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Abstract—This paper presents an experimental evaluation 

and comparison of selected Visual Odometry (VO) and 

Visual-SLAM (V-SLAM) algorithms for indoor mobile 

robot navigation supported by the Robot Operating 

System (ROS). The focus is on algorithms involving RGB-

D cameras. Since RGB-D cameras integrate color and 

depth information, they output coherent measurement data 

and facilitate an efficient processing pipeline. The various 

underlying methods of vision-based algorithms are  

described and evaluated on two datasets covering different 

indoor situations as well as various lighting and movement 

conditions. In general, V-SLAM algorithms yielded 

better results. They were superior with respect to handling 

drift, in particular when loop closures were involved. 

However, the results confirmed that VO algorithms could 

outperform V-SLAM methods under certain circumstances. 

This happened when there was a very good match between 

an algorithm’s design objectives and the situation at hand. 

While the experiments showed that there is no single best 

algorithm for every scenario, ORB-SLAM2 is 

recommended as a robust stand-alone RGB-D based 

localization method available under ROS. Furthermore, 

we observed that the position estimation error could be 

reduced by around 67% on average when combining 

vision-based position estimates with sensor data obtained 

from wheel odometry and an inertial measurement unit 

(IMU), respectively. This clearly demonstrates the potential 

of sensor fusion techniques. The best results in case of 

sensor fusion were obtained with RGB-DSLAMv2.  

 

Index Terms—
data sets for robotic vision, RGB-D perception 
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I. INTRODUCTION 

A mobile robot’s capability to localize itself is an 

essential prerequisite for navigation and path planning. 

In this paper, localization describes the determination 

of a mobile robot’s position without considering its 

orientation. The most widespread and cost-efficient 

localization method for mobile robots is wheel 

odometry. Almost all wheeled robots use it. However, 

the accuracy of the resulting position estimation is 

limited due to factors such as a finite wheel encoder 

resolution or slippage of the wheels relative to the ground. 

Due to the accumulation of errors, wheel odometry gets 

more unreliable with increasing path length. Another 

way to keep track of an object’s position is to rely on 

camera information. In this context, it was Nister et al. [1] 

who proposed the term ”Visual Odometry” to describe 

the estimation of camera motion from consecutive 

images. With the increasing popularity of 

commercially available, affordable camera modules 

integrating a depth sensor such as the Microsoft Kinect 

series or the Intel Realsense cameras, their use for visual 

odometry has increased substantially. These cameras 

provide RGB-D output streams that can be processed to 

compute camera motions. In addition to VO algorithms, 

there are Visual-SLAM methods. Whereas VO 

algorithms operate on a sequence of successive 

images to estimate motion, V-SLAM methods use the 

input images to generate a persistent representation of 

the surroundings. When constructing these global maps 

of the environment, V-SLAM methods usually benefit 
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from loop closures. They can be obtained by revisiting 

previously observed areas. Loop closure limits the drift 

of the camera path by readjusting position estimates. In 

other words, while VO aims for locally consistent 

movements, V-SLAM’s goal is a globally consistent 

trajectory [2]. However, the increased robustness of V-

SLAM algorithms comes at a price. They are in general 

more computationally expensive which can be 

problematic for mobile devices. In this paper, VO and V-

SLAM position estimation methods are compared. The 

algorithms considered are listed in Table I. The 

underlying methods are further described in Section II. 

As wheel odometry and vision-based position estimation 

techniques are complementary [3], we also evaluated if 

fusion of these two can improve overall performance. In 

addition, data from a built-in inertial measurement unit 

(IMU) was included. The various sensor outputs were 

fused using an Extended Kalman Filter (EKF) to improve 

both the accuracy and the robustness of the state vector 

estimate [4]. For the experiments, a Mecanum-wheel-

based research platform was used as shown Fig. 1. 

Attached to it was an Intel Realsense D435i [5] stereo 

depth camera. The platform was moved around inside 

and outside of the lab facilities to acquire datasets. They 

are made publicly available to add diversity to the 

current data pool. The contributions of this paper are: 

1) Classification and experimental comparison of 

the most popular VO and V-SLAM algorithms 

supported under ROS using RGB-D camera data. 

