
Survey and Experimental Comparison of RGB-D

Indoor Robot Navigation Methods Supported by

ROS and Their Expansion via Fusion with Wheel

Odometry and IMU Data

Florian Spiess, Jonas Friesslich, and Tobias Kaupp
Faculty of Electrical Engineering and Information Technology University of Applied Sciences Wuerzburg -

Schweinfurt 97421, Schweinfurt, Germany

Email: {florian.spiess; jonas.friesslich; tobias.kaupp}@fhws.de

Samuel Kounev
Faculty of Mathematics and Computer Science Julius-Maximilians-University of Wuerzburg 97074, Wuerzburg,

Germany

Email: samuel.kounev@uni-wuerzburg.de

Norbert Strobel
Institute of Medical Engineering, University of Applied Sciences Wuerzburg - Schweinfurt, 97421, Schweinfurt,

Germany

Email: norbert.strobel@fhws.de

Abstract—This paper presents an experimental evaluation

and comparison of selected Visual Odometry (VO) and

Visual-SLAM (V-SLAM) algorithms for indoor mobile

robot navigation supported by the Robot Operating

System (ROS). The focus is on algorithms involving RGB-

D cameras. Since RGB-D cameras integrate color and

depth information, they output coherent measurement data

and facilitate an efficient processing pipeline. The various

underlying methods of vision-based algorithms are

described and evaluated on two datasets covering different

indoor situations as well as various lighting and movement

conditions. In general, V-SLAM algorithms yielded

better results. They were superior with respect to handling

drift, in particular when loop closures were involved.

However, the results confirmed that VO algorithms could

outperform V-SLAM methods under certain circumstances.

This happened when there was a very good match between

an algorithm’s design objectives and the situation at hand.

While the experiments showed that there is no single best

algorithm for every scenario, ORB-SLAM2 is

recommended as a robust stand-alone RGB-D based

localization method available under ROS. Furthermore,

we observed that the position estimation error could be

reduced by around 67% on average when combining

vision-based position estimates with sensor data obtained

from wheel odometry and an inertial measurement unit

(IMU), respectively. This clearly demonstrates the potential

of sensor fusion techniques. The best results in case of

sensor fusion were obtained with RGB-DSLAMv2.

Index Terms—
data sets for robotic vision, RGB-D perception

Manuscript received March 11, 2020; revised November 1, 2020.

I. INTRODUCTION

A mobile robot’s capability to localize itself is an

essential prerequisite for navigation and path planning.

In this paper, localization describes the determination

of a mobile robot’s position without considering its

orientation. The most widespread and cost-efficient

localization method for mobile robots is wheel

odometry. Almost all wheeled robots use it. However,

the accuracy of the resulting position estimation is

limited due to factors such as a finite wheel encoder

resolution or slippage of the wheels relative to the ground.

Due to the accumulation of errors, wheel odometry gets

more unreliable with increasing path length. Another

way to keep track of an object’s position is to rely on

camera information. In this context, it was Nister et al. [1]

who proposed the term ”Visual Odometry” to describe

the estimation of camera motion from consecutive

images. With the increasing popularity of

commercially available, affordable camera modules

integrating a depth sensor such as the Microsoft Kinect

series or the Intel Realsense cameras, their use for visual

odometry has increased substantially. These cameras

provide RGB-D output streams that can be processed to

compute camera motions. In addition to VO algorithms,

there are Visual-SLAM methods. Whereas VO

algorithms operate on a sequence of successive

images to estimate motion, V-SLAM methods use the

input images to generate a persistent representation of

the surroundings. When constructing these global maps

of the environment, V-SLAM methods usually benefit

1532

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 12, December 2020

© 2020 Int. J. Mech. Eng. Rob. Res
doi: 10.18178/ijmerr.9.12.1532-1540

mobile robots, multisensor data fusion,

from loop closures. They can be obtained by revisiting

previously observed areas. Loop closure limits the drift

of the camera path by readjusting position estimates. In

other words, while VO aims for locally consistent

movements, V-SLAM’s goal is a globally consistent

trajectory [2]. However, the increased robustness of V-

SLAM algorithms comes at a price. They are in general

more computationally expensive which can be

problematic for mobile devices. In this paper, VO and V-

SLAM position estimation methods are compared. The

algorithms considered are listed in Table I. The

underlying methods are further described in Section II.

As wheel odometry and vision-based position estimation

techniques are complementary [3], we also evaluated if

fusion of these two can improve overall performance. In

addition, data from a built-in inertial measurement unit

(IMU) was included. The various sensor outputs were

fused using an Extended Kalman Filter (EKF) to improve

both the accuracy and the robustness of the state vector

estimate [4]. For the experiments, a Mecanum-wheel-

based research platform was used as shown Fig. 1.

Attached to it was an Intel Realsense D435i [5] stereo

depth camera. The platform was moved around inside

and outside of the lab facilities to acquire datasets. They

are made publicly available to add diversity to the

current data pool. The contributions of this paper are:

1) Classification and experimental comparison of

the most popular VO and V-SLAM algorithms

supported under ROS using RGB-D camera data.

2) Experimental comparison of their performance

with and without wheel odometry / IMU for

various indoor navigation scenarios.

3) Demonstrating an improvement of the VO / V-

SLAM position estimation results by 67% on

average after applying EKF data fusion with

wheel odometry readings and IMU data.

4) A benchmark dataset to facilitate research on

sensor fusion comprising camera images as

well as associated wheel odometry data and

IMU measurements in conjunction with a

suitably tuned parameter set for the algorithms

listed in Table I; no such multi-sensor dataset has

been previously made available.

