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Abstract—Most of the attitude estimation systems are built 

from inertial measurement units (IMUs). Micro-electro-

mechanical system-based (MEMS) IMUs are low-cost but 

large errors. MEMS-based angle estimator often uses a tri-

axis magnetometer to determine the yaw angle (heading 

angle) that the estimation accuracy is significantly 

influenced by the stability of the environment’s magnetic 

field. This paper introduces a new method to estimate the 

heading angle using Global Positioning System (GPS) with 

dual-antenna. The proposed estimation algorithm is 

independent of the magnetic field and has high accuracy in 

the heading angle. Through experiments, we also show that 

the heading accuracy depends on the quality of the GPS 

receivers and the antennas.  

 

Index Terms—Global Positioning System (GPS), real-time 

kinematic (RTK), heading estimation 

 

I. INTRODUCTION 

Nowadays there are a lot of dangerous working 

environments for people such as mountains, deserts, 

radioactive areas, etc. Autonomous vehicle is the 

reasonable solution for these problems. In order for the 

robot to operate stably and efficiently, navigation is one 

of the important issues that need to be addressed. There 

are many positioning methods for autonomous robots and 

can be divided into three main methods: dead-reckoning, 

using landmarks and positioning using maps. Dead-

reckoning method uses inertial measurements such as 

velocity, acceleration, angular rate to determines the 

vehicle’s displacement from previous sampling epoch. In 

the method of positioning using landmark, the sensor 

measures the distance (and possibly the bearing angle) 

between the vehicle and the landmarks, thereby applying 

calculations to infer the vehicle’s position. In the last 

method, the robot uses distance sensors to determine the 

features of the surrounding environment, compare with 

the map saved in its memory to determine its position. 

These methods have their own advantages and 

disadvantages, such as the dead-reckoning method gives 

high accuracy results in a short time, but the estimated 

error will be accumulated quickly over time, especially in 

the case of using low-cost inertial sensors [1]. In order to 

take advantage of the above integrated methods, we 

combine sensors together by using sensor fusion 

algorithm. The algorithm of combining Global 
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Navigation Satellite System (GNSS) and Inertial 

Navigation System (INS) is widely considered. 

The attitude estimation mostly depends on the IMU. 

Paper [2] indicates that we can use IMU to determine 

orientation by integrating angular velocity, combining 

with tri-axis accelerometer and magnetometer to reduce 

error. For low-cost IMUs, the accuracy is still limited. 

MEMS-based IMUs often have large sensor biases, so if 

there is not an accurate sensor calibration method, the 

estimation result of the rotation angle is not good. In [3], 

E.H. Shin developed an INS/GPS navigation system and 

proposed the MEMS IMU calibration procedure and 

method, resulting in a significantly reduced sensor drift. 

We can use magnetometer to reduce heading estimation 

errors. However, the accuracy decreases when the 

environment has large magnetic disturbances. We can 

also use some other types of sensor such as stereo camera, 

LiDAR, etc. [4], [5]. Alatise in [4] presented a new 

method combining IMU with a camera, using Extended 

Kalman Filter to estimate Euler angles. The heading 

angle RMS error when using this algorithm is 0.2 degrees 

with an estimated stabilization time of 3 minutes. 

When we use low-cost IMUs, estimated position and 

velocity often have large cumulative errors over time. In 

addition, INS system cannot self-determine the initial 

state of the vehicle. To solve these problems, Global 

Positioning System (GPS) is combined to eliminate the 

accumulated errors of the estimator. However, GPS has 

some disadvantages like low updating rate, sometimes the 

satellites’ signal is suspended. Gao et al. built an 

integrated navigation system using IMU, GPS and 

LiDAR sensors, which can be switched between GPS 

when operating in opening spaces or LiDAR in GPS 

restricted areas [6]. Another method is to build a tightly-

coupled GPS/INS system. Angrisano built a tightly-

coupled system, in which the estimator does not use 

position and velocity received from GPS module but uses 

raw measurements including pseudorange and Doppler 

measurements to estimate continuously even when the 

number of received signals is smaller than 4 [7]. In the 

above research, authors only use GPS to estimate IMU 

sensor biases, not to estimate heading angle. 

