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Abstract—While inverse kinematics is used as a trajectory 

generator for the path tracking of the end effector of robots, 

precise control of terminal device is difficult due to 

accumulated tracking errors. Therefore, artificial neural 

network or Kalman filter-based inverse kinematics analysis 

methods have been proposed to minimize the tracking 

errors of inverse kinematics. However, generating the 

trajectory of end effectors based on such methods still 

contain tracking errors, making precise trajectory tracking 

difficult. To solve this issue, therefore, this study proposes 

the end effector path control algorithm using artificial 

neural network and Kalman filter. Furthermore, it 

demonstrates, through simulation results, that the proposed 

algorithm can track the trajectory effectively. 

 

Index Terms—inverse kinematics, artificial neural network, 

Kalman filter, robot manipulator 

 

I. INTRODUCTION 

Inverse kinematics is a method to calculate the joint 

value corresponding to each joint of a robot so that the 

end effector can be operated in the Cartesian space, and 

various studies on tracking a robot trajectory through 

inverse kinematic analysis have been conducted. 

To solve the inverse kinematics of robot manipulators, 

Iliukhin et al. (2017) and Bhave et al. (2013) used 

geometric and mathematical methods [1], [2]. Iliukhin et. 

al. (2017) solved the 5-link manipulator through 

mathematical methods [1], such as the Denavit–

Hartenberg convention and the homogeneous 

transformation matrix and showed trajectory control 

through the MATLAB simulation. Bhave et al. (2013) 

determined the joint value with the location and direction 

of the end effector of a robot based on a geometric 

method in order to control the sliding model of the 3-link 

manipulator [2]. 

As stated by Duka (2013), feed-forward neural 

network was applied to determine the inverse kinematics 

solution of the 3-link manipulator [3], and a method to 

generate joint variables for the trajectory tracking of the 

end effector at a series of target points. In addition, 

Kumar and Irshad (2012) proposed a method to 
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determine the inverse kinematics solution of 2-link robot 

using multilayer perceptron (MLP) and backpropagation 

[4]. However, in these studies, artificial neural network-

based joint variables may have many errors when 

tracking the trajectory, which is problematic, as it leads to 

different results depending on training data. 

On the contrary, other studies proposed methods that 

use Kalman filter for the trajectory tracking of end 

effectors of robots [5]-[7]. Song et al. (2018) calculated 

the error between the end effector and the target using 

image processing, and suggested using the Kalman filter 

to track the trajectory of robot end effector [5]. Takaba et 

al. (1996) applied the extended Kalman filter (EKF) 

twice and proposed a method that could track and control 

the location of the end effector and the joints of 2-link 

robot [6]. EKF showed the identical values estimated by 

the robot when the speed of the end effector was slow [4]; 

however, when its speed was faster, the curvature ratio of 

the link increased too much to determine a linearized 

model. Badamchizadeh et al. (2010) determined a 

dynamic model of 5-link robot and proposed EKF and 

unscented Kalman filter (UKF) to estimate the 

acceleration and jerk, which is the change of acceleration 

per unit hour, based on the measured location and speed 

[7]. 

This study derived the inverse kinematics joint 

variables of 3-link robot using artificial neural network, 

and, by entering the corresponding coordinators of the 

end effector into the initial vector of Kalman filter, the 

study proposes a hybrid trajectory tracking algorithm that 

can improve the trajectory tracking performance of the 

final 3-link robot end effector. By comparing the 

trajectory tracking performance between the robot, which 

is based on the proposed algorithm and the existing robot 

that used only the artificial neural network or Kalman 

filter, it verifies the effectiveness of the hybrid trajectory 

algorithm using artificial neural network and Kalman 

filter. 

After the introduction, Chapter II in this article 

analyzes the forward kinematics and inverse kinematics 

of 3-link manipulator geometrically, introduces artificial 

neural network and Kalman filter, which are the 

algorithms used for the trajectory tracking of 3-link 

manipulator, and proposes a hybrid algorithm that 

combines artificial neural network and Kalman filter. 
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Chapter III verifies and compares the performance of 

each algorithm through MATLAB simulation, and 

Chapter IV concludes the article. 

II. HYBRID TRAJECTORY TRACKING ALGORITHM 

A. 3-link Manipulator and Geometrical Analysis of 

Inverse Kinematics 

As shown in Fig. 1, a 3-link manipulator that moves on 

a x-y plane consists of the base fixed at the origin, three 

rotating joints, and the three links that connect these 

joints. 