TABLE I. OVERVIEW OF THE ALGORITHMS CONSIDERED IN THIS PAPER

Algorithm Category Match Method
RGB-DOdometry

[6]
VO frame image-based, dense

DVO [7] VO frame
image-based, dense

with sensor and
motion model

Fovis [8] VO keyframe image-based, sparse

ICPOdometry [9] VO frame depth-based, dense

RGB-
DICPOdometry[10]

VO frame
hybrid, dense joint-

optimization

CCNY [11] VO model
hybrid, sparse 3D

points

DVOSLAM [12] V-SLAM map hybrid, dense

RTABMap [13] V-SLAM map image-based, dense

ORB-SLAM2 [14] V-SLAM map image-based, sparse
RGB-DSLAMv2

[15]
V-SLAM map image-based, sparse

From the vast amount of available algorithms, a

representative set was chosen, listed in Table I. Two

different motion trajectories were recorded in a

laboratory environment using a Mecanum-wheeled robot

which facilitates precise (omnidirectional) movements

along straight paths as well as on curved tracks. The

trajectories were set up such that the impact of different

velocities and turn rates on visual path estimation

methods could be studied. The remainder of the paper is

organized as follows: Section II presents previous

work on comparing visual odometry methods. Section

III discusses the algorithms which were used to

estimate the successive RGB-D camera positions.

Experimental results can be found in Section IV. In the

last Section, results are discussed and conclusions are

drawn.

II. RELATED WORK

Adopting the taxonomy proposed by [2], VO and V-

SLAM methods fall into three categories depending

on the type of data used to perform camera position

estimation: image-based methods, depth-based methods,

and hybrid methods. Those algorithms are subdivided

into sparse and dense approaches. Sparse approaches

operate on selected image features in 2D or 3D; dense

approaches, involve all 2D pixels or 3D point cloud

elements. In general, VO methods estimate the camera

motion frame-to-frame, frame-to-keyframe, or frame-to-

model. Frame-to-frame algorithms only align

consecutive frames. The frame-to-keyframe approach

takes the first RGB-D image of a sequence as a

keyframe to which the consecutive frames are matched

for motion estimation. If a significant drift is detected,

for example based on a reduction of the number of

matches, a new keyframe is selected. Frame-to-model

strategies build a model / local map of the environment

and match each new frame against it. This makes those

algorithms somewhat similar to V-SLAM, as they

provide the ability to relocalize should motion estimation

fail in some instance. The main difference between

frame-to-model VO and V-SLAM is that the VO

model only has a limited size to keep the complexity

under control. As a consequence, parts of the model

are discarded once a maximum number of components

is reached. In fast-motion scenarios frame-to-model

algorithms can be more precise than their frame-to-frame

counterparts because the model allows feature

matching not only between consecutive frames but

over the whole recorded scenario [2]. Furthermore, after

the initial matching step a local optimization process

can be run. This makes it possible to match a new

frame not only to the latest one but also to multiple

previously recorded frames or even multiple keyframes

to arrive at a better position estimate minimizing drift.

If all previously collected frames are considered, a

VO algorithm becomes a V-SLAM technique. In case

the matching process led to enough correspondence, V-

SLAM algorithms can perform loop closure reducing

the accumulated position error drastically. In their

comparison [2], Fang and Zhang considered Fovis, DVO,

MRSMAP [16], a proprietary algorithm developed by

Occipital [17] and the three algorithms from the

1533

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 12, December 2020

© 2020 Int. J. Mech. Eng. Rob. Res

OpenCV rgbd-module. The latter are evaluated in this

paper again. OpenCV is an open programming library

for image processing. All approaches were tested on

the TUM dataset [18]. The authors found that image-

based or hybrid methods perform better and are more

robust than depth-based methods when the

environment has rich visual features and the

illumination is good. Under these conditions, Fovis, an

image-based method utilizing sparse features, was the

best choice for accuracy and speed. Under bad

illumination conditions dense approaches were found

to be superior. In case of featureless environments,

depth-based methods were recommended. Additionally

a degrading effect was observed if the motion between

consecutive images was fast, or solely rotational. In

[19], the authors tested and analyzed the performance

of selected visual odometry algorithms designed for

RGB-D sensors on the TUM dataset with respect to

accuracy, time, and memory consumption. In contrast,

this paper compared their performance with V-SLAM

algorithms and considered data fusion. Similar to [2],

they also observed that the performance of the

algorithms under investigation strongly depended on

the scene characteristics. They concluded that the

image-based methods (e.g., Fovis) and the hybrid

methods were most accurate when the environment had

texture but no structure. In structured but low textured

scenes, hybrid and depth-based methods were found to

be preferable. The authors of [20] generated several

synthetic datasets by moving a camera around various 3D

virtual indoor environments containing structure but with

little textures. Based on these simulated datasets,

algorithms from the image and depth-based category

were studied. Fovis, DVO, KinectFusion [21], RGB-D

[1], and ICP+RGB-D [22] were evaluated. On noise-free

rendered images, ICP, a depth-based method, estimated

the camera trajectory best overall. From their work it can

be concluded that ICP algorithms may perform best when

datasets are mostly characterized by geometric features

and little noise. In the more realistic simulation including

noise, techniques such as DVO enforcing a photo-

consistency constraint were more robust. In our work we

use real environment setups , and comparisons were not

only provided for VO but also for V-SLAM algorithms.

The accuracy of several image-based and depth-based

algorithms including Fovis, DVO was evaluated in [23].

