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Abstract— The generation of optimal solutions for robotic 

bipedal walking using whole-body dynamics is well known 

to have a big computational cost, preventing online 

trajectory generation for optimal control methods that 

satisfy Pontryagin's Principle and its Conditions of 

Optimality. However, bipedal walking has fundamental 

kinematic and dynamic characteristics that shape different 

solutions for different parameters in similar curves. Such 

characteristics were previously defined in biomechanical 

literature as movement primitives. Recently, studies 

generated parametrized optimal solutions by performing 

regressions from training data into movement primitives 

using Machine Learning. The learned solutions were very 

close to the actual optimal solution. This study evaluates the 

precision of such strategy by optimizing the gait of a 6 

degrees of freedom planar robot using different Cost 

Functions, in order to understand if the precision of 

Machine Learning in recreating optimal solutions is 

impacted by what is being optimized.  

 

Index Terms— robotic bipedal walking, machine learning, 

optimal control, movement primitives 

 

I. INTRODUCTION 

Optimal Control is a field of study that has become 

popular in the last 20 years. Even though its mathematical 

theory was developed more than 60 years ago, it started 

to be widely investigated only with the advent of greatly 

increased computational power in the beginning of 2000's 

[1]. Consequently, many challenges remain, including the 

realization of proper optimization (in contrast to 

suboptimization) in real time. While most current 

implementations of online optimization only decrease a 

Cost Function, proper optimization satisfies the 

Conditions of Optimality defined by Pontryagin's 

Principle or its equivalents (e.g. Hamilton-Jacobi-

Bellman Equation). However, the computational cost of 

solving an optimization problem satisfying these 

conditions is still critically high for nonlinear systems 

with many degrees of freedom and very dynamic 

behavior – in other words, systems with dynamics 

changing in the milliseconds, needing to be controlled in 

such a timespan. 

Robotic bipedal walking is one of such fields. Inspired 

in the locomotion of human beings, it has come a long 

way in its 50 years or so of life, generating impressive 
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prototypes that are able to perform complex human tasks 

and interact with humans, like Atlas [2], HRP-5P [3] and 

ASIMO [4]. However, the best prototypes in the world 

nowadays are still nowhere near the level of performance 

of human beings [5] [6]. Controlling such an 

underactuated and unstable mechanical task is one of the 

reasons, as well as the advanced optimization achieved by 

human evolution while improving different performance 

criteria at the same time (e.g. speed of reflexes and 

energy expenditure). Since evolution is a form of 

optimization and the human gait is the natural inspiration 

for robotic walking, Optimal Control is becoming a 

natural choice for improvement of performance, but it 

cannot yet perform very well in real time. Therefore, 

optimal solutions for the locomotion of biped robots are 

either online but imprecise, or precise but offline. 

Another way of improving walking performance is 

applying Machine Learning to extract better solutions 

from experience and repetition. This has been done for 

several different purposes, from decision making of when 

to step to avoid a fall [7] to the complete gait generation 

through Reinforcement Learning [8]. Another interesting 

approach is to reproduce the performance of Optimal 

Control by generating new optimal solutions from a set of 

training optimal solutions without reproducing the whole 

optimization process. Solutions generated this way can be 

produced very fast, partially circumventing the problems 

of real time complex optimization. Recently, this has 

been done by extracting movement primitives from 

optimal solutions [9] [10]. Movement primitives are 

fundamental kinematic and dynamic characteristics 

shared by different solutions of specific classes of 

movements (like walking, running, jumping or grasping). 

Given a body morphology (e.g. the human or the avian 

body morphology), the shape of the curve of a solution 

for bipedal walking is just slightly changed depending on 

the parameters of movement (like body mass, length of 

body limbs, speed of movement, distance traversed). 

Based on this, Koch et al. [10] extracted movement 

primitives from optimal solutions for bipedal walking 

through Principal Component Analysis, parametrized the 

MP according to step size of walking and then performed 

a stochastic regression by Gaussian Process to generate 

new solutions very close to the actual optimal solution. 

The present study investigates the precision of such 

approach. Koch et al. [10] investigated only the learning 

of optimal solutions minimizing the square of torques 

44

International Journal of Mechanical Engineering and Robotics Research Vol. 10, No. 1, January 2021

© 2021 Int. J. Mech. Eng. Rob. Res
doi: 10.18178/ijmerr.10.1.44-48



applied on joints. In the present study we will confront 

the results of minimization of torques with the 

minimization of energy consumption, modelled as 

friction in the joints. In the sequence of this introduction, 

we will describe the dynamics of the model, the optimal 

control problem formulation, the learning methodology 

used and the gait synthesis of our biped model. An 

evaluation of success of the machine learning method 

will be explained in the last section, together with a 

discussion of the results. 