 

Figure 1. Schematic expression of 3-link planar manipulator 

Each joint has limited ranges of motion as set below, 

and the length of each link is identical. 
 

𝜃1 ∈ [0, 𝜋] 

𝜃2 ∈ [−𝜋, 0] 

𝜃3 ∈ [−
𝜋

2
,
𝜋

2
] 

𝑙1 = 𝑙2 = 𝑙3 = 2m 

The kinematic analysis of the manipulator is divided 

into forward kinematic analysis and inverse kinematic 

analysis. The forward kinematic analysis determines the 

location (𝑥𝐸 , 𝑦𝐸 ) and direction (𝑜𝐸 ) of the end effector 

when the state of the joint (𝜃1, 𝜃2, 𝜃3) is given, and the 

forward kinematics equations (1) and (2), and the 

direction equation (3) of 3-link manipulator can be 

determined as follows. 

𝑥𝐸 = 𝑙1𝑐𝑜𝑠𝜃1 + 𝑙2 cos(𝜃1 + 𝜃2) + 𝑙3 cos(𝜃1 + 𝜃2 + 𝜃3)   (1) 

𝑦𝐸 =  𝑙1𝑠𝑖𝑛𝜃1 + 𝑙2sin (𝜃1 + 𝜃2) + 𝑙3sin (𝜃1 + 𝜃2 + 𝜃3) (2) 

𝑜𝐸 = 𝜃1 + 𝜃2 + 𝜃3  (3) 

The inverse kinematic analysis determines the state of 

each joint (𝜃1, 𝜃2, 𝜃3)  when the location (𝑥𝐸 , 𝑦𝐸 ) and 

direction ( 𝑜𝐸 ) of the end effector at the standard 

coordinate space are given, and the inverse kinematics 

equations (4–10) of 3-link manipulator based on the 

above region of operation are as follows (see Fig. 2). 

 

𝑥2 = 𝑥𝐸 − 𝑙3cos(𝑜𝐸)     (4) 

              𝑦2 = 𝑦𝐸 − 𝑙3sin(𝑜𝐸)                 (5) 

                 𝛿2 = atan (
𝑦2

𝑥2
)                               (6) 

       𝜃2 = −𝑐𝑜𝑠−1 (
𝑥2

2+𝑦2
2−(𝑙1

2+𝑙2
2)

2𝑙1𝑙2
 )                  (7) 

              𝛿1 = 𝑎𝑡𝑎𝑛 (
𝑙2sin (𝜃2)

𝑙1+𝑙2cos (𝜃2)
)                 (8) 

                                     𝜃1 = 𝛿1 + 𝛿2                 (9) 

                 𝜃3 = 𝑜𝐸 − (𝜃1 + 𝜃2)               (10) 

 

 

Figure 2. Workspace of 3-link planar manipulator. 

B. Inverse Kinematic Analysis of Artificial Neural 

Network 

First, the joint variables acquired from forward 

kinematics analysis of 3-link manipulator and the 

corresponding location and direction of the end effector 

are used to train artificial neural network. Then, in 

reverse, when the pose of the end effector is given, the 

inverse kinematic analysis of artificial neural network is 

conducted, which is about determining solution of the 

generalized joint variables from the trained artificial 

network. The inverse kinematic analysis of artificial 

neural network can be realized only by the input and 

output patterns of the system without the mathematical 

conditions or restrictions of II.A and can produce (or 

derive) appropriate outputs based on the learned values 

against unlearned input conditions. 

To solve an inverse kinematics, the study applies feed-

forward neural network (FFNN), as shown in Fig. 3. The 

structure of FFNN consists of the input layer, the hidden 

layer, the output layer, and the (calculation) processing 

flows from the input layer to the output layer—passing 

through only one hidden layer. While the number of 
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hidden layers is unlimited in theory, it is reported that 

only one hidden layer is enough for the solution [8], [9]. 

In this study, the number of hidden layer nodes was set to 

110 based on the preliminary test result to determine the 

suitable number of hidden layer nodes. 

 

Figure 3. The structure of feed-forward neural network (FFNN). 

The input layer has three nodes where the position of 

end effector (𝑥𝐸 , 𝑦𝐸 , 𝑜𝐸)) is entered. Then, the input value 

is multiplied with the weight value (𝑤𝑖) and the bias (𝑏𝑖) 

is added to represent the activation function of hidden 

layer as equation (11). 