Although the work of A. Handa et al. was targeted at

micro aerial vehicles (MAVs), while our focus is on

mobile ground robots and considers sensor fusion as well

as V-SLAM, the authors pointed out several interesting

observations relevant to our work. On the whole, image-

based methods (such as Fovis and DVO) were found to

be faster and more accurate than depth-based methods

when the environments were well lit and had good

texture features. Depth-based methods were

recommended for dark environments, but they suffered

from the rather short sensing range of the RGB-D camera

used and the very noisy depth measurements. Ten of the

most promising open source packages for vision- based

state estimation algorithms were evaluated in [24].

Although there is no overlap between the V-SLAM

algorithms covered in that paper and our work as

different sensors were used, there are some lessons to be

learned. First, one of the main challenges when

comparing different algorithms is to configure their

parameters appropriately. Second, the type of input

images is another important factor influencing the

results, as the performance of VO and V-SLAM

techniques depend on the scene content, different

illumination, and the presence of blur, caused by out-of-

focus positioning as well as motion blur. Furthermore,

some packages yielded different results for successive

runs on the same dataset with the same parameter

settings when real-time constraints were enforced. It

turned out that this was caused by frame dropping.

Various benchmark datasets for assessing visual

odometry algorithms have been made available.

Figure 1. Mobile research platform from evocortex GmbH, Nuremberg,

Germany [25]

They include the TUM RGB-D benchmark [19],

EuroSec [26], or ICL-NUIM [21]. However, none of

these datasets were collected with sensor fusion in mind.

As a consequence, they neither include any wheel

odometry data, nor do they provide any IMU

measurements. The provided benchmark dataset

improves this situation, comprising camera data as well

as other sensor recordings to enable future research on

different fusion approaches.

III.

TESTED VO AND V-SLAM ALGORITHMS

In this section the algorithms listed in Table I are

briefly dis-cussed. The different algorithms were chosen

to provide a broad overview of the different methods for

visual position estimation, comprising different methods

for feature handling and matching with underlying data

models (frame, keyframe, model, map). Furthermore by

comparing ORB-SLAM2 and

RGB-DSLAMv2, we

analyzed if algorithms based on the

same matching

strategy and methodology had similar performance.

RGB-DOdometry used an implementation described in

[1].
1

For every pixel

in the RGB image, the

corresponding intensity value (gray

value) is calculated

first. Then the corresponding positions of all pixels in the

scene are computed. This can be interpreted as a surface

of the observed area. In the next step, the camera motion

1
 https://github.com/opencv/opencv_contrib/blob/master/modules/

rgbd/src/odometry.cpp

1534

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 12, December 2020

© 2020 Int. J. Mech. Eng. Rob. Res

is derived based on minimizing the error (energy)

between the intensity values of the motion-warped

current surface and the surface of the previous image.

DVO (Dense Visual Odometry) is an improved version of

[1].
2

 As in [1], the camera motion is estimated by

enforcing the photo-consistency constraint between two

consecutive images. However, unlike [1], the residual

can be weighted based on a sensor model, which

copes better with outliers. A constant motion model is

further applied when calculating the transformation

reducing the likelihood of jumps when estimating the

camera motion. Fovis applies the FAST keypoint

matching algorithm to detect features in the RGB

image.
3

 Afterwards, depth information is included as a

third coordinate to those 2D positions were features

were found. By comparing their feature descriptor

values, features are then matched across frames using

a mutual consistency check. Additionally, a keyframe

technique can be used to reduce short-scale drift.

ICPOdometry from OpenCV is based on KinectFusion

[21].1 To calculate the camera motion, this algorithm

performs an ICP of all 3D depth points of the current

image to align them with the previous depth frame.

In the original version of KinectFusion the matching

was applied not only to the previous frame but also to a

model created from the data. OpenCV’s RGB-

DICPOdometry uses both algorithms, that is RGB-

DOdometry and ICPOdometry.1 It tries to find a

compromise by minimizing the sum of both energy

functions [5]. The mechanism is the same as introduced

in [22]. CCNY RGB-D tools algorithm, abbreviated as

CCNY, first utilizes one of its keypoint detector

algorithms to identify keypoints in the intensity

channel of the RGB image.
4

 The next step is to

calculate the uncertainty of the location of every point

together with an average mean value for its possible

location. Afterwards, the mean value and the

uncertainties are compared against a model built from the

previously observed features. An ICP algorithm is

applied to find the transformation aligning the new set

of features to the model. A Kalman Filter is subsequently

used to update stored features and to add new ones to

the model (up to a limit). DVOSLAM builds on top of

DVO and uses a method to optimize the registration

based on intensity and depth error.
5
An entropy-based

method is used to select keyframes. This decreases the

drift significantly. The same entropy metric is applied

to validate loop closures. By applying a general graph

SLAM solver, the position accuracy is increased.

RTABMap evaluates RGB-D data to calculate camera

motion.
6
 Keypoints are detected and processed based on a

combination of GoodFeaturesToTrack and the BRIEF

algorithm. A nearest neighbor distance ratio test is

2
 https://github.com/songuke/_dvo slam

3
 https://github.com/srv/fovis

4
 https://github.com/ccny-ros-pkg/ccny_ rgbd_ tools

5
 https://github.com/songuke/dvo_slam

6
 https://github.com/introlab/rtabmap

applied to match the features against the feature map.

The feature map itself is comprised of 3D features

including their descriptors from latest keyframes. The

location of the map features in the current frame is

predicted using a motion model. The motion between

the current frame and the feature map is then

computed from the correspondences of the features

from current frame and the feature map, applying

OpenCV’s Perspective-n-Point RANSAC. Whenever the

number of keypoint matches falls below a threshold,

the feature map is updated by including unknown

features and adjusting positions of the previous ones.

