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Abstract— In recent years the number of studies of spherical 

parallel mechanisms has grown. Manipulators of a parallel 

structure are increasingly used in various fields of 

technology, since there is a need for mechanisms with 

increased performance in terms of load capacity and 

accuracy. These devices are used as propulsion, measuring, 

technological and testing systems. Spherical manipulators 

are used in devices for orienting antennas, telescopes, and in 

test benches. 

The article considers the study of the kinematics problem 

for the spherical mechanism of parallel structure with three 

degrees of freedom, with three kinematic chains. A solution 

to the problem of speeds is presented and special positions 

of the mechanism are found by screw calculus. Examples of 

calculating the direct and inverse velocity problems are 

given. 

 

Index Terms—parallel structure mechanism, speed problem, 

special positions, crew calculus 

 

I. INTRODUCTION 

The theory of screws and screw calculus apparatus, is 

used to calculate manipulators of a parallel structure. 

algorithms for analyzing mechanisms, but also to obtain 

qualitative characteristics associated with special 

positions, accuracy, and pressure angles. Since the screw 

approach operates with geometric images of a higher 

order than ordinary vectors, in some cases this makes it 

possible to generalize and obtain a result without 

resorting to complex calculations. The ancestor of the 

theory of screws is R. Ball [1]. The first theory of screws 

in the theory of mechanisms, was applied by F.M. 

Dimentberg [2, 3]. The relevance of applying the theory 

of screws and screw calculus is constantly growing, since 

the schemes of mechanical systems of robots are 

becoming more complicated. In particular, manipulators 

that perform spherical movements can be built on the 

basis of different design solutions. However, they all 

have one property - they can be represented by schemes 

in which the axes of the kinematic pairs intersect at one 

point. This corresponds to a closed three-membered 

group of screws [4]. 

                                                           
Manuscript received July 7, 2020; revised December 1, 2020. 

The class of spherical manipulators is wide. It is 

advisable to extend the method of screw calculus for the 

entire class of spherical mechanisms. 
It should be noted that the method of differentiation of 

the equations of constraints made it possible to solve the 

problem of the velocities of a spherical manipulator [5, 6]. 

However, this calculation causes difficulties in 

determining its special positions. As a result of this, a 

need arose for the development of a screw approach, 

which is still not sufficiently used in relation to 

manipulators of this type. In particular, the applicability 

of this approach to the analysis of kinematics and special 

positions has not been sufficiently studied. The 

development of this method will allow more efficiently 

solving problems associated with the functionality of 

devices of this type. This work is intended to help solve 

this problem. Here, using the theory of screw calculus, 

the structure of a spherical mechanism with three degrees 

of freedom is investigated, algorithms for solving 

problems of speeds and special positions are given. In the 

future, the presented results will allow us to solve the 

problems of dynamics and control mechanisms of this 

class. 

II.  FORMULATION OF PROBLEM 

Spherical manipulators of a parallel structure are 

designed for orienting movements of the working body 

[7-9]. For example, fig.1a shows a spherical manipulator 

with three degrees of freedom [7], consisting of three 

kinematic chains with intersecting axes of pairs, the 

output link is a platform rotating around three axes. 

Another spatial spherical manipulator [8] (Fig. 1b) with 

three degrees of freedom consists of a base, an output link, 

three kinematic chains with coincident axes of drive and 

non-drive pairs of different kinematic chains, which 

simplifies the solution of position problems, but 

complicates the design. Schemes of spherical 

mechanisms can be applied to manipulators of a more 

complex design, for example, with six degrees of 

freedom (Fig. 1c) [10]. The analysis of the rotational 

movements of the links of such manipulators is reduced 

to spherical mechanisms [11–13]. 
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 (a) 

 

 (b) 

 

(c) 

Figure 1.  Spherical manipulator with three degrees of freedom 

In this paper, we consider a spherical manipulator of a 

particular form (Fig. 2), in which the angles between the 

axes of adjacent kinematic pairs are 90°. This 

arrangement of kinematic pairs has great practical 

meaning, since for such a mechanism the solution of the 

problem of speeds and positions is simplified, and thus 

the structure can be optimized. In addition, a whole series 

of manipulators [9], which have a different design 

scheme, also belong to a similar design scheme. 