2) Experimental comparison of their performance 

with and without wheel odometry / IMU for 

various indoor navigation scenarios. 

3) Demonstrating an improvement of the VO / V-

SLAM position estimation results by 67% on 

average after applying EKF data fusion with 

wheel odometry readings and IMU data. 

4) A benchmark dataset to facilitate research on 

sensor fusion comprising camera images as 

well as associated wheel odometry data and 

IMU measurements in conjunction with a 

suitably tuned parameter set for the algorithms 

listed in Table I; no such multi-sensor dataset has 

been previously made available. 

TABLE I. OVERVIEW OF THE ALGORITHMS CONSIDERED IN THIS PAPER 

Algorithm Category Match Method 
RGB-DOdometry 

[6] 
VO frame image-based, dense 

DVO [7] VO frame 
image-based, dense 

with    sensor    and 
motion model 

Fovis [8] VO keyframe image-based, sparse 

ICPOdometry [9] VO frame depth-based, dense 

RGB-
DICPOdometry[10] 

VO frame 
hybrid, dense joint- 

optimization 

CCNY [11] VO model 
hybrid,  sparse  3D 

points 

DVOSLAM [12] V-SLAM map hybrid, dense 

RTABMap [13] V-SLAM map image-based, dense 

ORB-SLAM2 [14] V-SLAM map image-based, sparse 
RGB-DSLAMv2 

[15] 
V-SLAM map image-based, sparse 

From the vast amount of available algorithms, a 

representative set was chosen, listed in Table I. Two 

different motion trajectories were recorded in a 

laboratory environment using a Mecanum-wheeled robot 

which facilitates precise (omnidirectional) movements 

along straight paths as well as on curved tracks. The 

trajectories were set up such that the impact of different 

velocities and turn rates on visual path estimation 

methods could be studied. The remainder of the paper is 

organized as follows: Section II presents previous 

work on comparing visual odometry methods. Section 

III discusses the algorithms which were used to 

estimate the successive RGB-D camera positions. 

Experimental results can be found in Section IV. In the 

last Section, results are discussed and conclusions are 

drawn. 

II. RELATED WORK 

Adopting the taxonomy proposed by [2], VO and V-

SLAM methods fall into three categories depending 

on the type of data used to perform camera position 

estimation: image-based methods, depth-based methods, 

and hybrid methods. Those algorithms are subdivided 

into sparse and dense approaches. Sparse approaches 

operate on selected image features in 2D or 3D; dense 

approaches, involve all 2D pixels or 3D point cloud 

elements. In general, VO methods estimate the camera 

motion frame-to-frame, frame-to-keyframe, or frame-to-

model. Frame-to-frame algorithms only align 

consecutive frames. The frame-to-keyframe approach 

takes the first RGB-D image of a sequence as a 

keyframe to which the consecutive frames are matched 

for motion estimation. If a significant drift is detected, 

for example based on a reduction of the number of 

matches, a new keyframe is selected. Frame-to-model 

strategies build a model / local map of the environment 

and match each new frame against it. This makes those 

algorithms somewhat similar to V-SLAM, as they 

provide the ability to relocalize should motion estimation 

fail in some instance. The main difference between 

frame-to-model VO and V-SLAM is that the VO 

model only has a limited size to keep the complexity 

under control.  As a consequence, parts of the model 

are discarded once a maximum number of components 

is reached. In fast-motion scenarios frame-to-model 

algorithms can be more precise than their frame-to-frame 

counterparts because the model allows feature 

matching not only between consecutive frames but 

over the whole recorded scenario [2].  Furthermore, after 

the initial matching step a local optimization process 

can be run. This makes it possible to match a new 

frame not only to the latest one but also to multiple 

previously recorded frames or even multiple keyframes 

to arrive at a better position estimate minimizing drift. 

