavelet entropy can be defined as: 

𝑊𝐸𝑗 = ∑ 𝐸𝑗𝑘log(𝐸𝑗𝑘)𝑘                       (5) 

The speed of the rotating machines may vary due to 

the fluctuation of loads even for driving forces. This 

speed variation can happen for constant speed machine. 

As a result, the dynamic behaviors of the vibration signal 

change accordingly. This behavior can be obtained by 

wavelet entropy.  However, if the speed of the rotating 

machines changes dramatically, the magnitudes of the 

fault signatures are changed significantly. In other words, 

if the speed variation of the rotating machine is high, then 

the fault signatures change. In this situation, only wavelet 
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entropy cannot determine the step size effectively. The 

effect of this high-speed variation is present in Table II. 

To solve this problem, fuzzy logic is applied along with 

the wavelet entropy to determine the step size of the 

adaptive filter.    

ii) Fuzzy system 

A fuzzy system is used along with wavelet entropy to 

determine the step size of the proposed adaptive filter. 

This fuzzy system contains one input and one output. 

Input is the speed of the machine while the output is the 

step size of the adaptive filter based on the entropy of the 

vibration signal. The membership function of input 

depends on the speed variation of the rotating machine 

while output membership functions are design based on 

wavelet entropy. The input variable ‘speed’ contains five 

membership functions very small (VS), small (S), normal 

(N), medium (M) and large (L) shown in Fig. 3. The 

output variable ‘MU’ also contains five membership 

functions shown in Fig. 4. Fig. 5 presents the relationship 

between the input and output variables.  

The relationship between membership functions of 

input and membership function of output is define by 

following five rules: 

Rule 1: IF {speed is very small(VS)} THEN{step size is 

small(S)} 

Rule 2: IF {speed is small(S)} THEN{step size is 

medium(M)} 

Rule 3: IF {speed is normal(N)} THEN{step size is 

Wavelet entropy (WE)} 

Rule 4: IF {speed is medium(M)} THEN{step size is 

large(L)} 

Rule 5: IF {speed is large (L)} THEN{step size is very 

large(VL)} 

 

Figure 3. Membership function for input variable “speed”.  

 

Figure 4. Membership function for output variable “mu” of the fuzzy 
system. 

B. Spectrum Analysis 

After reducing the noises from the faulty signal by 

applying proposed fuzzy based adaptive filter, both 

squared envelope and Hilbert based envelope are used to 

identify the fault signatures. The details of squared 

envelope and Hilbert based envelope are given in section 

II. 

 

Figure 5. Relation between input and output of the membership 
function. 

IV.  VERIFICATION OF THE PROPOSED ADAPTIVE FILTER 

This section presents the verification of the proposed 

new technique. Section III (A) shows the significance of 

the WE to select the proper step size. This section also 

shows the limitation of WE when the speed of the 

rotating machine varies. How fuzzy overcomes, this 

problem is presented in section III (B).    

A.  Benefits of WE Based Step Size  

 

Figure 6. (a) Signal (time domain) from rotating machine, (b) frequency 
spectrum of the signal. 

 

Figure 7. Fault signatures at 10 dB RANDN, 360 rpm and mu=0.1. (a) 
Squared envelope and (b) Hilbert based envelope. 
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Figure 8. Fault signatures at 20 dB RANDN, 360 rpm and mu=0.1. (a) 

Squared envelope and (b) Hilbert based envelope. 

Fig. 6(a) presents the vibration signal in the time 

domain and Fig. 6(b) shows the spectrum of the faulty 

signal. Unfortunately, no fault signature appears. The 

fault signature is visible in Fig. 7 where envelope 

analysis is used at 10 dB RANDN, 360 rpm and step size, 

mu=0.1. Magnitudes of the Fault signature are 0.5627 

and 0.2346 for squared and Hilbert based envelope, 

respectively given in Table I. Fig. 8, Fig. 9 and Fig. 10 

provide the fault magnitude with SNR 20 dB, 30 dB, and 

40 dB respectively. From Table I, it can say that 

magnitudes of fault signature are change with SNR. 

 

Figure 9. Fault signatures at 30 dB RANDN, 360 rpm and mu=0.1. (a) 
Squared envelope and (b) Hilbert based envelope.  

 

Figure 10. Fault signatures at 40 dB RANDN, 360 rpm and mu=0.1. (a) 
Squared envelope and (b) Hilbert based envelope. 