Real-time Kinematic (RTK) is a method to improve 

the accuracy of the GPS navigation system based on 

differential calculations. According to [8], the signal from 

satellite is disturbed when transmitting in Earth’s 

atmosphere (tropospheric and ionospheric error). Some 
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other kinds of GPS errors are multipath error and time 

asynchronous error between the satellite’s clock and the 

receiver’s clock. This paper also pointed out that using 

single-difference (SD) can eliminate discrepancies 

between receivers or satellites and using double-

difference (DD) can eliminate discrepancies between 

receivers and satellites. The RTK model requires two 

GPS receivers (base and rover station) that can determine 

the position of a vehicle with centimeter-level accuracy. 

With such high accuracy, a multi-receiver system can be 

used to determine the heading angle of a vehicle. Consoli 

et al. presented the model of a heading estimation system 

that uses multiple GPS receivers [9]. However, this paper 

only presented the ideas and simulated the effect when 

changing the baseline length. Papers [10] and [11] 

introduced a model using multiple GPS receivers to 

determine rotation angle and showed the simulation 

results. In [12], the authors combined a high-precision 

IMU and two GPS receivers, including a high-precision 

receiver and a low-cost one. This system obtained an 

accuracy of 0.2 degrees for heading angle with a baseline 

of 92 centimeters. 

This paper consists of three sections. The first section 

presents the method of determining the heading angle 

using dual-antenna GPS, including two main steps: 

determining the position by the Differential GPS (DGPS) 

method and solving the ambiguity integer problem using 

LAMBDA/MLAMBDA algorithm. The next section 

shows the experimental setup for testing. There are two 

kinds of testing system: single-frequency receiver (can 

receive only 1 type of carrier signal) and dual-frequency 

(can receive up to 2 types of carrier signal). The micro-

processor used for both systems is the ARM Cortex-M7 

processor. The last section shows test results (including 

static test and dynamic test) and conclusions. 

II. METHOD 

GPS was the first worldwide established GNSS 

(Global Navigation Satellite System) system in the 1970s. 

In the beginning, GPS was only used for military 

purposes, but it is now available for civil purposes with 

certain restrictions. From the received signals, GPS 

receiver can determine the distance to the satellite and 

satellite’s position. Therefore, we can determine the 

position of the receiver. The accuracy of this 

measurement is about 2 meters. 

The heading angle estimation system from dual-

antenna GPS uses code phase (also known as 

pseudorange) and carrier phase measurement. 

Pseudorange measurement taken from GPS C/A code 

whose frequency of 1.023 MHz. The signal frequencies 

of carrier phase measurement method are much larger 

(1575.42 MHz with L1, 1227.60 MHz with L2 and 

1176.45 MHz with L5). Therefore, pseudorange 

measurement is less accurate. The power of the noise in 

the carrier phase measurement is approximate 10 times 

less. However, there is a disadvantage that the 

measurement has an integer ambiguity. It means the 

measured value of the carrier measurement is different 

from the correct value by an integer N cycle(s). 

Originally, the principle of the RTK algorithm was that 

the base station was stationary, from the difference 

between base and rover in carrier phase measurements 

and pseudorange measurements, we can calculate the 

position of the rover. The RTK positioning method can 

achieve centimeter-level accuracy. In determining the 

heading angle based on the GPS, both base and rover 

antennas are mounted on the vehicle and are moving. In 

this case we use single point positioning method based on 

pseudorange measurement to determine the base station’s 

position. After that, we use the RTK algorithm to 

estimate the high-accuracy position of rover. This method 

is called moving base RTK. This method only focuses on 

the relative position between base and rover antennas, 

and the position accuracy is low because the single point 

positioning method using pseudorange measurements 

which have large disturbance. Another method is 

presented in [13], GPS-RTK algorithm uses pseudorange 

measurements and Kalman filter to approximate base and 

rover positions, thereby using carrier phase measurements 

to correct the position results. 

 

 

Figure 1. Flowchart of GPS Real-time kinematic algorithm. 