Each input link of the circuit is connected to a motor. 

The output link is a platform that rotates around three 

axes intersecting at point O. The output coordinates are 

the rotation angles of the platform α, β, γ around the x, y, 

z axes, respectively. The generalized coordinates are the 

angles 11, 21, 31 – respectively, the rotation angles of 

the input links of the first, second and third kinematic 

chains. 

 

Figure 2. Kinematic diagram of spherical manipulator 

In this paper, we solve the problem of determining the 

velocities of the input and output links of the manipulator 

and its special positions. 

The initial data includes the positions of the input or 

output links of the manipulator. To solve the problem of 

speeds using screw methods, it is necessary to find power 

and kinematic screws for each kinematic chain and 

determine their relative moment. The system of equations 

composed of relative moments allows us to solve the 

direct velocity problem, i.e. determine the speed of the 

output links at known speeds of the input links, and the 

inverse problem, as well as identify the conditions for the 

emergence of special provisions of the manipulator. 

III. SOLVING INVERSE SPEED PROBLEM USING SCREW 

CALCULUS 

The inverse problem means the determination of the 

speeds of the links of the input link at known speeds of 

the output link. To solve the speed problem and 

determine the special positions of the manipulator, it is 

necessary to solve the position problem, that is, set the 

rotation angles of the output link and determine the 

positions of the input links, 11, 12, 21, 22, 31, 32 

from them. The solution to this problem was considered 

in [12]. 

In particular, the position of the output link =1 rad, 

=1 rad, =1 rad. correspond to the rotation angles of the 

input links: 

11=0.242 rad; 12=1.265 rad; 21=1.237 rad; 22=0.472 

rad; 31=0.081 rad; 32=0.472 rad. The position of the 

output link is given the same as in solving the problem of 

determining the velocities by differentiating the 

constraint equations [12]. 

Using the screw calculus, it can be written that the 

angular velocity of the output link is equal to the sum of 

the angular velocities of the hinges of the links of one 
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chain. For the first kinematic chain, we compose the 

equations: 

131312121111 xxxx   

131312121111 yyyy                    (1) 

131312121111 zzzz   

Where ωx, ωy, ωz are the projections of the angular 

velocity of the output link on the x, y, z axis; ω11, ω12, ω13 

– angular velocities of the first, second and third joints of 

the first chain, respectively; (x11, y11, z11) – the Plücker 

coordinates of the unit vector e11 located along the axis of 

the first pair; (x12, y12, z12) – the Plücker coordinates of 

the unit vector e12, determined by the product of the 

rotation matrix around the ox axis by the coordinates of 

the vector located along the axis of the second pair in its 

initial position; (x13, y13, z13) – the Plücker coordinates of 

the unit vector e13, determined by the product of the 

rotation matrix of the output link by the coordinates of 

the vector located along the axis of the third pair in its 

initial position (the values of the Plücker coordinates are 

given in the Appendix). 

We set the speeds of the output link, the same as in 

solving the problem of determining the velocities by 

differentiating the coupling equations [12]: ωx=1 rad/s, 

ωy=1 rad/s, ωz=1 rad/s, and compare the results of 

calculating the speeds of the input links 

We compose the velocity equation for the second 

kinematic chain 

 

21 21 22 22 23 23

21 21 22 22 23 23

21 21 22 22 23 23

x

y

z

x x x

y y y

z z z

   

   

   

      


     


     

 (2) 

Where ω21, ω22, ω23 are the angular velocities of the first, 

second, and third joints of the second chain, respectively; 

(x21, y21, z21) - the Plücker coordinates of the unit vector 

e21 located along the axis of the first pair; (x22, y22, z22 ) - 

the Plücker coordinates of the unit vector e22, determined 

by the product of the rotation matrix around the oy axis 

by the coordinates of the vector located along the axis of 

the second pair in its initial position; (x33, y33, z33) - the 

Plücker coordinates of the unit vector e23, determined by 

the product of the rotation matrix of the output link by the 

coordinates of the vector located along the axis of the 

third pair in its initial position (the values of the Plücker 

coordinates are given in the Appendix). 