The amount of map features is limited, causing old

features to be dropped [27]. The loop closure is based

on a bag-of-words approach. It utilizes a subset of the

features of the current frame and matches them to the

feature map. ORB-SLAM2 employs multiple parallel

threads to compute the camera position.
7
 One thread

calculates the position and orientation of the camera for

each incoming frame by computing ORB feature

correspondences between the current image and the

local map using motion-only bundle adjustment. The

map is then optimized by local bundle adjustment. A

loop closure algorithm based on DBoW2 [28] is used to

detect large loops and correct accumulated drift by

optimizing the pose graph. Upon completion of these

steps, a fourth thread is launched, that performs a full

bundle adjustment to reconstruct the 3D camera

trajectory. RGB-DSLAMv2 uses 3D landmark positions

as features.
8

 These features are compared across

consecutive frames as well as to a list of keyframes. The

results are further processed by RANSAC [29] to

remove false positive matches. To verify the

transformation estimate, the dense free-space

information from the depth data is exploited. The list

of keyframes is expanded with the new frame if there

are not enough matches. Furthermore this list is used

to detect loop closure. Upon receiving an initial pose

graph from the SLAM front-end, g2o, which is a

framework for graph optimization, is used to

minimize errors of the provided graph and to compute

an optimal trajectory.

IV. EXPERIMENTS AND ANALYSIS

A. Hardware

The experiments were conducted using the indoor

mobile robot shown in Fig. 1. An Intel Realsense D435i

camera mounted on the robot’s front was used to record

the RGB-D data with a resolution of 1280x720 pixels

and a frame rate of 26 fps. Processing involved the

realsense2 camera package [30] and the Intel

RealSense SDK 2.0 [31]. Before running the

experiments, a map of the test environment was

created using the robot’s SICK TIM561 2D LiDAR.

This map was used in combination with the Evocortex

7
 https://github.com/appliedAI-Initiative/orb_ slam_ 2_ ros

8
 https://github.com/felixendres/rgbdslam _v2

1535

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 12, December 2020

© 2020 Int. J. Mech. Eng. Rob. Res

Localizer SDK to obtain ground truth positions. The

Evocortex Localizer SDK is reported to reach an

accuracy of approximately 0.1% with respect to the

distance traveled [32]. Since this in an order of

magnitude better than typical results achieved with

camera-based approaches, the positions returned by

the Evocortex Localizer SDK can be considered as

ground truth. All data was recorded on a laptop running

Ubuntu 16.04 linked to the mobile robot via Ethernet.

The evaluation was performed on a PC consisting of the

following components: Threadripper 1950X, 64 GB RAM,

500 GB SSD, and Asus GeForce GTX 1080 TI.

B. Software and EKF

The ROS Kinetic Kame framework running on Ubuntu

16.04 LTS was used. The evaluated libraries were ported

to ROS Kinetic, if necessary. All software packages

except the three OpenCV packages were built with

OpenCV version 3.3.1 as this shipped with ROS. The

RGB-DICPOdometry, ICPOdometry and RGB-

DOdometry components were built on OpenCV

version 4.1.2. For those packages, the data was

provided via the ROS-OpenCV interface and the output

was converted to a ROS message. Since the aim was

to simulate real-time conditions, the algorithms and their

position estimates were evaluated on live data without

applying any post-processing. As mentioned in [12], the

parameter selection had a great influence on the

performance as well as on the runtime of the

algorithms. To arrive at a fair comparison, the

parameters were individually tuned for each method.

It was found that tuning could only be done

meaningfully if no frames were skipped. Otherwise, the

algorithms’ performance was not stable, making it

impossible to find an optimal parameter configuration.

The parameter settings can be found in the Github

repository.
9
 To ensure that no frames were skipped, the

recorded datasets were replayed with a slower data

rate. A frame-process-rate was calculated by dividing

the frame rate with the inverse of the slowdown-rate.

It can be interpreted as a measure for the real-time

performance of the algorithm. For each algorithm the

frame-process-rate parameter is given in Table II. The

parameters for each algorithm were tuned on dataset 1

and then also applied to the other dataset. The output of

the visual motion estimation algorithms was fused

with the odometry data of the mobile unit and IMU

data coming from a sensor built into the Realsense

camera. To this end, the robot pose ekf package

was used.
10

 As the robot only performs 2D-motion the

underlying state vector consisted of (x, y, yaw, vx, vy , vyaw ,

ax, ay , ayaw), where yaw describes the rotation about the z

axis. The variables x and y were measured in meters,

while yaw was expressed in radians.

9
 https://github.com/Fugashu/compVisualPose/blob/master/

ParameterOverview.pdf
10

 https://github.com/ros-planning/robot_ pose_ ekf

(a) Dataset 1 : Start position (b) Dataset 1 : Middle part

(c) Dataset 2 : Laboratory (d) Dataset 2 : Corridor

(e) Map of the laboratory environment. The respective positions at

which the images 2a,2b,2c,2d were taken, are marked with identical

letters.
Figure 2. Example pictures for dataset 1 & dataset 2 and the laboratory

environment.

The EKF was set up as follows: From VO / V-

SLAM the values of (x, y, yaw) were used as inputs to

the robot pose ekf package. There, these values were

first converted to their respective velocities (vx, vy , vyaw)

before passing them on to the EKF. The reason for this

configuration was as follows: x, y, yaw suffer from

drift and therefore have increasing covariance values.

For their derivatives, vx, vy , vyaw , constant covariances can

be assumed. Since most of the evaluated algorithms did

not provide covariance matrices for their outputs,

diagonal covariance matrices with fixed values for all

algorithms were applied. A higher value for the yaw’s

variance was chosen to account for the higher

rotational error relative to t h e translations. A good

example for rather inaccurate yaw estimates can be

found in Fig. 3a by looking at the CCNY trajectory.