If all previously collected frames are considered, a 

VO algorithm becomes a V-SLAM technique. In case 

the matching process led to enough correspondence, V-

SLAM algorithms can perform loop closure reducing 

the accumulated position error drastically. In their 

comparison [2], Fang and Zhang considered Fovis, DVO, 

MRSMAP [16], a proprietary algorithm developed by 

Occipital [17] and the three algorithms from the 
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OpenCV rgbd-module. The latter are evaluated in this 

paper again. OpenCV is an open programming library 

for image processing. All approaches were tested on 

the TUM dataset [18]. The authors found that image-

based or hybrid methods perform better and are more 

robust than depth-based methods when the 

environment has rich visual features and the 

illumination is good. Under these conditions, Fovis, an 

image-based method utilizing sparse features, was the 

best choice for accuracy and speed. Under bad 

illumination conditions dense approaches were found 

to be superior. In case of featureless environments, 

depth-based methods were recommended. Additionally 

a degrading effect was observed if the motion between 

consecutive images was fast, or solely rotational. In 

[19], the authors tested and analyzed the performance 

of selected visual odometry algorithms designed for 

RGB-D sensors on the TUM dataset with respect to 

accuracy, time, and memory consumption. In contrast, 

this paper compared their performance with V-SLAM 

algorithms and considered data fusion. Similar to [2], 

they also observed that the performance of the 

algorithms under investigation strongly depended on 

the scene characteristics. They concluded that the 

image-based  methods (e.g., Fovis)  and the hybrid 

methods were most accurate when the environment had 

texture but no structure. In structured but low textured 

scenes, hybrid and depth-based methods were found to 

be preferable. The authors of [20] generated several 

synthetic datasets by moving a camera around various 3D 

virtual indoor environments containing structure but with 

little textures. Based on these simulated datasets, 

algorithms from the image and depth-based category 

were studied. Fovis, DVO, KinectFusion [21], RGB-D 

[1], and ICP+RGB-D [22] were evaluated. On noise-free 

rendered images, ICP, a depth-based method, estimated 

the camera trajectory best overall. From their work it can 

be concluded that ICP algorithms may perform best when 

datasets are mostly characterized by geometric features 

and little noise. In the more realistic simulation including 

noise, techniques such as DVO enforcing a photo-

consistency constraint were more robust. In our work we 

use real environment setups , and comparisons were not 

only provided for VO but also for V-SLAM algorithms. 

The accuracy of several image-based and depth-based 

algorithms including Fovis, DVO was evaluated in [23]. 

Although the work of A. Handa et al. was targeted at 

micro aerial vehicles (MAVs), while our focus is on 

mobile ground robots and considers sensor fusion as well 

as V-SLAM, the authors pointed out several interesting 

observations relevant to our work. On the whole, image-

based methods (such as Fovis and DVO) were found to 

be faster and more accurate than depth-based methods 

when the environments were well lit and had good 

texture features. Depth-based methods were 

recommended for dark environments, but they suffered 

from the rather short sensing range of the RGB-D camera 

used and the very noisy depth measurements. Ten of the 

most promising open source packages for vision- based 

state estimation algorithms were evaluated in [24]. 

Although there is no overlap between the V-SLAM 

algorithms covered in that paper and our work as 

different sensors were used, there are some lessons to be 

learned.  First, one of the main challenges when 

comparing different algorithms is to configure their 

parameters appropriately. Second, the type of input 

images is another important factor influencing the 

results, as the performance of VO and V-SLAM 

techniques depend on the scene content, different 

illumination, and the presence of blur, caused by out-of-

focus positioning as well as motion blur. Furthermore, 

some packages yielded different results for successive 

runs on the same dataset with the same parameter 

settings when real-time constraints were enforced. It 

turned out that this was caused by frame dropping. 

Various benchmark datasets for assessing visual 

odometry algorithms have been made available. 

 

Figure 1. Mobile research platform from evocortex GmbH, Nuremberg, 

Germany [25] 

They include the TUM RGB-D benchmark [19], 

EuroSec [26], or ICL-NUIM [21]. However, none of 

these datasets were collected with sensor fusion in mind. 

As a consequence, they neither include any wheel 

odometry data, nor do they provide any IMU 

measurements. The provided benchmark dataset 

improves this situation, comprising camera data as well 

as other sensor recordings to enable future research on 

different fusion approaches. 