   𝑧 = 𝑤𝑖 ∙ (

𝑥𝐸

𝑦𝐸

𝑜𝐸

) + 𝑏𝑖

               

(11) 

The activation function of the hidden layer is a 

hyperbolic tangent function as shown in Equation (12) 

that returns the output between −1 and 1 with the origin 

as its center, and therefore, compared to a sigmoid 

function, its convergence speed is faster and the slope 

loss is smaller [10]. 

               tanh(𝑧) =
𝑒2𝑧−1

𝑒2𝑧+1
= 𝑉𝑎𝑙ℎ               (12) 

The result of the hidden layer (𝑉𝑎𝑙ℎ) is multiplied to 

the weighting value of the output layer (𝑤𝑜), and after the 

bias of the output layer (𝑏𝑜) is added, the result is entered 

as the activation function of the output layer, which is a 

linear transfer function (𝑦 = 𝑥 ). The output in the output 

layer is the joint variables (𝜃̂1, 𝜃̂2, 𝜃3) or the movement 

toward the input pose, which consists of three nodes and 

is calculated as interpreted in equation (13). 

                   (

𝜃̂1

𝜃̂2

𝜃̂3

) = 𝑤𝑜 ∙ 𝑉𝑎𝑙ℎ + 𝑏𝑜

               

(13) 

The shape of such FFNN renews the weighting value 

and bias through the repetitive process of the LM 

(Levenberg–Marquardt) backpropagation algorithm and 

trains the artificial neural network. (Refer to [1] for 

technical details for the solution of FFNN-based inverse 

kinematics.) 

 

Figure 4. The solution of inverse kinematics for the trajectory tracking 
of 3-link robot using artificial neural network. 

C. Manipulator Trajectory Tracking Based on Kalman 

Filter 

The study uses linear Kalman filter for tracking of the 

trajectory of 3-link manipulator, and the state equation 

(14) and measurement equation (15) of Kalman filter can 

be simply shown as follows. 

                   𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘−1 + 𝑊𝑘−1              (14) 

                               𝑧𝑘 =  𝐻𝑥𝑘 + 𝑉𝑘               (15) 

Here, 𝑥 is the state vector of the manipulator, 𝑧𝑘 is the 

measurement vector, A is the state matrix, B is the input 

matrix, 𝑢𝑘−1  is the input vector, H is the measurement 

derivative matrix, 𝑊𝑘−1  is the system model noise, and 

𝑉𝑘 is the measured noise. 

To track the trajectory of 3-link manipulator based on 

Kalman filter, the state vector of the system was defined 

by the location and speed of the end effector being 

estimated, as shown in equation (16), and based on this, 

state equation (17) and measurement equation (1) are 

presented below, similar to equation (14) and (15) state 

equation. T indicates sampling time. 

                              𝑥𝑘 = [𝑝𝑥, 𝑝𝑦 , 𝑣𝑥 , 𝑣𝑦]               (16) 

𝑥𝑘 = [
𝑝𝑘

𝑣𝑘
] = [

𝑥𝑘

𝑦𝑘

𝑣𝑘
𝑣𝑦𝑘

]                 

=

[
 
 
 
 𝑥𝑘−1 + 𝑣𝑥𝑘−1

∙ 𝑇 +
1

2
𝑢𝑘−1 ∙ 𝑇2

𝑦𝑘−1 + 𝑣𝑦𝑘−1
∙ 𝑇 +

1

2
𝑢𝑘−1 ∙ 𝑇2

𝑣𝑥𝑘−1
+ 𝑢𝑥𝑘−1

∙ 𝑇

𝑣𝑦𝑘−1
+ 𝑢𝑦𝑘−1

∙ 𝑇 ]
 
 
 
 

 + 𝑊𝑘−1         (17) 
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= [

1
0
0
0

 

0
1
0
0

 

𝑇
0
1
0

 

0
𝑇
0
1

] [

𝑥𝑘−1

𝑦𝑘−1

𝑣𝑥𝑘−1

𝑣𝑦𝑘−1

] +

[
 
 
 
 
𝑇2

2

𝑇2

2

𝑇
𝑇 ]

 
 
 
 

[𝑢𝑘−1] + 𝑊𝑘−1

                

     [𝑧𝑘] =  [
𝑥𝑘

𝑦𝑘
] = = [

1 0 0 0
0 1 0 0

] [

𝑥𝑘

𝑦𝑘

𝑣𝑥𝑘

𝑣𝑦𝑘

] + 𝑉𝑘       (18) 

Kalman filter consists of the estimation and update 

stages, and its algorithm is as below (equations (19) – 

(23)) 