Similar to the position data of VO / V-SLAM

algorithms, the wheel odometry data was converted to

velocity values as well before being passed to the EKF.

Again, a diagonal covariance matrix was assumed, but

the main diagonal elements were set to a third of

their VO / V-SLAM counterparts to account for the

higher precision provided by the wheel odometry

sensors. The IMU data was preprocessed using the imu

filter madgwick, and vyaw , ax, ay were considered for

1536

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 12, December 2020

© 2020 Int. J. Mech. Eng. Rob. Res

s

sensor fusion.
11

 Note that no x, y, and yaw values were

used for fusion directly. Only their derivatives were. As

an initial value, the robot’s starting position was used.

C. Datasets

Fig. 2e shows an overview of the laboratory

environment including the positions along the track

where the pictures shown were taken. Dataset 1 was

recorded with optimal conditions for VO / V-SLAM. This

dataset was used for parameter tuning parameters as well

as for evaluating how well the algorithms may perform.

Dataset 2 was set up as a challenge for the VO or V-

SLAM algorithms. While the first part was similar to the

first dataset with respect to motion and environment, the

second part, a hallway, was very different. It comprised

only small structures and little texture was present. In the

following the datasets are described in more detail.

Dataset 1 is comprised of linear movements along a

rectangular trajectory inside the robotics lab of the

University of Applied Sciences Wuerzburg-Schweinfurt.

When recording the first dataset, the robot was driven on

a rectangular course without fast movements (max.

velocity 0.25
𝑚

𝑠

). Only minor rotational movements were

carried out. This led to only small differences

between consecutive images, thus, ensuring preferable

conditions for VO / V-SLAM methods [12]. Recording

was done in a typical lab environment characterized by

chairs, tables, some robots, and lab materials arranged

alongside the walls. It can be described as rich both in

structures (corners, planes) and in textures. The

experiment was performed under constant lightning

conditions (ceiling lights). As this was a collision-free

trajectory, the image center focused on fixed objects

straight ahead, for example, two chairs and a table (see

Fig. 2a). More objects rich in texture and structure

were visible to the left and to the right (see Fig. 2b).

During the experiment, the robot was carefully

observed ensuring that only minor wheel slippage

occurred to obtain very precise wheel odometry data.

Dataset 2 also started inside the laboratory (see Fig.

2c), then exited through a door and utilized the

Mecanum wheels to drive the robot parallel to a wall

of the hallway with the RGB-D camera facing the wall

(see Fig. 2d). The motions in negative x-direction were

carried out to turn the robot around inside the lab so that

the camera would face in negative x-direction to look at

the hallway wall, as soon as it exited the door. This

second run was significantly longer than the first with a

maximum velocity of 0.29
𝑚

𝑠
 . The wall itself resembled

a white plane, i.e., there was very little texture and not

much variation in structure with the exception of two

doors. The data was recorded as ROS bags containing

the color (RGB), depth, camera info and IMU topics

of the camera as well as the odometry of the robot. The

ground truth was available through the tf topic and could

be accessed through frame_ id /map and child_frame_ id

/pose_ localizer messages. The download links of the

datasets can be found on the Github page.9

11 https://github.com/ccny-ros-pkg/imu_tools

D. Evaluation Metric

The relative position error metric from [19] was

applied to evaluate the relative translation error RMSE

(rt), with a time interval of ∆t = 1 s between two

compared positions. Since the estimated trajectory was

transformed into the map coordinate system, only the

relative trajectory error from [19] was used To

calculate the absolute trajectory error, we proceeded as

follows. The ground truth position P (t) at time t was

computed using the ground truth position data P (t̂1) and

P (t̂2) according to

𝑃(𝑡) = 𝑎 ∙ 𝑃(�̂�2) + (1 − 𝑎) ∙ 𝑃(�̂�1) (1)

The weighting factor a was calculated as

𝑎 =
𝑡−�̂�1

�̂�2−�̂�1
 (2)

In this equation �̂�1 and �̂�2 are the closest time

stamps of the ground truth data right before and after

the time stamp t of the estimated camera position. The

error E(t) at time t is the difference between the

position data of the estimated trajectory, Q(t), and the

associated (interpolated) ground truth position, P (t). It

can be expressed as:

𝐸(𝑡) = 𝑄(𝑡) − 𝑃(𝑡)

(3)

Finally, the absolution translation RMSE(at) follows as

𝑅𝑀𝑆𝐸(𝐸0:𝑛) ≔ (
1

𝑛
∑ ‖𝐸(𝑡𝑖)‖

2)𝑛
𝑖=0

1

2
 (4)

Here, n is the number of data points in the estimated

trajectory, ti is the i-th timestamp of the estimated

trajectory, and E(ti) is the error at the specific time.

E. Evaluation

Besides performing a quantitative analysis, two-

dimensional plots of the results are provided to offer

additional insights. Fig. 3a and 3b show the

experimental results for the first dataset before and after

fusion with wheel odometry and IMU. In Table II, the

RMSEs regarding the absolute translation and relative

translation, as well as the Maximum, Mean, Median

and Standard deviation of the translational error are

listed before and after fusing with odometry and IMU,

respectively. From the trajectories (Fig. 3d), it is

evident that after fusion the paths are much closer to

the ground truth. The results show a significantly lower

RMSE (absolute trajectory (at)) and RMSE (relative

trajectory (rt)) after fusion for all algorithms in both

datasets. However, even after data fusion, wheel

odometry was still superior in almost all cases. There

are two reasons for this. First the tracks did not involve

problematic situations for the wheel encoders such as

slippage. The other reason is that even the second track

with a length of 32 m is still rather short. This is why the

accumulated drift of the wheel odometry was still low.