III.
 

TESTED VO AND V-SLAM ALGORITHMS 

In this section the algorithms listed in Table I are 

briefly dis-cussed. The different algorithms were chosen 

to provide a broad overview of the different methods for 

visual position estimation, comprising different methods 

for feature handling and matching with underlying data 

models (frame, keyframe, model, map). Furthermore by 

comparing ORB-SLAM2 and
 

RGB-DSLAMv2, we 

analyzed if algorithms based on the
 

same matching 

strategy and methodology had similar performance.
 

RGB-DOdometry used an implementation described in 

[1].
1  

For every pixel
 

in the RGB image, the 

corresponding intensity value (gray
 
value) is calculated 

first. Then the corresponding positions of all pixels in the 

scene are computed. This can be interpreted as a surface 

of the observed area. In the next step, the camera motion 

                                                          
 

1
 https://github.com/opencv/opencv_contrib/blob/master/modules/ 

rgbd/src/odometry.cpp
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is derived based on minimizing the error (energy) 

between the intensity values of the motion-warped 

current surface and the surface of the previous image. 

DVO (Dense Visual Odometry) is an improved version of 

[1].
2

 As in [1], the camera motion is estimated by 

enforcing the photo-consistency constraint between two 

consecutive images. However, unlike [1], the residual 

can be weighted based on a sensor model, which 

copes better with outliers. A constant motion model is 

further applied when calculating the transformation 

reducing the likelihood of jumps when estimating the 

camera motion. Fovis applies the FAST keypoint 

matching algorithm to detect features in the RGB 

image.
3

 Afterwards, depth information is included as a 

third coordinate to those 2D positions were features 

were found. By comparing their feature descriptor 

values, features are then matched across frames using 

a mutual consistency check.  Additionally,  a  keyframe  

technique  can  be  used  to reduce short-scale drift. 

ICPOdometry from OpenCV is based on KinectFusion 

[21].1 To calculate the camera motion, this algorithm 

performs an ICP of all 3D depth points of the current 

image to align them with the previous depth frame. 

In the original version of KinectFusion the matching 

was applied not only to the previous frame but also to a 

model created from the data. OpenCV’s RGB-

DICPOdometry uses both algorithms, that is RGB-

DOdometry and ICPOdometry.1 It tries to find a 

compromise by minimizing the sum of both energy 

functions [5]. The mechanism is the same as introduced 

in [22]. CCNY RGB-D tools algorithm, abbreviated as  

CCNY,  first  utilizes  one  of its keypoint detector 

algorithms to identify keypoints in the intensity 

channel of the RGB image.
4

 The next step is to 

calculate the uncertainty of the location of every point 

together with an average mean value for its possible 

location. Afterwards, the mean value and the 

uncertainties are compared against a model built from the 

previously observed features. An ICP algorithm is 

applied to find the transformation aligning the new set 

of features to the model. A Kalman Filter is subsequently 

used to update stored features and to add new ones to 

the model (up to a limit). DVOSLAM builds on top of 

DVO and uses a method to optimize the registration 

based on intensity and depth error. 
5
An entropy-based 

method is used to select keyframes. This decreases the 

drift significantly. The same entropy metric is applied 

to validate loop closures. By applying a general graph 

SLAM solver, the position accuracy is increased. 

RTABMap evaluates RGB-D data to calculate camera 

motion.
6
 Keypoints are detected and processed based on a 

combination of GoodFeaturesToTrack and the BRIEF 

algorithm. A nearest neighbor distance ratio test is 

                                                           
2
 https://github.com/songuke/_dvo slam 

3
 https://github.com/srv/fovis 

4
 https://github.com/ccny-ros-pkg/ccny_ rgbd_ tools 

5
 https://github.com/songuke/dvo_slam 

6
 https://github.com/introlab/rtabmap 

applied to match the features against the feature map. 