For the third kinematic chain, the velocity equations 

will be as follows: 

 

31 31 32 32 33 33

31 31 32 32 33 33

31 31 32 32 33 33

x

y

z

x x x

y y y

z z z

   

   

   

      


     


     

 (3) 

Where ω31, ω32, ω33 are the angular velocities of the first, 

second, and third joints of the third chain, respectively; 

(x31, y31, z31) are the Plücker coordinates of the unit vector 

e31 located along the axis of the first pair; (x32, y32, z32) – 

the Plücker coordinates of the unit vector e32, determined 

by the product of the rotation matrix around the oz axis 

by the coordinates of the vector located along the axis of 

the second pair in its initial position; (x33, y33, z33) – the 

Plücker coordinates of the unit vector e33, determined by 

the product of the rotation matrix of the output link by the 

coordinates of the vector located along the axis of the 

third pair in its initial position (the values of the Plücker 

coordinates are given in the Appendix). 

Solving the system of equations, we obtain ω31=0.532 

rad/s; ω32=1.078 rad/s; ω33=1.029 rad/s, ω11=1.316 rad/s, 

ω12=1.21 rad/s, ω13=2.43 rad/s, obtain ω21=1.312 rad/s; 

ω22=1.274 rad/s; ω23= –0.785 rad/s. 

 Thus, the speeds of the input links of the spherical 

manipulator are determined. 

IV. SOLVING DIRECT PROBLEM OF SPEEDS BY USING 

SCREW CALCULUS 

Solving the direct problem of speeds by the method of 

screw calculus 

By solving a direct problem is meant determining the 

speed of the output link at known speeds of the input link. 

When considering the direct speed problem, it is 

necessary to determine the power and kinematic screws 

[4]. Ri power screw with coordinates  000 ,,,,, iziyixiziyix rrrrrr  

is reciprocal to two unit vectors of axes ei2, ei3 of non-

drive pairs. This screw Ri is balanced by a set of screws - 

reactions in pairs corresponding to the vectors ei2, ei3 

The relative moment mom (Ri, Ωi) is the sum of the 

scalar products of the vector of the first screw at the time 

of the second relative to some point and the vector of the 

second screw at the time of the first relative to the same 

point, where Ωi is the kinematic screw of the output link 

with coordinates (Vx, Vy, Vz, ωx, ωy, ωz), Vx, Vy, Vz are the 

linear velocities of the output link, m /s. 

The kinematic screw of the output link is equal to the 

sum of the kinematic screws of the chain links Ωi=Ωi1+ 

Ωi2+Ωi3, where Ωi1, Ωi2, Ωi3 are the kinematic screws of 

the first, second, third links with coordinates respectively. 

 
1

0

1

0

1

0

1111
,,,,,

iiiiiii
zyxzyx   

 
2

0

2

0

2

0

2222
,,,,,

iiiiiii
zyxzyx   

 
3

0

3

0

3

0

3333
,,,,,

iiiiiii
zyxzyx   

Then mom(Ri, Ωi)=mom(Ri, Ωi1 + Ri, Ωi2 + Ri, Ωi3). 