The flowchart of the GPS-RTK algorithm is shown in 

Fig. 1, which can be divided into three steps (numbered 

from (1) to (3) on the flowchart). First, we calculate the 

differential GPS (DGPS) position (float solution). The 

DGPS solution has low accuracy of 1 meter. Next, we 

solve the optimization problem using the algorithm 

LAMBDA/MLAMBDA to determine the ambiguity 

integer values of the carrier phase measurements. Finally, 
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we determine the high-accuracy position of the rover 

(fixed solution). 

A. Calculate DGPS Solution Using Kalman Filter and 

Single Differences  

 

 

Figure 2. Illustration of the GPS-RTK algorithm. 

To calculate the float solution, we can use the 

Extended Kalman Filter. The state vector consists of the 

position, velocity of the rover station and single 

differences of the integer ambiguities. At this time, GPS 

receivers support up to 3 carrier frequencies (L1, L2 and 

L5). For each frequency we have a carrier phase integer 

ambiguity value. Since current GPS system has 32 

satellites, the length of state vector when we use 1, 2, 3 

frequencies will be 38, 70 and 102, respectively. 

Generally, in this paper we present equations for triple-

frequency case. If the GPS receiver uses less than 3 

frequencies, we will eliminate the corresponding 

components. We have the state vector: 

         , 1 , 2 , 5

T
i i i

k r r rb L rb L rb Lx r k v k B k B k B k       (1) 

The formula for calculating DD of carrier and 

pseudorange measurements is as follows (used for all 

carrier frequencies). 

  , , ,

ij ij i j

rb Lx rb x rb Lx rb LxB B        (2) 

 ij ij

rb rb PP     (3) 

    ij i j i i j j

rb rb rb r b r b             (4) 

where ij

rb  is the DD of the geometric range between 

satellites i, j and receivers base (b), rover (r). 
x (x = 1, 2, 

5) is the wavelength corresponding to the GPS carrier 

frequency.   and 
P  are measurement noise. Similarly, 

we can calculate the other DD components. There are 

many sources of disturbances that affect to the GPS 

measurements, such as clock bias, clock drift of the 

receivers and satellites, errors due to the signal passing 

through the environment (ionospheric delay and 

tropospheric delay), multipath errors, etc. The differential 

method has the advantage of reducing these errors, the 

other sources of unspecified noise can be modeled as 

white noise. The variance of measurement noise can be 

calculated by the following formula: 

 
 

2
2 2

/2
sin

sat PR CP

b
f a

El


 
   

 

 (5) 

where fPR/CP is the ratio of pseudorange error to carrier 

phase measurement error. El is the elevation angle of 

satellite relative to receiver. According to Eq. (5), the 

greater the elevation angle, the bigger the measurement 

error. So we choose the reference satellite to calculate the 

double differences is the satellite with the largest 

elevation angle. In addition, we remove measurements to 

satellites whose elevation angles less than a 

predetermined threshold to avoid causing large errors in 

the estimation results. The measurement model includes 

carrier phase and pseudorange measurements: 

 
 , 1 , 1 , 2 , 2 , 5 , 5 6 6 1

T
ki ki ki ki ki ki

k rb L rb L rb L rb L rb L rb L m
y P P P

 
      (6) 

where k is the index corresponding to the reference 

satellite, m is the number of satellites from which both 

the rover and base can receive signal, i is the number 

running from 1 to m and is not equal to k. From (6), we 

have the measurement model equation: 

  

 

 

 

, 1 1 , 1 . 1

, 1

, 2 2 , 2 . 2

, 2

, 5 5 , 5 . 5

, 5 (6 6) 1

ki k i

rb L rb L rb L

ki

rb L

ki k i

rb L rb L rb L

k ki

rb L

ki k i

rb L rb L rb L

ki

rb L m

B B

B B
z h x

B B

 



 



 


 

  
 
 
 

  
   

 
  
 
 
 

 (7) 

We have the linearized measurement matrix H: 

 

1

2

5

0 0 0

0 0 0 0

0 0 0

0 0 0 0

0 0 0

0 0 0 0

DE D

DE

DE D
H

DE

DE D

DE







 
 

 
 

  
 
 
 
  

 (8) 

The rows of matrix E (m rows, 3 columns) are the line-

of-sight unit vector from the receiver to m satellites. 