II. DYNAMICS 

The model used for studying the optimization of biped 

walking is a planar model of robot with 6 DOF. Control 

of walking is performed only in the sagittal plane. The 

model is treated as a manipulator fixed in the ground (Fig. 

1), since a model with the ankle of the support foot fixed 

to the floor can be considered equivalent to a free floating 

robot model as long as the forces and torques applied by 

the floor to the fixed foot never pull it to the floor, nor 

take the Zero-Moment Point [11] away from the base of 

support of the robot. 

 

Figure 1.  Planar model with 6 DOF, with representation of link angles. 

The system states are the absolute angular position and 

the angular velocity of the robot links. The position is 

represented by θ and is measured in respect to the 

horizontal axis (x) of the world reference, fixed outside 

the robot. The dynamics of the mechanical system is 

derived in the usual way from its Euler-Lagrange 

Equations [12]: 

       (1) 

where M is the Total Inertia matrix, B is the Coriolis and 

centrifugal effects, C is the friction acting on joints, G is 

the gravitational effect, η is the internal torques working 

on the links by joint actuators, J is the jacobian of the 

external forces applied on the end-effector by contact 

with the ground, and R is the ground reaction forces. 

If we group the two vectors of states – angle of links 

and angular velocity of links – in a single vector of states, 

we obtain the following concise formulation of the 

system dynamics in state-space: 

   (2) 

III. OPTIMAL CONTROL PROBLEM 

The optimal control method used in this study is a 

pseudospectral method based on the Pontryagin's 

Principle and the Covector Mapping Theorem [1]. The 

method relies on discretizing the system and minimizing 

the control Hamiltonian of the system in order to achieve 

the optimal solution. 

In this work, we optimized two different cost functions: 

minimization of actuators efforts and minimization of 

energy consumption. These optimizations were 

performed independently of each other. For each one, a 

different analytic formulation of cost was used: 

1. Minimization of Actuators Efforts: A common 

objective of optimization in robotics is the 

generation of smooth controls. This can be done 

by minimizing the square of torques applied in the 

joints . 

2. Minimization of Energy Consumption: In our 

dynamic model, energy loss is modeled as viscous 

friction in the joints ( ), which is propor-

tional to the joint angular velocities ( ). The 

optimization is performed by minimizing the 

square of friction . 

In both costs, joint quantities are being used ( and ). 

However, our dynamic formulation was based on links 

reference. To maintain reference coherence, and_  are 

expressed in terms of η and  through the transformations 

below: 

(3) 

where G and K are transformation matrixes that depend 

on the kinematic chain of the robot.  

The minimization of torques is then defined as an 

objective of optimization by (4), while the minimization 

of friction is defined by (5). 

 
(4) 

 
(5) 

 

With these definitions, we solved the optimal 

trajectory generation of model of Fig. 1 using the 

commercial optimal solver DIDO. It is necessary to 

provide three different elements to the solver: 1) the 

analytic expressions of the system dynamics, of the cost 

function J and of any path constraints (floor contact 

constraints, in our case); 2) the boundaries for the search 

space of states, controls and constraints; and 3) the 

desired initial and final value of states. In our case, these 

initial and final states represent the initial and final stance 
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of the bipedal robot model. DIDO then generates 

trajectories for the states and controls, which bring the 

robot from the initial stance to the final stance, making 

the robot take a step. A detailed description of our 

methodology for solving such a nonlinear multidegree-of-

freedom system is given in Carnier and Fujimoto [13]. 

For more details on DIDO or its pseudospectral 

method, refer to Ross [14] [15] or Ross and Fahroo [16]. 

IV. MOVEMENT PRIMITIVES 

Given a mechanical walking system with its 

morphology, parameters and constraints, the variability of 

kinematic and dynamic trajectories for the states of the 

system are restricted to a fundamental dynamic behavior, 

which can be expressed as proto-trajectories called 

movement primitives. This similar dynamic behavior in 

different walking solutions can be observed in the same 

shape of its state and control trajectories. Which dynamic 

properties are present in the movement primitive and 

which are not, depends on the training set of solutions 

used to extract the movement primitive. If a set of 

optimal solutions is used, the property of optimality can 

possibly be extracted. 

The process is done as follows: first we generate a 

number Nsol of solutions for different values of a given 

parameter, which in our case is the length of walking step. 

Each solution has NDOF trajectories of link angles, each 

with Nt points of discretization. Then, we group all these 

time-series trajectories of link angles into a single matrix 

X of size (Nsol  NDOF) × Nt. In our case, X has a size of 48 

× 15. The extraction of the movement primitive is done 

by performing a Single Value Decomposition (SVD) of X. 