TABLE I. MAGNITUDE OF FAULT SIGNATURES 

 Mu=.1 Mu=.01 Mu=entropy 

dB squared Hilbert squared Hilbert squared Hilbert 

10 .5627 .2346 .5619 .2350 4.1410 .6167 

20 .5760 .2457 .5731 .2487 3.0220 .6071 

30 .6097 .2589 .6037 .2542 2.7730 .5520 

40 .6144 .2660 .6060 .2598 2.4710 0.5183 

Now step size is considered 0.01. With 10 dB RANDN 

and 360 rpm, the frequency spectrum of the faulty signal 

is shown in Fig. 11. In this case, fault magnitudes are 

0.5619 and 0.2350 for squared and Hilbert based 

envelope respectively. Fig. 12, Fig. 13 and Fig. 14 also 

show the fault magnitudes using the step size 0.01. It can 

conclude that when the size of the adaptive filter is 

changed, the fault magnitudes also are change.  Therefore, 

to know the exact magnitude of the fault signature it is 

very important to select the proper value of step size. 

 

Figure 11. Fault signatures at 10 dB RANDN, 360 rpm and mu=0.01. (a) 
Squared envelope and (b) Hilbert based envelope.  

 

Figure 12. Fault signatures at 20 dB RANDN, 360 rpm and mu=0.01. (a) 
Squared envelope and (b) Hilbert based envelope.  
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Figure 13. Fault signatures at 30 dB RANDN, 360 rpm and mu=0.01. (a) 
Squared envelope and (b) Hilbert based envelope.  

 

Figure 14. Fault signatures at 40 dB RANDN, 360 rpm and mu=0.01. (a) 

Squared envelope and (b) Hilbert based envelope. 

Fig. 14, Fig. 15, Fig. 16 and Fig. 17 represent the 

magnitude of the fault signature using the entropy-based 

step size for the adaptive filter. Values of the fault 

magnitude are present in Table I. From Table I, it is clear 

that magnitudes of the fault signatures are higher than the 

fixed step size of 0.1 and 0.01. In other words, 

magnitudes of the fault signatures are more visible in this 

method.  

 

Figure 15. Fault signatures at 10 dB RANDN, 360 rpm and entropy 
based mu. (a) Squared envelope and (b) Hilbert based envelope.  

 

Figure 16. Fault signatures at 20 dB RANDN, 360 rpm and entropy 
based mu. (a) Squared envelope and (b) Hilbert based envelope.  

 

Figure 17. Fault signatures at 30 dB RANDN, 360 rpm and entropy 
based mu. (a) Squared envelope and (b) Hilbert based envelope.  

 

Figure 18. Fault signatures at 40 dB RANDN, 360 rpm and entropy 

based mu. (a) Squared envelope and (b) Hilbert based envelope. 
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the adaptive filter. However, speed variation has a great 

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

(a)                                                                                       Frequency in Hz

M
a
g

n
it
u
d
e

Squared envelope spectrum  (30 dB RANDN, 360 rpm, mu=0.01 )

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

(b)                                                                                       Frequency in Hz

 M
a
g

n
it
u
d
e

Hilbert based envelope spectrum  (30 dB RANDN, 360 rpm, mu=0.01 )

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

(a)                                                                                       Frequency in Hz

M
a
g

n
it
u
d
e

Squared envelope spectrum  (40 dB RANDN, 360 rpm, mu=0.01 )

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

(b)                                                                                       Frequency in Hz

 M
a
g

n
it
u
d
e

Hilbert based envelope spectrum  (40 dB RANDN, 360 rpm, mu=0.01 )

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

(a)                                                                                       Frequency in Hz

M
a
g

n
it
u
d
e

Squared envelope spectrum (10 dB RANDN, 360 rpm, entropy based mu )

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

(b)                                                                                       Frequency in Hz

 M
a
g

n
it
u
d
e

Hilbert based envelope spectrum (10 dB RANDN, 360 rpm, entropy based mu) 

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

(a)                                                                                       Frequency in Hz

M
a
g

n
it
u
d
e

Squared envelope spectrum (20 dB RANDN, 360 rpm, entropy based mu )

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

(b)                                                                                       Frequency in Hz

 M
a
g

n
it
u
d
e

Squared envelope spectrum (20 dB RANDN, 360 rpm, entropy based mu )

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

(a)                                                                                       Frequency in Hz

M
a
g

n
it
u
d
e

Squared envelope spectrum (30 dB RANDN, 360 rpm, entropy based mu )

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

(b)                                                                                       Frequency in Hz

 M
a
g

n
it
u
d
e

Squared envelope spectrum (30 dB RANDN, 360 rpm, entropy based mu )

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

(a)                                                                                       Frequency in Hz

M
a
g

n
it
u
d
e

Squared envelope spectrum (40 dB RANDN, 360 rpm, entropy based mu )

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

(b)                                                                                       Frequency in Hz

 M
a
g

n
it
u
d
e

Squared envelope spectrum (40 dB RANDN, 360 rpm, entropy based mu )

83

International Journal of Mechanical Engineering and Robotics Research Vol. 10, No. 2, February 2021

© 2021 Int. J. Mech. Eng. Rob. Res



effect on the value of entropy.  Fig. 19, Fig. 20 and Fig. 