Since the power screw is reciprocal to the unit vectors 

of non-drive pairs, the relative moments mom(Ri, Ωi2)=0, 

mom(Ri, Ωi3)=0. Therefore, we can write that mom (Ri, 

Ωi)=mom(Ri, Ωi1). Substituting the coordinate values of 

the power and kinematic screws, we obtain the equations 

of relative moments: 

  000mom
izziyyixxii

rrr Ω,R ; 

  )(mom 0

11

0

1

0

111 ziiiyiixiii
rzryrx ΩR,  
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Where (xi1, yi1, zi1) are the Plücker coordinates of the unit 

vectors ei1 located along the axes of the first pairs, 
0

i
r - 

moment part of the power screw with coordinates 
0

1

0

1

0

1
,,

zyx
rrr  

We compose a system of equations for three kinematic 

chains: 

)( 0

111

0

111

0

11111

0

1

0

1

0

1 zyxzzyyxx
rzryrxrrr   

)( 0

221

0

221

0

22121

0

2

0

2

0

2 zyxzzyyxx
rzryrxrrr      (4) 

)( 0

331

0

331

0

33131

0

3

0

3

0

3 zyxzzyyxx
rzryrxrrr   

 

For the first kinematic chain, the coordinates of the 

moment part of the power screw will be calculated as 

follows: 

 
1312

0

1 eer   (5) 

Substituting the coordinate values of unit vectors, we 

obtain the Plücker coordinates of the power 

screw: 301,00

1 xr ; 229,00

1 yr ; 926,00

1 zr . 

For the second and third kinematic chains, the 

coordinates of the moment part of the power screws and 

are determined, respectively: 

 
2322

0

2 eer   (6) 

 
3332

0

3 eer   (7) 

The values of the plucker coordinates will be equal to: 

149,00

2 xr ,  889,00

2 yr , 430,00

2 zr , 037,00

3 xr , 

454,00

3 yr , 891,00

3 zr . 

We set the values of the input link velocities obtained 

previously ω11=1.316 rad/s, ω21=1.312 rad/s, ω31=0.532 

rad/s. Substituting the found values of the coordinates of 

the moment part of the power screws into equation (4), 

we obtain the values of the speeds of the output links: 

ωx=1 rad/s, ωy=1 rad/s, ωz=1 rad/s. 

The obtained values of velocities by a screw calculus 

coincide with the results obtained by differentiating the 

constraint equations [12], which indicates the reliability 

of the calculations. 

V. SOLVING PROBLEM OF SPECIAL POSITIONS BY 

SCREW CALCULUS FOR EACH KINEMATIC CHAIN 

To determine the special position in the first kinematic 

chain, we substitute the Plücker coordinates (x13, y13, z13) 

in the velocity equations (1) unit vector e13, determined 

by the product of the rotation matrix of the output link 

around the first axis — the ox axis, then the second axis 

— the oy axis and the coordinates of the vector located 

along the axis of the third pair in its initial position (the 

values of the Plucker coordinates are given in the 

Appendix). 

We transform the Plücker coordinates in equations (1) 

to the matrix form: 

 
12

11 12 11

11 11 12

1 0 sin

0 cos cos sin

0 sin cos cos

x

y

z

 

   

   

   
   

    
       

 (8) 

Find the angle 12, in which the determinant of the 

matrix becomes equal to zero. The determinant of the 

matrix does not depend on the angle 11, and is 

determined by the angle 12. The determinant is zero for 

12=90° and 12=180°, in this case, the location planes of 

the first and second chains coincide (Fig. 3). 

The special position of the mechanism is determined 

by the loss of the degree of freedom, since three 

kinematic pairs lie in one plane - all rotations can occur 

around an axis lying in one plane, and all rotations around 

an axis perpendicular to this plane are impossible. Special 

positions for the second and third kinematic chains are 

defined similarly. 

 

Figure 3. Special position in the first kinematic chain 

For the second kinematic chain, we substitute the 

Plücker coordinates of the unit vector e23 in the velocity 

equations (2), denoting them (x23, y23, z23). They are 

determined by the product of the rotation matrix of the 

output link around the first axis - the oy axis, then the 

second axis - the oz axis and the coordinates of the vector 

located along the axis of the third pair in its initial 

position (the values of the Plücker coordinates are given 

in the Appendix). 

We transform the coordinates in equations (1) to the 

matrix form: 

 
21 22 21

22

21 22 21

0 sin cos cos

1 0 sin

0 cos cos sin

x

y

z

   

 

   

    
   

   
   
   

 (9) 

The determinant of the matrix does not depend on the 

angle 21, and is determined by the angle 22. The 

determinant is zero for 22=90° and 22=180°, in this case, 

the planes of the first and second chains coincide. 