Matrix D (m-1 rows, m columns) represents the 

calculation of DD. Using Eq. (9), we obtain the float 

solution of the algorithm: 

 

 

  

    

1

3 6 3 6

T T

m m

K P H HP H R

x x K y h x

P I KH P


 

  

 

  

  



  

  


 (9) 

B. Solve the Integer Ambiguity Using LAMBDA/ 

MLAMBDA Algorithm  

To determine the high-accuracy position (fixed 

solution), we convert single difference to double 

difference by the following formula: 

  

'

3 3 1

'

ˆ

ˆ ˆ ˆ

ˆ
 

  
  

   
  
  


 
   

 

r

k k r

m

R NRT

k k

RN N

r

x Gx v

N

Q Q
P GP G

Q Q

 (10) 
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In Eq. (10), G is the SD to DD transform matrix, N̂  is 

a vector consist of the double differences of carrier phase 

ambiguity and QN is the corresponding estimation 

covariance matrix. In fact, we know that the values of N 

are integers, which leads to an integer optimization 

problem to find the optimal vector N : 

    1ˆ ˆargmin   
T

NN N N Q N N  (11) 

This optimization problem has no specific empirical 

formula, we can only use search algorithms to find the 

optimal solution. A method to find the optimal solution 

for this problem is given by Teunissen called LAMBDA 

(Least-squares Ambiguity Decorrelation Adjustment) 

[14]. After that, X.-W. Chang et al. improved the method 

and name it MLAMBDA (Modified LAMBDA) whose 

advantages of decrease search time and improve 

computational performance [15]. The current methods 

will consist of two steps. First, we restrict the search set 

to a hyper ellipsoid. After that, we use the brute force 

method to search across all elements of the restricted set. 

In order to verify the quality of the optimal solution, the 

algorithm also finds a second optimal solution N2. The 

ratio-test value R is: 

 
   

   

1

2 2

1

ˆ ˆ

ˆ ˆ





 


 

T

N

T

N

N N Q N N
R

N N Q N N
 (12) 

The estimated values of N̂  and QN can be affected by 

noise, the solution obtained from this algorithm is not yet 

certain to be the true value of the double difference of the 

carrier phase integer ambiguity. The larger R value, the 

greater the accuracy of the solution. Normally we choose 

the threshold value is 3. If R is greater than threshold 

value, we calculate the fixed solution and errors of RTK 

algorithm by the formula: 

  1
ˆ

ˆ
ˆ

r r

RN N

r r

r r
Q Q N N

v v

   
     

   
 (13) 

 1

R R NR N RNQ Q Q Q Q   (14) 

Initial values of the integer ambiguities often have 

large deviations from the correct values, therefore 

sometimes the first fixed solution is incorrect. To solve 

this problem, we use consecutive fixed constraint. 

According to this method, the estimator determines the 

result to be fixed if and only if the ratio R is greater than 

the threshold for at least 10 consecutive epochs, 

otherwise the solution quality is only float. In addition to 

the aforementioned method, there are some other 

algorithms to enhance estimation quality such as cycle 

slip detection, hold integer ambiguities, etc. From the 

estimated positions in ECEF (Earth-Centered Earth-Fixed) 

frame, we calculate the vector from base to rover in NED 

(North-East-Down) frame: 

  
0

n e e

rb r b

s c s c c

r s s c c s r r

c s

    

    

 

   
 

    
  

 (15) 

where ,e e

r br r  are the estimated positions of rover and 

base, respectively. λ, φ are the longitude and latitude of 

base station. Denote θ for pitch angle, ψ for heading 

angle, d for the distance between antennas, we have the 

below equation: 

 

,

,

,

cos cos

cos sin

sin

n

rb N

n n

rb rb E

n

rb D

r d

r r d

r d

 

 



   
   

    
     

 (16) 

We can calculate the angles and baseline by: 

 

 , ,

,

, arctan 2 , ,

arcsin , cos

n n n

rb rb E rb N

n

rb D

baseline

d r r r

r
d d

d



 

 

 
    

 

 (17) 

III. EXPERIMENT SETUP 

The block diagram of the dual-antenna GPS system is 

shown in Fig. 3. GPS receivers are not required to be the 

same. However, we should use the same type of receivers 

for both base and rover since the same error 

characteristics of the receivers can be eliminated. 