 

(1) Estimation stage 

      𝑥̂𝑘
− = 𝐴𝑥̂𝑘−1 + 𝐵𝑢𝑘                   (19) 

     𝑃𝑘
− = 𝐴𝑃𝑘−1𝐴

𝑇 + 𝑄                    (20) 

(2) Update stage 

𝐾𝑘 = 𝑃𝑘
−𝐻𝑇(𝐻𝑃𝑘

−𝐻𝑇 + 𝑅)−1          (21) 

𝑥̂𝑘 = 𝑥̂𝑘
− + 𝐾𝑘(𝑧𝑘 − 𝐻𝑥̂𝑘

−)               (22) 

     𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘
−                     (23) 

Here, Q is the covariance matrix of the system model 

noise (𝑊𝑘−1)), R is the covariance matrix of the measured 

noise (𝑉𝑘), and P is the error covariance matrix, where Q 

and R can be determined as follows. 

𝑄 =

[
 
 
 
 
 
 
𝑇4

4
0

𝑇3

2
0

0
𝑇4

4
0

𝑇3

2

𝑇3

2
0 𝑇2 0

0
𝑇3

2
0 𝑇2

]
 
 
 
 
 
 

  , 𝑅 = [
1 0
0 0

].       (24) 

In the estimation stage, the state vector (𝑥̂𝑘−1) of the 

manipulator in the previous stage is used to estimate the 

state vector (𝑥̂𝑘
−) of the manipulator. In the update stage, 

the state vector (𝑥̂𝑘
−) of the current manipulator estimated 

and the measured location vector (𝑧𝑘) in the estimation 

stage are used to update the state vector of the current 

manipulator. 

D. Robot Trajectory Tracking Algorithm Based on 

Artificial Neural Network-Kalman Filter 

To acquire precise trajectory tracking results for 3-link 

manipulator, this study proposes a hybrid algorithm that 

combines artificial neural network and Kalman filter (Fig. 

5). 

In this study, FFNN is learned by the joint variables 

((𝜃1, 𝜃2, 𝜃3)) randomly determined within the scope of 

the operation of 3-link manipulator and the pose of the 

end effector ( 𝑥𝐸 , 𝑦𝐸 , 𝑜𝐸) ) corresponding to each state 

variable. The measurement vector of Kalman filter (𝑧𝑘) is 

the target location (𝑥𝑑 , 𝑦𝑑) of the end effector that the 

manipulator needs to reach, and direction (𝑜𝑑) is required 

for the input to the artificial neural network. The direction 

(𝑜𝑑) corresponding to the target location can be derived 

from equation (25). 

                   𝑜𝑑 = 𝑡𝑎𝑛−1(
𝑦𝑑

𝑥𝑑
)               (25) 

Since artificial neural network analyses and processes 

complex nonlinear relations in parallel, it has excellent 

generation capacity, but as it verifies the state vector 

through the forward kinematics of the joint variables 

(𝜃1, 𝜃2, 𝜃3 ) which are the result from artificial neural 

network alone, considerable errors are found in the 

manipulator tracking performance, which makes precise 

tracking difficult. To address this problem, the study uses 

Kalman filter, a recursive filter that estimates the state of 

a dynamic linear system based on state vectors even if 

they contain errors. Since this article aims to precisely 

track the trajectory, it assumes uniform motion, and 

accordingly, sets the input vector of Kalman filter, which 

signifies acceleration, to 0. 

 

 

Figure 5. The structure of the hybrid manipulator control algorithm 
using FFNN and Kalman filter algorithm. 

III. TEST RESULT 

To verify the performance of the proposed artificial 

neural network-Kalman filter based trajectory tracking 

algorithm for 3-link manipulator, the study conducted a 

test in the following environment. 

A. Test Environment 

The hardware environment for the performance 

evaluation is as follows: 

Hardware: Intel CORE i5 (2.64GHz), 8GB RAM 

Software: MATLAB®/Simulink® 2019b 

Tracking Trajectory: the trajectory of a circle with 

radius at 1 (Ground truth–equation (26)) 

                 (𝑥 − 3)2+(𝑦 − 2)2 = 12               (26) 

B. Result of Artificial Neural Network-based Trajectory 

Tracking 

Shown in Fig. 6 is the result of the inverse kinematics 

based on artificial neural network of II.A. for 3-link 

manipulator trajectory tracking. Trajectory tracking starts 

63

International Journal of Mechanical Engineering and Robotics Research Vol. 10, No. 2, February 2021

© 2021 Int. J. Mech. Eng. Rob. Res



from the point at (4, 2) where the red square is located 

and moves along the given counter-clockwise trajectory. 