According to Principal Component Analysis theory, SVD 

extracts eigenvalues of the Principal Component of a set 

of solutions, which in our case is the essential dynamics 

of an optimal solution of biped gait. SVD extracts the 

three following matrixes: 

 [U, S, V] = SVD (X) (6) 

The movement primitive then is calculated from these 

terms according to (7): 

 M = S V 
T
 (7) 

These matrixes represent the following information: 

1. M: the movement primitive. 

2. U: a matrix of weights that multiply the movement 

primitive in order to generate one or more 

solutions. This matrix U in particular is the matrix 

of original weights, that will regenerate X if we 

perform the multiplication UM. 

V. MACHINE LEARNING 

Machine Learning is a broad definition of many 

techniques that take a training set of information, solution 

or decision and extract a structure able to make 

predictions of the same sort. In very simplified sense, 

Machine Learning is a much more abstract version of 

equation regression. For our purposes, Machine Learning 

is used to parametrize the set of optimal solutions taken 

as training data, in order to only change the value of the 

parameter to obtain new solutions. 

The method of Machine Learning applied in this study 

is Gaussian Process. It is a probabilistic type of 

regression based on gaussian distributions and differ from 

deterministic regressions by adding flexibilization to the 

learning process and allowing incremental improvement 

of learning experience. 

For comparison sake, take the deterministic types of 

regression: these simpler regressions are based on taking 

observed points to find a function or curve that can 

approximate the points. This can be done minimizing an 

error function between the parametrized function on a 

time instant and the observed point on the same instant 

(e.g. least square root of distance between observation 

points and function points). In other words, the regression 

process consists of calculating the function parameters 

that make the approximate function fit the observed 

points best. The resulting function then can be used to 

predict new points. 

A probabilistic type of regression creates instead a 

probabilistic distribution that best describes the likelihood 

of new data matching the observed behavior. Like 

deterministic regressions, it creates a form of 

parametrization of the observed data that can be used to 

predict new information. But unlike deterministic 

regressions, it takes uncertainty of data into account and 

give more tools to work around it. 

First, uncertainty is accounted for in the calculation of 

a learned model. Instead of representing a deterministic 

function, it represents a gaussian distribution that 

maximizes its marginal log-likelihood of reproducing the 

observed data (in other words, the parameters of 

distribution that makes the most probable point of 

distribution – the mean – closest to the observation 

points). The probabilistic regression method used in this 

study – Gaussian Process – further exploits the uncertain-

ty to improve the regression. Since the uncertainty of 

regression is dependent on the quantity and variability of 

initial observed data used to generate the parametrized 

distribution, Bayes' Theorem is used to improve the 

certainty of regression by allowing new observations to 

be inserted into the regression, in order to expand it. In 

this way, an initial regression can be improved over time, 

by simply decreasing its uncertainty instead of 

performing a new regression. Much like biological agents 

evolve and expand their experience to improve their 

performance. 

To machine learn the new solutions with different 

parameters, first a gaussian regression model needs to be 

extracted from the training optimal trajectories. This is 

done by performing n model regressions: 

 n = NDOF  NMP 
 (8) 

where NMP is the number of movement primitives (i.e. the 

number of lines of matrix M). Since our model has 6 

DOF and the chosen number of movement primitives is 5, 

a total of 30 elements need to be learned for each new 

optimal solution we desire to generate through Machine 

Learning. The routine fitrgp implemented in MATLAB is 
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used for this regression. Since the different training 

solutions were used varying the parameter of size of 

stride in gait, this parameter is given as input of the 

parametrized regression. 

After learning the model, new solutions for different 

parameters are generated by maximizing the marginal 

log-likelihood of the regression model for a solution with 

a new desired stride length. This is done through routine 

predic, also implemented in MATLAB. 

General details of the followed methodology can be 

found in Koch et al. [10]. 

VI. IMPLEMENTATION 

The robot model was designed with parameters 

equivalent to a human of average size. It had 1.35m of 

height and 48kg of mass distributed in its links (the torso 

concentrated most of its mass, at 38kg). During gait the 

hip was kept constant at 0.5m, and initial and final 

velocities of all links were zero. The gait of this model 

was designed to satisfy the classic Zero-Moment Point 

(ZMP) criterion. The ZMP trajectory of our optimized 

gait is shown in Fig. 2. 

 

Figure 2.  ZMP trajectory for walking step. Black lines represent the 
boundaries of the base of support. 