Also note that when comparing the RMSE (rt) results, no

VO of V-SLAM algorithm can reach the accuracy of

wheel odometry, because the wheel odometry’s short

term drift is far lower than any accuracy achievable by

1537

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 12, December 2020

© 2020 Int. J. Mech. Eng. Rob. Res

visual algorithms, if no special circumstances such as

slippage or bumps cause problems. The results show that

over short distances under good operating conditions,

wheel odometry is very hard to beat. However, over

longer distances, fusion with V-SLAM algorithms can

help to keep wheel odometry’s drift at bay as shown in

dataset 2 for RGB-DSLAMv2. In this case, the

maximum error after fusion reduced from 0.864 m to

0.484 m, i.e., by about 44%. The reason for the good

performance was that the drift early on the track of

RGB-DSLAMv2 was compensated by the wheel

odometry while the drift in the last 30% of the track of

the wheel odometry was compensated by RGB-

DSLAMv2. This is an ideal case to demonstrate the

benefits of senor fusion. Unlike V-SLAM methods,

VO algorithms lack the ability to reduce drift. As a

consequence, data fusion with VO techniques can at

most serve as a fall-back when wheel odometry fails,

e.g., in case of slippage.

Figure 3. Comparison of vision based motion estimation algorithms before (Fig. 3a / Fig. 3c) and after fusion with odometry and IMU (Fig. 3b / Fig.
3d) on Dataset 1 / 2.

TABLE II. RMSE OF ABSOLUTE TRANSLATION(AT), RMSE OF RELATIVE TRANSLATION(RT),MAXIMUM TRANSLATION ERROR, MEAN TRANSLATION

ERROR, MEDIAN TRANSLATION ERROR, STANDARD DEVIATION OF THE TRANSLATION ERROR BEFORE AND AFTER FUSION WITH EKF FOR

DATASET 1 AND 2 (IN METERS). CORRESPONDING FRAME-PROCESS-RATES(FPS) IN HZ ARE SHOWN ON THE VERY RIGHT WITH VALUES CLOSER TO

26 INDICATE REAL-TIME PERFORMANCE.

When comparing the results obtained with the VO

and V-SLAM algorithms, we found that both image-based,

dense approaches, i.e. RTABMap and RGB-DOdometry,

yielded similar results. They were outperformed by

DVO, the third algorithm of the image-based, dense

category. A possible reason for this outcome is that

the trajectories were well captured by the underlying

motion and sensor model of the DVO algorithm. The

V-SLAM algorithms were superior with respect to the

translational error. This is expected as those algorithms

limit drift by matching an incoming image not only to

the most recent one but to keyframes or even a model.

In fact, ORB-SLAM2 delivered the best results (45%

better than the 2nd best). RGB-DSLAMv2 was also

ahead of the VO algorithms with the exception of

CCNY. Note, however, that CCNY is a hybrid approach

making use of frame-to-model matching to keep drift

under control. Surprisingly, DVOSLAM performed

worse than its VO counterpart although the same

parameters were set. Since DVOSLAM not only tries to

optimize the intensity error but also the depth error,

unreliable depth estimates may have caused the inferior

performance. This hypothesis is confirmed by the fact

that, as shown in Fig. 3a, the initial direction of both

methods was the same. However, the path length

predicted by DVOSLAM differed strongly from the

real length. Note that DVO did not have this problem,

again confirming that an insufficiently accurate depth

estimate caused the inferior performance of the

DVOSLAM method. Unreliable depth estimates could

also be the reason why ICPOdometry, another depth-

based matching method, fared rather poorly. Interestingly,

1538

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 12, December 2020

© 2020 Int. J. Mech. Eng. Rob. Res

Fovis managed to outperform two V-SLAM techniques

and most of the VO algorithms, although it does not

build a map of the environment. It relies, however, on

a frame-to-keyframe matching technique. This worked

well for the trajectories traversed in the first dataset,

where the same features were visible for extended time

periods. In such a case, the V-SLAM algorithms

performed only marginally better. In the second dataset

(Tab II), a significantly higher translation error for all

algorithms was observed. There are several reasons for

this. First, the total trajectory length was about three

times as much as in the first dataset (31.2 m vs. 12.8 m)

leading to a stronger drift. There was also a long path

parallel to an almost featureless flat, white wall spanning

more than 50% of the total length (see Fig. 3c). As in the

first dataset, the same V-SLAM approach, ORB-SLAM2,

performed best. However, unlike in the first dataset, no

places were revisited. This means that none of the V-

SLAM algorithms could perform loop closure. As a

consequence, the performance differences between the

V-SLAM and VO algorithms were much smaller. As

expected, in a featureless environment the dense

methods, RTABMap, DVO, and RGBD-Odometry

performed better than feature-based techniques. The

inferior performance of Fovis clearly demonstrated this.

Remarkably, the CCNY hybrid approach was clearly

outperformed by RGB-DICPOdometry. This is

because RGB-DICPOdometry uses all 3D points of an

incom-ing frame to perform (dense) matching to other

frames. Such an approach can cope well in an

environment characterized by little texture. This does,

however, not apply to CCNY as a feature-based

approach. The jumps in the track of RGB-DSLAMv2

are related to the featureless environment, which caused

wrong results for the comparison with previous frames.