The feature map itself is comprised of 3D features 

including their descriptors from latest keyframes. The 

location of the map features in the current frame is 

predicted using a motion model. The motion between 

the current frame and the feature map is then 

computed from the correspondences of the features 

from current frame and the feature map, applying 

OpenCV’s Perspective-n-Point RANSAC. Whenever the 

number of keypoint matches falls below a threshold, 

the feature map is updated by including unknown 

features and adjusting positions of the previous ones. 

The amount of map features is limited, causing old 

features to be dropped [27]. The loop closure is based 

on a bag-of-words approach. It utilizes a subset of the 

features of the current frame and matches them to the 

feature map. ORB-SLAM2 employs multiple parallel 

threads to compute the camera position.
7
 One thread 

calculates the position and orientation of the camera for 

each incoming frame by computing ORB feature 

correspondences between the current image and the 

local map using motion-only bundle adjustment. The 

map is then optimized by local bundle adjustment. A 

loop closure algorithm based on DBoW2 [28] is used to 

detect large loops and correct accumulated drift by 

optimizing the pose graph. Upon completion of these 

steps, a fourth thread is launched, that performs a full 

bundle adjustment to reconstruct the 3D camera 

trajectory. RGB-DSLAMv2 uses 3D landmark positions 

as features.
8

 These features are compared across 

consecutive frames as well as to a list of keyframes. The 

results are further processed by RANSAC [29] to 

remove false positive matches. To verify the 

transformation estimate, the dense free-space 

information from the depth data is exploited. The list 

of keyframes is expanded with the new frame if there 

are not enough matches. Furthermore this  list is  used  

to detect  loop closure.  Upon receiving an initial pose 

graph from the SLAM front-end, g2o, which is a 

framework for graph optimization, is used to 

minimize errors of the provided graph and to compute 

an optimal trajectory. 

IV. EXPERIMENTS AND ANALYSIS 

A. Hardware 

The experiments were conducted using the indoor 

mobile robot shown in Fig. 1. An Intel Realsense D435i 

camera mounted on the robot’s front was used to record 

the RGB-D data with a resolution of 1280x720 pixels 

and a frame rate of 26 fps. Processing involved the 

realsense2 camera package [30] and the Intel 

RealSense SDK 2.0 [31]. Before running the 

experiments, a map of the test environment was 

created using the robot’s SICK TIM561 2D LiDAR. 

This map was used in combination with the Evocortex 

                                                           
7
 https://github.com/appliedAI-Initiative/orb_ slam_ 2_ ros 

8
 https://github.com/felixendres/rgbdslam _v2 
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Localizer SDK to obtain ground truth positions. The 

Evocortex Localizer SDK is reported to reach an 

accuracy of approximately 0.1% with respect to the 

distance traveled [32]. Since this in an order of 

magnitude better than typical results achieved with 

camera-based approaches, the positions returned by 

the Evocortex Localizer SDK can be considered as 

ground truth. All data was recorded on a laptop running 

Ubuntu 16.04 linked to the mobile robot via Ethernet. 

The evaluation was performed on a PC consisting of the 

following components: Threadripper 1950X, 64 GB RAM, 

500 GB SSD, and Asus GeForce GTX 1080 TI. 

B. Software and EKF 

The ROS Kinetic Kame framework running on Ubuntu 

16.04 LTS was used. The evaluated libraries were ported 

to ROS Kinetic, if necessary. All software packages 

except the three OpenCV packages were built with 

OpenCV version 3.3.1 as this shipped with ROS. The 

RGB-DICPOdometry, ICPOdometry and RGB-

DOdometry components were built on OpenCV 

version 4.1.2. For those packages, the data was 

provided via the ROS-OpenCV interface and the output 

was converted to a ROS message. Since the aim was 

to simulate real-time conditions, the algorithms and their 

position estimates were evaluated on live data without 

applying any post-processing. As mentioned in [12], the 

parameter selection had a great influence on the 

performance as well as on the runtime of the 

algorithms. To arrive at a fair comparison, the 

parameters were individually tuned for each method. 

It was found that tuning could only be done 

meaningfully if no frames were skipped. Otherwise, the 

algorithms’ performance was not stable, making it 

impossible to find an optimal parameter configuration. 