To generate the training data for Machine Learning, 
solutions for 9 different sizes of walking step were 
generated, ranging from 0.4m to 0.8m. From these 
solutions, the one for 0.6m of walking step size was set 
apart for comparison with the machine learned solution 
generated for the same walking step size. In order to 
evaluate the success of optimization, the non-optimal 
solution used as initial guess was also simulated, and its 
data was compared to the data of the optimal solution. 
Details on the generation of the non-optimal solution and 
of the optimization process can be found in Carnier and 
Fujimoto [13]. 

Below, Fig. 3 presents the trajectories of states and 

controls for optimal and non-optimal gaits in the case of 

minimization of friction as described by (5). In the 

trajectories of states, full lines represent angular position 

of links and traced lines represent angular velocity. 

 

Figure 3.  Trajectory of states and controls for minimization of friction. 
Top: non-optimal solutions. Bottom: optimal solutions. 

VII. MACHINE LEARNING RESULTS 

The direct evaluation of success of the methodology is 

the calculation of the Cost Functions (4) and (5) for the 

non-optimal solution, machine learned solution and 

optimal solution. The results are given in Table I. 

TABLE I.  COST FUNCTIONS OF MACHINE LEARNED, NON-OPTIMAL 

AND OPTIMAL SOLUTIONS 

Solution Cost Function 

 Torque (Nm)2 Friction (Nm)2 

Non-optimal 2.3466e3  0.7494 

Optimal 1.2503e3 0.7149 

Learned 1.2496e3 0.7153 

 

The results show an improvement (decrease) of costs 

from optimal to non-optimal solutions of 46.718% for the 

minimization of torque 4.6038% for the minimization of 

friction. Even though the optimization of the former 

seems to be much more successful than of the later, it is 

explained by the difficult in having a big energy 

minimization just by decreasing friction for the same task, 

while the torque used to swing a leg can vary 

considerably for the same task with different trajectories. 

Therefore, the real evaluation of the methodology of 

learning optimal solutions by machine learning is done by 

verifying the degradation of optimal solution from the 

actual optimized solution to the learned optimal solution. 

The degradation is calculated as the percentage increase 

of the Cost from the optimized solution to the learned 

solution. For the minimization of torque, it amounts to 

0.05599%, while for the minimization of friction, to 

0.05595%. In other words, there is practically no 

degradation at all from the actual optimal solutions to the 

learned ones, even with a training set of optimal solutions 

of only 8 different parameters, with 15 points of 

discretization of time. 

The results demonstrate a high ability of replicating the 

performance of optimal solutions with very few training 

solutions, and confirms the ability of Machine Learning 

in generating optimal solutions much faster than actually 

solving the optimization: in less than half a second, in 
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comparison to the 40s of computation required by the 

optimal solver to generate an optimal solution. 

VIII. SUMMARY 

This paper assessed the precision of machine learning 

optimal solutions for a planar biped robot model in the 

task of walking. The optimal solutions used as training 

data were generated by pseudospectral optimization of 

smoothness and of energy consumption in the bipedal 

locomotion of a planar model of robot walker, using its 

whole-body dynamics for precise optimization. 

Movement primitives that contains the core dynamics of 

biped gait were extraction from a set of optimal solutions 

with different parameters (length of stride) and applied 

Machine Learning to create new optimal solutions from 

the movement primitives. 

Learned optimal solutions were compared with optimal 

solutions generated by actual optimization process. A 

very small deterioration of only about 0.055% of the Cost 

Value of the optimal solution in respect to the actual 

optimal solution was observed, confirming the ability of 

the methodology in reproducing optimal solutions with a 

decrease of computational time from 40s to less than half 

a second. 

CONFLICT OF INTEREST 

The authors declare no conflict of interest. 

AUTHOR CONTRIBUTIONS 

Rodrigo Matos Carnier idealized the assessment, 

conducted the research and wrote the paper; Yasutaka 

Fujimoto supervised and reviewed both research and 

paper; all authors had approved the final version. 

REFERENCES 

[1] I. M. Ross, “A historical introduction to the covector mapping 

principle,” Advances in the Astronautical Sciences: Astrodyna-
mics, vol. 122, pp. 05-332, 2005. 

[2] G. Nelson, A. Saunders, R. Playter, “The PETMAN and Atlas 
robots at Boston dynamics,” in Humanoid Robotics: A Reference, 

A. Goswami, P. Vadakkepat, pp. 169-186, Springer, 2018. 

[3] K. Kaneko, H. Kaminaga, T. Sakaguchi, S. Kajita, M. Morisawa, I. 

Kumagai, F. Kanehiro, “Humanoid robot HRP-5P: An electrically 

actuated humanoid robot with high-power and wide-range joints,” 
in Proc. IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 

1431-1438, 2019. 