These jumps must be suppressed by filtering if the

data is to be used for robot control. Among the VO

methods, DVO yielded slightly better results than RGB-

DOdometry when looking at the absolute translation

error. When judged by the relative translation error, then

DVO was clearly better. RGB-DICPOdometry, a hybrid

approach, performed best among all VO methods, and it

was the second best overall. The second performance

criterion was the ability to perform in real-time. This was

measured using the frame-process-rate as introduced in

Section IV-B. Several algorithms were found to have a

lower processing rate making them less suitable for real-

time applications. Faster algorithms are, however,

available as demonstrated by RGB-DSLAMv2 with 26

fps and CCNY with 21 fps. One reason for the

somewhat slow processing speed of the other algorithms

was the matrix size of the input streams. The image

data had a resolution 3.5 times higher than what most

of the algorithm were originally developed for

(640x480). However, the higher image resolution led to

better results by enabling more precise keypoint

detection and better resolved depth values. The

performance of RGB-DSLAMv2 is especially interesting

because even with its underlying V-SLAM approach it

can perform in real-time making it very suitable for

practical robotic applications.

V. DISCUSSION AND CONCLUSIONS

In this paper, the most common RGB-D based position

estimation algorithms were classified first. Second, their

performance was experimentally evaluated with respect

to localization accuracy and ability to work in real-time

using two indoor navigation scenarios. As expected, V-

SLAM algorithms yielded more accurate results

compared to VO algorithms under normal operating

conditions. However, the present paper also shows that

there can be situations in which appropriately designed

VO algorithms can outperform V-SLAM techniques. A

very strong drift in the predicted absolute position data in

both data sets was observed when using visual odometry

methods. This suggests that VO techniques may not yet

be sufficiently reliable for position estimation over

longer distances. Even for a rather short trajectory (12m),

the position deviated by over 1 meter by the end of the

run in one case. There are several ways to deal with this

issue. First, one can use a V-SLAM algorithm and try to

perform as many loop closures as possible to reduce drift.

Second, when a VO approach is the method of choice,

then another source for reliable relocalization is essential.

This cannot be the wheel odometry as it is also subject to

drift. Third, better vision sensors could be employed such

as the new Intel RealSense LiDAR Camera L515, which

is planned to become available mid-2020. Fourth, data

fusion may be applied. The experiments revealed that by

fusing vision-based position predictions with wheel

odometry and IMU estimates, the translation error could

be halved. More precisely, the average performance gain

was 67.45%. The results also show that there is probably

no single algorithm that performs best for every dataset.

However, ORB-SLAM2 can be considered as a stand-

alone solution that performs well in environment with

high texture. It can even deal with low texture without

losing too much accuracy. When it comes to real-time

constraints, RGB-DSLAMv2 seems to be a good choice.

Based on the findings in this work, a technique for

switching between vision algorithms at run time,

adapting to the situation at hand, could significantly

boost the performance. Implementing such a technique is

planned as part of our future work. Furthermore, a study

of more sophisticated data fusion strategies could be

considered. To this end, sensor modalities other than

vision such as radar or ultrasound could be integrated. In

addition, it is also conceivable to fuse outputs of

sufficiently different and complementary VO or V-

SLAM algorithms.

CONFLICT OF INTEREST

The authors declare no conflict of interest

AUTHOR CONTRIBUTIONS

1st and 2nd author conducted the research,

analyzed the data, and wrote the paper. Authors 3rd, 4th,

1539

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 12, December 2020

© 2020 Int. J. Mech. Eng. Rob. Res

5th wrote the paper. All authors had approved the final

version.

ACKNOWLEDGMENT

This work was supported by the Hans-Wilhelm

Renkhoff Stiftung [33]

REFERENCES

[1] D. Nister, O. Naroditsky, and J. Bergen, “Visual odometry,” in Proc.
the 2004 IEEE Computer Society Conference on Computer

Vision and Pattern Recogni- tion, 2004. CVPR 2004., vol. 1,

June 2004, pp. I–I.
[2] Z. Fang and Y. Zhang, “Experimental evaluation of rgb- d visual

odometry methods,” International Journal of Advanced Robotic

Systems, vol. 12, no. 3, p. 26, 2015.
[3] D. Scaramuzza and F. Fraundorfer, “Visual odometry [tutorial],”

IEEE Robotics Automation Magazine, vol. 18, no. 4, pp. 80–92,

Dec. 2011.
[4] B. Khaleghi, A. Khamis, F. O. Karray, and S. N. Razavi,

“Multisensor data fusion: A review of the state-of-the-art,”

Information Fusion, vol. 14, no. 1, pp. 28–44, 2013.
[5] Intel, [Online]. Available: Https://store.intelrealsense.com/buy-intel-

realsense-depth-camera-d435.html, Aug. 6, 2019

[6] F. Steinbrücker, J. Sturm, and D. Cremers. “Real-time visual

odometry from dense RGB-D images,” in Proc. 2011 IEEE

International Conference on Computer Vision Workshops (ICCV

Workshops). Nov. 2011, pp. 719–722.

[7] C. Kerl, J. Sturm, and D. Cremers. “Robust odometry

estimation for RGB-D cameras,” in Proc. 2013 IEEE

International Conference on Robotics and Automation. May

2013, pp. 3748–3754.

[8] A. S. Huang, A. Bachrach, P. Henry, M. Krainin, D.

Maturana, D. Fox, and N. Roy, Visual Odometry and Mapping

for Autonomous Flight Using an RGB-D Camera. Springer,
Robotics Research, 2017, pp. 235–252.

[9] G. Bradski, Icpodometry. [Online]. Available: https://docs.

opencv. org/ 4 2 . 0 / d7 / d83 / classcv_1_ 1rgbd_1_ 1ICPOdometry.
html, Jan. 15, 2020.

[10] Rgbdicpodometry. [Online]. Available:

https://docs.opencv.org/4.2.0/d2/d0f/classcv_ 1_
1rgbd_ 1_ 1RgbdICPOdometry.html, Jan. 15, 2020.