 

 

Figure 3. Block diagram of the dual-antenna GPS system. 

The receivers communicate with the central 

microprocessor via serial communication standards like 

RS232 or UART. The central microprocessor used is the 

STM32F767ZI from STMicroelectronics. This processor 

used ARM Cortex-M7 core with a high-speed clock 

frequency of 216 MHz and it supports double-precision 

floating-point unit (64-bit floating-point). Estimation 

results are sent to the computer via USB port. The 

software used for collecting data between the computer 

and GPS-RTK system is programmed in C# 

programming language. This user interface allows us to 

collect and display data, plot graphs, calculate RMS 

errors and log data for post-processing. 
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Figure 4. Heading estimation system using dual-frequency receivers. 

In static test case, we nailed two antennas at distances 

of approximately 0.3, 0.5, 1 and 2 meters to determine the 

relation between static error and baseline distance. For 

the dynamic test, we use the slider system shown in Fig. 5. 

The base’s antenna is fixed and rover’s antenna is placed 

on the slider. The slider system’s maximum travel length 

is 0.6 meters and maximum moving speed is about 0.4 

m/s. 

 

 

Figure 5. Slider system in the dynamic test. 

IV. RESULTS 

A. Static Test 

As mentioned above, the principle of the static test 

method is that we fixed two antennas with baseline 

distances of approximately 0.3, 0.5, 1 and 2 meters. The 

sampling frequency is set to 5 Hz for both base and rover 

receivers. The calculation time for each epoch is about 50 

milliseconds. We determine the relation between the 

baseline and the ratio of the fixed solution and the RMS 

error of the heading angle estimation. We have the 

following result in TableI and Table II. 

From the result tables, we can conclude that using 

dual-frequency receivers gives much better results than 

single-frequency receivers (69% versus 60%). In some 

cases, single-frequency system cannot find any fixed 

solution (dataset number 1 and 4). Regarding heading 

angle errors, the RMS errors are smaller when baseline 

increases for both types of receivers. Theoretically, the 

position’s horizontal error of the GPS-RTK algorithm is 

almost constant when the baseline is small (only changes 

a few parts per million of the baseline). We can see in Fig. 

6, when we increase the distance between the antennas, 

the heading estimation error will be smaller. Comparing 

between the two types of GPS receivers, we can see that 

with the same baseline length, the dual-frequency will 

give a smaller error than the single-frequency receiver. 

TABLE I. TEST RESULTS (SINGLE-FREQUENCY RECEIVER) 

TABLE II. TEST RESULTS (DUAL-FREQUENCY RECEIVER) 

Dataset 

number 

Average 

estimated 

baseline 
(m) 

Baseline 
RMS 

error (m) 

Heading 

standard 

deviation 
(degree) 

Number 

of 

received 
message 

Fix 
ratio 

(%) 

1 0.298 0.002 0.6692 1518 66.14 

2 0.2846 0.0038 0.521 1094 49.82 

3 0.2902 0.0035 0.5186 1193 84.33 

4 0.2813 0.0039 0.5538 972 83.33 

5 0.5004 0.003 0.3365 1918 52.24 

6 0.4992 0.0022 0.2226 1094 80.16 

7 1.0336 0.0048 0.1568 1850 54.05 

8 1.0126 0.0033 0.138 1004 99.9 

9 1.019 0.0027 0.132 722 19.25 

10 2.008 0.003 0.0762 1011 99.31 

11 2.0058 0.0041 0.0823 1006 99.7 

12 2.045 0.0032 0.0753 1012 54.84 

 

Denote σ for horizontal error of the estimator, dbaseline 

for baseline distance, we have the formula of heading 

error: 

 arcsin
baseline baselined d

 


 
   

 
 (18) 

Usually, the baseline length is much greater than the 

horizontal error of the GPS-RTK positioning system 

(dbaseline >> σ). According to Eq. (18), heading errors 

decrease when horizontal precision increases or baseline 

distance increases. From the datasheet of the receivers, 

we see that the accuracy of the dual-frequency receiver 

Dataset 

number 

Average 
estimated 

baseline 

(m) 

Baseline 

RMS 
error (m) 

Heading 
standard 

deviation 

(degree) 

Number 
of 

received 

message 

Fix 

ratio 
(%) 