[4] S. Shigemi, “ASIMO and humanoid robot research at Honda,” in 
Humanoid Robotics: A Reference, A. Goswami, P. Vadakkepat, ed. 

pp. 55-90, Springer, 2018. 
[5] G. H. Z. Liu, M. Z. Q. Chen, and Y. Chen, “When joggers meet 

robots: the past, present, and future of research on humanoid 

robots,” Bio-Design and Manufacturing, vol. 2, no. 2, pp. 108-118, 
2019. 

[6] E. Krotkov, D. Hackett, L. Jackel, M. Perschbacher, J. Pippine, J. 
Strauss, G. Pratt, and C. Orlowski, “The DARPA robotics 

challenge finals: Results and perspectives,” Journal of Field 
Robotics, vol. 34, no. 2, pp. 229-240, 2017. 

[7] C. Kouppas, Q. Meng, M. King, and D. Majoe, “S.A.R.A.H.: The 

bipedal robot with machine learning step decision making,” 
International Journal of Mechanical Engineering and Robotics 

Research, vol. 7, no. 4, pp. 379-384, 2018. 
[8] C. R. Gil, H. Calvo, and H. Sossa, “Learning an efficient gait 

cycle of a biped robot based on reinforcement learning and 

artificial neural networks,” Applied Sciences, vol. 9, no. 3, 502, 
2019. 

[9] A. d’Avella and M. C. Tresch, “Modularity in the motor system: 
Decomposition of muscle patterns as combinations of time-

varying synergies,” Advances in Neural Information Processing 

Systems, vol. 14, pp. 141-148, The MIT Press, 2002. 
[10] K. H. Koch, D. Clever, K. Mombaur, and D. Endres, “Learning 

movement primitives from optimal and dynamically feasible 
trajectories for humanoid walking,” in Proc. IEEE-RAS 15th 

International Conference on Humanoid Robots (Humanoids), pp. 

866-873, 2015. 
[11] M. Vukobratovic and B. Borovac, “Zero-moment point - thirty 

five years of its life,” International Journal of Humanoid Robotics, 
Vol.1, No.1, pp.157-173, 2004. 

[12] T. Sugihara, Y. Fujimoto, “Dynamic analysis: Equations of 

motion,” in Humanoid Robotics: A Reference, A. Goswami, P. 
Vadakkepat, pp.723-754, Springer, 2018. 

[13] R. M. Carnier and Y. Fujimoto, “Numerical techniques for the 
optimization of gait generation,” IEEJ Journal of Industry 

Applications, vol. 10, no. 2, 2021. (Accepted) 

[14] A Beginner’s Guide to DIDO: A MATLAB Application Package 
for Solving Optimal Control Problems, Elissar Global, 2007. 

[15] I. M. Ross, A Primer on Pontryagin’s Principle in Optimal 
Control, Collegiate Publishers, 2009. 

[16] I. M. Ross and F. Fahroo, “Legendre pseudospectral 

approximations of optimal control problems,” Lecture Notes in 
Control and Information Sciences, vol. 295, pp. 327-342, 

Springer-Verlag, 2003. 

 
Copyright © 2021 by the authors. This is an open access article 

distributed under the Creative Commons Attribution License (CC BY-
NC-ND 4.0), which permits use, distribution and reproduction in any 

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made. 
 

Rodrigo Matos Carnier received the B.E 
degree in mechatronics engineering from 

University of Sao Paulo, Sao Paulo, Brazil, in 

2013, and the M.E. degree in electrical and 
computer engineering from Yokohama National 

University, Yokohama, Japan, in 2017, where 
he is currently a Ph.D candidate. His research 

interests include biped locomotion, motion 

control, robotics, optimal control, computer 
networks and Internet architecture. 

 
 

Yasutaka Fujimoto received the B.E., M.E., 

and Ph.D. degrees in electrical and computer 
engineering from Yokohama National 

University, Yokohama, Japan, in 1993, 1995, 
and 1998, respectively. In 1998, he joined the 

Department of Electrical Engineering, Keio 

University, Yokohama, Japan. Since 1999, he 
has been with the Department of Electrical and 

Computer Engineering, Yokohama National 
University,  where  he  is  currently a  Professor.  

His research interests include actuators, robotics, manufacturing 

automation, and motion control. Dr. Fujimoto is an Associate Editor of 
the IEEJ-JIA and IEEE-TIE. 

 

48

International Journal of Mechanical Engineering and Robotics Research Vol. 10, No. 1, January 2021

© 2021 Int. J. Mech. Eng. Rob. Res

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/