 

 

Figure 6. Comparison of FFNN and reference [1] of trajectory tracking 
using artificial neural network. 

In this study, the trajectory tracking performance of 

artificial neural network-based robot was evaluated with 

the mean square error (MSE). MSE is defined, shown in 

equation (12), as the mean average of all values from the 

square of the difference between the estimated value (𝑌̂𝑖) 

of the model and the measured value ( 𝑌𝑖) ), and the 

smaller the resulting value, the smaller is the error of the 

model. 

 𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑌̂𝑖 − 𝑌𝑖)

2𝑛
𝑖=1                (21) 

To use the artificial neural network whose performance 

is more improved than that of the artificial neural network 

used by Duka (2014) [3], the study set a different number 

of hidden layer nodes against the identical 1000 input 

data, as shown in Table I, and examined the number of 

the hidden layer nodes to the optimal MSE. 

When the number of input data is 1000, the MSE of 

No. 1 based on the method by reference [1] was 

0.01660433, and the average MSE of No. 2 was 

0.01491391 which was an approximately 10.182% 

increase in performance. 

TABLE I.  MSE BASED ON THE NUMBER OF HIDDEN LAYER NODES 

OF ARTIFICIAL NEURAL NETWORK 

No. Number of 
input data 

Number 
of hidden 

layer 

nodes 

Average 
MSE 

Average 
time 

(sec) 

Remarks 

1 1000 100 0.01660433 0.6 Reference 
[1] 

2 1000 110 0.01491371 1.9 FFNN 

3 1000 120 0.01736290 1.5  

4 1000 130 0.01818620 2.3  

 

C. Result of Kalman Filter-based Trajectory Tracking 

Fig. 7 shows the result of the Kalman filter-based 3-

link manipulator trajectory tracking, where the trajectory 

tracking starts from the point at (4, 2), where the red 

square is located to the counter-clockwise trajectory. To 

virtually realize the instability of the actual manipulator, a 

normal distribution random error with the standard 

deviation by about 10° is added to the joint variable in the 

proposed Kalman filter-based trajectory tracking, and the 

state vector from the forward kinematics is entered to 

Kalman filter. The system noise of Kalman filter is set to 

1, and the measurement noise to 0.5. 

 

 

 

Figure 7. Kalman filter-based trajectory tracking. At the beginning 
part, the Kalman filter based trajectory control was distorted. However, 

it showed the algorithm can compensate the error quickly. 

As shown in Fig. 7, the three initial stages of the 

trajectory tracking are deviated from the x-axis trajectory 

by ~0.1 m, but in the other areas, the control of the 

manipulator which is done by the excellent performance 

of Kalman filter can be identified. 

D. Trajectory Tracking Results Based on the Hybrid 

Algorithm and Performance Comparison 

Fig. 8 shows the result of the proposed hybrid 

algorithm (KFNN-KF). 

Fig. 9 shows the performance comparison of the 

tracked trajectory by each algorithm where the number of 

the tracked locations that did not reach within the 

threshold location after the threshold location is 

determined (Left in Fig. 9). For the threshold location, the 

study set the difference in absolute value between the 

target location (𝑥𝑑 , 𝑦𝑑 ) and the tracked location to be 

0.0005 m (0.5 mm), and if the tracked location of the end 

effector is below this value, it is deemed to have 

successfully passed the target location. Out of the total 60 
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location points (or locations), the number of location 

detection error using artificial network and Kalman filter 

was 59 and 52, respectively, with rates of 98% and 97% 

each, whereas that of the algorithm proposed in this study 

was 4 with an error rate of 4% which was a drastic 

decrease from the previous two. 

 

 

Figure 8. Comparison of the trajectory tracking for the hybrid 
algorithm, Kalman filter, and FFNN with respect to the ground truth. 

 

 

Figure 9. Threshold location against the target location, and the 

corresponding performance comparison among the algorithms. 

IV. CONCLUSION 

This study proposed Kalman filter and artificial neural 

network-based control algorithms for tracking the 

trajectory of a 3-link manipulator. Furthermore, it 

compared the proposed algorithm with the algorithm 

based on either Kalman filter or artificial neural network 

using MATLAB simulation. The inverse kinematics 

analysis based on artificial neural network is conducted 

via training data to make optimal decision or find 

estimates, and therefore, accurate tracking of the 

trajectory in an environment other than training data was 

difficult. Kalman filter allows for trajectory tracking by 

considering only the previous state value and the current 

state value, but it produced considerably different results 

depending on noise. 