1 No fixed solution 

2 0.2797 0.0041 1.1011 3988 76.05 

3 0.2773 0.0036 0.9804 2741 82.09 

4 No fixed solution 

5 0.5212 0.0027 0.6321 6484 80.77 

6 0.5187 0.003 0.3589 5059 64.6 

7 1.0049 0.0023 0.1303 5894 9.14 

8 1.0077 0.0027 0.1828 5504 62.63 

9 1.0047 0.004 0.2135 5232 38.67 

10 1.986 0.0035 0.1227 8348 90.11 

11 1.9851 0.003 0.0903 5770 21.66 

12 1.9841 0.0029 0.082 4708 84.3 
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used in this experiment is 1 cm + 1 ppm, smaller than the 

error of single-frequency receiver (2.123 cm + 1 ppm), 

that is the reason why when the same baseline value, the 

dual-frequency receiver gives better estimation 

performance. From the above formula, we also see that 

the larger the baseline length, the angle error is inversely 

proportional to the baseline. So if the baseline is bigger, 

the accuracy is better. 

 

 

Figure 6. Relation between baseline and estimation error. 

From the results in Table I, Table II and Eq. (18), we 

have the graph of RMS error of the heading angle 

according to baseline distance (Fig. 7). The coefficients 

of the curve were estimated by the least square error 

method. 

 

 

Figure 7. Relative of the heading RMS error by baseline distance. 

In addition to heading angle estimation, we also 

consider the position estimation (to apply in the GPS/INS 

integrated navigation system). From Fig. 8 and Fig. 9, 

we can see that the moving base RTK measurement does 

not increase the absolute position accuracy of the vehicle, 

it only ensures the relative position accuracy on Earth 

Geographical coordinate system. We can conclude that 

the RTK algorithm with 2 antennas can only achieve high 

accuracy position or high accuracy heading angle. In 

order to increase both the accuracy of position and 

heading angle, we have to use at least three antennas. In 

that case, an antenna is a fixed base to increase position 

accuracy, the other two antennas are mounted in the 

vehicle for calculating heading angle. 

 

 

Figure 8. Estimation result in Earth’s geographic coordinate. 

 

Figure 9. Relative pos. between antennas, the same dataset as Fig. 8. 

B. Dynamic Test 

Using the GPS-RTK system with dual-frequency GPS 

receivers, we have test results in the case of moving in 

Fig. 10 and Fig. 11. The amplitude of slider’s trajectory is 

50 centimeters peak-to-peak. The selected trajectory type 

is the sine wave whose frequency of 0.05Hz. We only 

calculate the error among the fixed solutions. All the float 

solutions are rejected. We can see that the dynamic test 

also has high accuracy like the static test. The 

measurement RMS error is about 0.237 degrees with a 

baseline ranging from 0.78 meters to 0.85 meters. The 

average baseline value is 0.81 meters. Compared to the 

case of static test, the error of dynamic test is larger. 

 

 

Figure 10. Heading angle and RMS error by time. 

 

Figure 11. Relative position between antennas, dynamic test. 
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V. CONCLUSIONS 

The paper has presented the heading estimation 

algorithm using dual-antenna GPS that applied on an 

ARM Cortex-M7 microprocessor. The static experiment 

results show that when the baseline is equal to 1 meter, 

the heading estimation accuracy is 0.27 degrees with 

single-frequency receivers and 0.16 degrees with dual-

frequency receivers. In the dynamic test, the RMS error 

increases to about 0.29 degrees when the baseline is 1 

meter, about twice as much as static test. The dual-

frequency receiver has a much higher fixed solution rate 

than the single-frequency one (69% versus 60% on 

average). The accuracy of the measurement is 

proportional to the horizontal positioning error of the 

GPS position measurement and is inversely proportional 

to the distance between the two antennas. Compared to 

the system that uses the IMU to determine the heading 

angle, the dual-antenna GPS system is not affected by the 

magnetic field disturbance. However, the disadvantage is 

that it does not always introduce high-accuracy heading 

angle, the average fix rate is only from 60% to 70%. In 

the future, we will build an integrated GPS/INS 

navigation system with dual-antenna GPS that combines 

both sensors to take advantage of each system. 
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