21 indicate the magnitudes of fault signature with a speed 

of 420 rpm, 480 rpm and 540 rpm respectively. Table II 

represents the faults magnitudes with different speeds of 

machine. If the speed of the machine is changed, 

magnitudes of the fault signature are changes.  Therefore, 

it is important to select the value of entropy based on the 

speed of the machine. In this paper, fuzzy logic is used to 

choose the values of entropy based on machines speed.  

 

Figure 19. Fault signatures at 40 dB RANDN, 420 rpm and entropy 

based mu. (a) Squared envelope and (b) Hilbert based envelope.  

 

Figure 20. Fault signatures at 40 dB RANDN, 480 rpm and entropy 
based mu. (a) Squared envelope and (b) Hilbert based envelope. 

 

Figure 21. Fault signatures at 40 dB RANDN, 540 rpm and entropy 
based mu. (a) Squared envelope and (b) Hilbert based envelope. 

TABLE II. MAGNITUDES OF FAULT SIGNATURES AT DIFFERENT RPM 

Speed (rpm) 

Magnitudes of fault signatures 

Squared 

envelope 

Hilbert based 

envelope 

360 2.4710 0.5183 

420 2.2750 0.5161 

480 2.1340 0.4670 

540 2. 0650 0.4599 

V. EXPERIMENTAL VERIFICATION 

Performance of the proposed presented in this section 

using experimental data. Outer race bearing fault of the 

induction motor is considered in this paper.  

A. Experimental Data 

To evaluate the performance of the proposed method, 

real experimental data [16] is used. The experimental 

setup for the induction motor is shown in Fig. 22. From 

this experiment, only bearing outer race (Fig. 22) 

vibration data is used in this paper. Three accelerometers 

are used to the motors in horizontal, vertical, and axial 

directions to collect the vibration signal from the faulty 

machine.    

 

 

Figure 22. Test rig [16]. 

B.  Performances of the Improved Adaptive Filter 

Fig. 23 represents the frequency spectrum of the real 

experimental data without applying the proposed method. 

Here, bearing outer race fault signature is visible around 

169 Hz. However, there is another frequency component 

with the same magnitude appear around 183 Hz. This is 

due to severe noise (at 10 dB) and not the fault signature. 

This noise is significantly reduced by the proposed 

adaptive filter.  

After applying the proposed modified adaptive filter, 

only fault signature appears in Fig. 24 and no other 

frequency components appears in the spectrum 

significantly. In this figure, only the fault signature is 

dominant at 169 Hz. Therefore, it is obvious that the 

proposed adaptive filter can effectively reduce the noise 

from the vibration signal of low SNR. In other words, 

this proposed fault detection method detects the fault 

signatures accurately. 
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Figure 23. Fault signature for bearing outer race fault.  

 

Figure 24. Fault signature for bearing outer race fault (10dB RANDN) 
using the proposed method. 

 

Figure 25. Fault signature for bearing outer race fault (20dB RANDN) 
using the proposed method. 

When the SNR is getting higher, the fault signatures 

become more and more dominant. Fig. 25, Fig. 26 and 

Fig. 27 presents the magnitudes of the fault signature for 

20 dB, 30 dB and 40 dB respectively. Fault signatures are 

clearly visible in these figures. Therefore, the outcomes 

of the proposed method indicate that it detects the fault 

signatures efficiently. As a result, it can conclude that the 

proposed adaptive filter reduces the noise from the 

vibration signal effectively.   

 

Figure 26. Fault signature for bearing outer race fault (30dB RANDN) 
using the proposed method. 

 

Figure 27. Fault signature for bearing outer race fault (40dB RANDN) 

using the proposed method. 

VI.  CONCLUSION 

This paper presents a rotating machine fault detection 

method using an improved adaptive filter. A new 

technique has been proposed to determine the step size of 

the adaptive filter. The entropy and fuzzy based approach 

are used in this modified adaptive filter. Both squared 

envelope and Hilbert based envelope are used for 

spectrum analysis. The performance of the proposed 

method is verified by simulation and experimental data. 

Results show that by using the proposed adaptive filter, 

the fault signatures of the rotating machine are detected 

effectively even when the signal is surrounded by severe 

noise.  
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