[11] I. Dryanovski, R. G. Valenti, and J. Xiao, “Fast visual

odometry and mapping from rgb-d data,” in Proc. 2013 IEEE
International Conference on Robotics and Automation, 2013, pp.

2305–2310.

[12] C. Kerl, J. Sturm, and D. Cremers, “Dense visual slam for rgb-d
cameras,” in Proc. 2013 IEEE/RSJ International Conference on

Intelligent Robots and Systems, Nov. 2013, pp. 2100–2106.

[13] M. Labbé and F. Michaud, “Appearance-based loop closure
detection for online large-scale and long-term operation,” IEEE

Transactions on Robotics, vol. 29, no. 3, pp. 734–745, June

2013.
[14] R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source

slam system for monocular, stereo, and rgb- d cameras,”

IEEE Transactions on Robotics, vol. 33, no. 5, pp. 1255–1262,
Oct. 2017.

[15] F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard, “3-d

mapping with an rgb-d camera,” IEEE Transactions on
Robotics, vol. 30, no. 1, pp. 177–187, Feb. 2014.

[16] J. Stückler and S. Behnke, “Multi-resolution surfel maps for

efficient dense 3d modeling and tracking,” J. Vis. Comun.
Image Represent., vol. 25, no. 1, pp. 137–147, Jan. 2014.

[17] O. Inc., The Structure Sensor. [Online]. Available:

http://structure.io, Jan. 15, 2020.
[18] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers,

“A benchmark for the evaluation of rgb-d slam systems,” in Proc.
of the International Conference on Intelligent Robot Systems

(IROS), Oct. 2012.

[19] V. Angladon, S. Gasparini, V. Charvillat, T. Pribanić, T.
Petković, M. Ðonlić, B. Ahsan, and F. Bruel, “An evaluation

of real-time rgb-d visual odometry algo- rithms on mobile

devices,” Journal of Real-Time Image Processing, vol. 16, no. 5,
pp. 1643–1660, Oct. 2019.

[20] A. Handa, T. Whelan, J. McDonald, and A. J. Davison, “A

benchmark for rgb-d visual odometry, 3d recon- struction and
slam,” in Proc. 2014 IEEE International Conference on Robotics

and Automation (ICRA), May 2014, pp. 1524–1531.

[21] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon,

“Kinectfusion: Real-time dense sur- face mapping and tracking,”

in Proc. 2011 10th IEEE International Symposium on Mixed
and Augmented Reality, Oct. 2011, pp. 127–136.

[22] T. Whelan, H. Johannsson, M. Kaess, J. J. Leonard, and J.

McDonald, “Robust real-time visual odometry for dense rgb-d
mapping,” in Proc. 2013 IEEE International Conference on

Robotics and Automation, May 2013, pp. 5724–5731.

[23] Z. Fang and S. Scherer, “Experimental study of odom- etry
estimation methods using rgb-d cameras,” in Proc. 2014

IEEE/RSJ International Conference on Intelligent Robots and

Systems, Sep. 2014, pp. 680–687.

[24] A. Quattrini Li, A. Coskun, S. M. Doherty, S. Ghasem- lou, A. S.

Jagtap, M. Modasshir, S. Rahman, A. Singh, M. Xanthidis, J. M.

O’Kane, and I. Rekleitis, “Exper- imental comparison of open
source vision-based state estimation algorithms,” in 2016

International Symposium on Experimental Robotics, D. Kulić, Y.

Nakamura, O. Khatib, and G. Venture, Eds., Cham: Springer
Inter- national Publishing, 2017, pp. 775–786.

[25] Evocortex. [Online]. Available: Evorobot, https : / / evocortex . org /

products / evorobot/, Jan. 15, 2020.
[26] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Re- hder, S. Omari,

M. Achtelik, and R. Siegwart, “The euroc micro aerial

vehicle datasets,” The International Journal of Robotics
Research, 2016.

[27] M. Labbé and F. Michaud, “Rtab-map as an open-source lidar and

visual simultaneous localization and mapping library for large-
scale and long-term online operation,” Journal of Field Robotics,

vol. 36, no. 2, pp. 416–446, 2019.

[28] D. Galvez-López and J. D. Tardos, “Bags of bi-nary words for
fast place recognition in image sequences,” IEEE Transactions on

Robotics, vol. 28, no. 5, pp. 1188–1197, 2012.

[29] M. Fischler and R. Bolles, “Random sample consensus: A

paradigm for model fitting with applications to image analysis

and automated cartography,” Commun. ACM, vol. 24, no. 6, pp.
381–395, June 1981.

[30] Intel, Intelrealsenseroswrapper, version 2.2.12, Jan. 15, 2020.

[Online]. Available: https://github.com/
IntelRealSense/realsense-ros.

[31] Intel Realsense SDK, version 2.0, Jan. 15, 2020. [Online].

Available: https://github.com/IntelRealSense/ librealsense.
[32] evocortex, Localizersdk, https://evocortex.org/products/

localizer-sdk/, Jan. 15, 2020.

[33] Warema Renkhoff SE, Jan. 26, 2020. [Online]. Available:
https://www.warema-group.com/en/WAREMA group/

WAREMA Renkhoff SE.php.

Copyright © 2020 by the authors. This is an open access article
distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-
commercial and no modifications or adaptations are made.

Florian Spieß is a Ph.D. student at the chair of software engineering at

the University of Würzburg. His research topics include people

detection and localization. He researches in the field of mobile roboitcs
and Industry 4.0 as well as Platooning and Intelligent Transportation

Systems.

1540

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 12, December 2020

© 2020 Int. J. Mech. Eng. Rob. Res

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