For the third kinematic chain, substitute the Plücker 

coordinates in equation (3) (x33, y33, z33) unit vector e33. 

They are determined by the product of the rotation matrix 

of the output link around the first axis — the oz axis, then 

the second axis — the ox axis and the coordinates of the 

vector located along the axis of the third pair in its initial 

position (the values of the Plucker coordinates are given 

in the Appendix). 

The coordinates in the velocity equations are written in 

matrix form: 

 
31 32 31

31 31 32

32

0 cos cos sin

0 sin cos cos

1 0 sin

x

y

z

   

   

 

    
   

    
   
   

 (10) 
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The determinant of the matrix does not depend on the 

angle 31, and is determined by the angle 32. The 

determinant is zero for 32=90° and 32=180°, in this case, 

the planes of the first and second chains coincide 

VI. SOLUTION OF PROBLEM OF SPECIAL POSITIONS BY 

SCREW CALCULUS FOR MECHANISM 

To determine the special positions of the whole 

mechanism, it is necessary to study the system of 

equations (4) for three kinematic chains. 
For the first kinematic chain, the coordinates of the 

moment part of the power screw have the following 

meanings:
12

0

1 cosxr ; 
1211

0

1 sinsin yr  

; 
1211

0

1 sincos zr . 
For the second and third kinematic chains, the moment 

parts of the coordinates of the power screws are 

determined: 

2221

0

2 sincos xr ; 
22

0

2 cosyr ; 

2221

0

2 sinsin zr ; 

3231

0

3 sinsin xr ; 
3231

0

3 sincos yr ; 

32

0

3 coszr . 

We compose the matrix R from the moment part of the 

Plücker coordinates of the power screws (given in the 

Appendix). 

The matrix composed of Plücker coordinates 

degenerates, i.e. the determinant of the matrix is zero for 

the following combinations of angle values: 

1)  12=0°, 22=90°, 32=90°; 

2)  12=0°, 22=90°, 32=0°; 

3) 12=0°, 22=0°, 32=90°; 

4) 12=90°, 22=0°, 32=90°; 

 5) 12=90°, 22=90°, 32=0°. 

This corresponds to such positions in which the planes 

have at least two parallel norms (Fig. 4). 

 

Figure. 4. Special position of Spherical manipulator 

The loss of controllability of the manipulator is 

determined by the fact that the three power screws have 

become coplanar, i.e. are parallel to one plane, and 

rotation around a vector perpendicular to the power 

screws becomes uncontrollable. 

VII. CONCLUSION 

This paper presents the development of the theory of 

spherical mechanisms of parallel structure based on the 

application of screw calculus. This applies to solving 

direct and inverse speed problems and determining the 

special positions of the manipulator. In this case, power 

screws are determined that are reciprocal to the unit 

vectors of the axes of the non-drive pairs, of each 

kinematic chain. 

Based on the found power screws, equations are 

compiled expressing the speeds of the spherical 

mechanism of a parallel structure. These equations are 

solved as applied to the direct and inverse velocity 

problems. 

It was shown that the loss of controllability is due to 

the linear dependence of the power screw system, and the 

loss of one or more degrees of mobility is associated with 

the degeneration of the kinematic screw systems of the 

connecting chains. 

The proposed algorithms based on the apparatus of 

screw calculus can be used to solve problems of 

optimizing the parameters of manipulators. These results 

can also be used to analyze the functionality of 

manipulators. 

APPENDIX  

A is a matrix describing the transition of the output 

link from the moving coordinate system to the fixed. 

























coscossincossin

sincossinsincossinsinsincoscossincos

sincoscossinsinsincossinsincoscoscos
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Plucker power screw matrix: 


















0

3

0

3

0

3

0

2

0

2

0

2

0

1

0

1

0

1
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rrr
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R . 
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