However, the Kalman filter- and artificial neural 

network-based control algorithm proposed in this study 

produced estimates that were closer to the measured 

values by comparing the estimates resulting from the 

trained artificial neural network to the previous state 

value of Kalman filter and the measured values, and thus, 

it showed the best performance among the three 

algorithms. 

Further research is required to directly track the pose 

of the nonlinear end effector (𝑥𝐸 , 𝑦𝐸 , 𝑂𝐸 ) by replacing 

Kalman filter, which was used in this study for the 

trajectory tracking toward the measurement vector, with 

extended Kalman filter (EKF), which is used for a 

nonlinear state estimation. 

CONFLICT OF INTEREST 

The authors declare no conflict of interest. 

AUTHOR CONTRIBUTIONS 

All authors had conducted the research and had 

approved the final version. 

ACKNOWLEDGMENT 

This research is supported in part by 2020 research 

grant from Sangmyung University. 

REFERENCES 

[1] V. N. Iliukhin, K. B. Mitkovskii, D. A. Bizyanova, A. A. Akopyan, 

“The modeling of inverse kinematics for 5 DOF manipulator,” 
Procedia Eng., vol. 176, pp. 498-505, Jan. 2017.  

[2] M. Bhave, L. Dewan, S. Janardhanan, “A novel third order sliding 

mode controller for the orientation and position of planar three 
link rigid robotic manipulator,” 2013. 

[3] A. V. Duka, “Neural network based inverse kinematics solution 

for trajectory tracking of a robotic arm,” Procedia Technol., vol. 
12, no. 1, pp. 20-27, Jan. 2014.  

[4] S. Kumar and K. Irshad, “Implementation of artificial neural 

network applied for the solution of inverse kinematics of 2-link 
serial chain manipulator,” Int. J. Eng. Sci. Technol., vol. 4, no. 9, 

pp. 4012-4024, 2012. 

[5] L. Song, Z. Duan, B. He, and Z. Li, “Application of federal 
Kalman filter with neural networks in the velocity and attitude 

matching of transfer alignment,” Complexity, 2018.  

[6] K. Takaba, Y, Iiguni, and H. Tokumaru, “An improved tracking 
Kalman filter using a multilayered neural network,” Math. Comput. 

Modell., vol. 23, no. 1-2, pp. 119-128, Jan. 1996. 

65

International Journal of Mechanical Engineering and Robotics Research Vol. 10, No. 2, February 2021

© 2021 Int. J. Mech. Eng. Rob. Res



[7] M. A. Badamchizadeh, I. Hassanzadeh, and M. A. Fallah, 
“Extended and unscented Kalman filtering applied to a flexible-

joint robot with jerk estimation,” Discrete Dyn. Nat. Soc., 2010.  

[8] G. H. Ryu, J. D. Jung, “Inverse kinematics analysis of a binary 
robot manipulator using neural network,” J. Korean Soc. Precis. 

Eng., vol. 16, no. 1, pp. 211-218. 1999. 

[9] S. Y. Park, C. Y. Lee, “A Study on the forecasting of container 
volume using neural network,” J. Navig. Port Res., vol. 26, no. 2, 

pp. 183-188 2002.  

[10] B. Karlik, A. V. Olgac, “Performance analysis of various 
activation functions in generalized mlp architectures of neural 

networks, Int. J. Artif. Intell. Expert Syst., vol. 1, no. 4, pp. 111-

122. 2011. 
 

Copyright © 2021 by the authors. This is an open access article 

distributed under the Creative Commons Attribution License (CC BY-
NC-ND 4.0), which permits use, distribution and reproduction in any 

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made. 
 

 

Dawon Joo is currently studying in the 
department of human intelligence and robot 

engineering, Sangmyung University, South 

Korea. She pursues intelligent control algorithm 
for manipulators and is interested in HCI and 

HRI for robot control. 

 

 

Kiwon Yeom is a professor in the department of 
human intelligence and robot engineering, 

Sangmyung University, South Korea. He is 

interested in intelligent robot control and swarm 
robot control. He is now pursing the intelligent 

control algorithm for the identical and multiple 

robots to be used in the disaster situation.  
 

 

 

66

International Journal of Mechanical Engineering and Robotics Research Vol. 10, No. 2, February 2021

© 2021 Int. J. Mech. Eng. Rob. Res

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/