The parameter settings can be found in the Github 

repository.
9
 To ensure that no frames were skipped, the 

recorded datasets were replayed with a slower data 

rate. A frame-process-rate was calculated by dividing 

the frame rate with the inverse of the slowdown-rate. 

It can be interpreted as a measure for the real-time 

performance of the algorithm. For each algorithm the 

frame-process-rate parameter is given in Table II. The 

parameters for each algorithm were tuned on dataset 1 

and then also applied to the other dataset. The output of 

the visual motion estimation algorithms was fused 

with the odometry data of the mobile unit and IMU 

data coming from a sensor built into the Realsense 

camera. To this end, the robot pose ekf package 

was used.
10

 As the robot only performs 2D-motion the 

underlying state vector consisted of (x, y, yaw, vx, vy , vyaw , 

ax, ay , ayaw ), where yaw describes the rotation about the z 

axis. The variables x and y were measured in meters, 

while yaw was expressed in radians. 

                                                           

9
 https://github.com/Fugashu/compVisualPose/blob/master/ 

ParameterOverview.pdf 
10

 https://github.com/ros-planning/robot_ pose_ ekf 

               

(a) Dataset 1 : Start position (b) Dataset 1 : Middle part 

     

(c) Dataset 2 : Laboratory (d) Dataset 2 : Corridor 

 

(e) Map of the laboratory environment. The respective positions at 

which the images 2a,2b,2c,2d were taken, are marked with identical 

letters. 
Figure 2. Example pictures for dataset 1 & dataset 2 and the laboratory 

environment. 

The EKF was set up as follows: From VO / V-

SLAM the values of (x, y, yaw) were used as inputs to 

the robot pose ekf package. There, these values were 

first converted to their respective velocities (vx, vy , vyaw ) 

before passing them on to the EKF. The reason for this 

configuration was as follows: x, y, yaw suffer from 

drift and therefore have increasing covariance values. 

For their derivatives, vx, vy , vyaw , constant covariances can 

be assumed. Since most of the evaluated algorithms did 

not provide covariance matrices for their outputs, 

diagonal covariance matrices with fixed values for all 

algorithms were applied. A higher value for the yaw’s 

variance was chosen to account for the higher 

rotational error relative to t h e  translations. A good 

example for rather inaccurate yaw estimates can be 

found in Fig. 3a by looking at the CCNY trajectory. 

Similar to the position data of VO / V-SLAM 

algorithms, the wheel odometry data was converted to 

velocity values as well before being passed to the EKF. 

Again, a diagonal covariance matrix was assumed, but 

the main diagonal elements were set to a third of 

their VO / V-SLAM counterparts to account for the 

higher precision provided by the wheel odometry 

sensors. The IMU data was preprocessed using the imu 

filter madgwick, and vyaw , ax, ay were considered for 
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s 

sensor fusion.
11

 Note that no x, y, and yaw values were 

used for fusion directly. Only their derivatives were. As 

an initial value, the robot’s starting position was used. 

C. Datasets 

Fig. 2e shows an overview of the laboratory 

environment including the positions along the track 

where the pictures shown were taken. Dataset 1 was 

recorded with optimal conditions for VO / V-SLAM. This 

dataset was used for parameter tuning parameters as well 

as for evaluating how well the algorithms may perform. 

Dataset 2 was set up as a challenge for the VO or V-

SLAM algorithms. While the first part was similar to the 

first dataset with respect to motion and environment, the 

second part, a hallway, was very different. It comprised 

only small structures and little texture was present. In the 

following the datasets are described in more detail. 

Dataset 1 is comprised of linear movements along a 

rectangular trajectory inside the robotics lab of the 

University of Applied Sciences Wuerzburg-Schweinfurt.  

When recording the first dataset, the robot was driven on 

a rectangular course without fast movements (max. 

velocity 0.25 
𝑚

𝑠

 ). Only minor rotational movements were 

carried out. This led to only small differences 

between consecutive images, thus, ensuring preferable 

conditions for VO / V-SLAM methods [12]. Recording 

was done in a typical lab environment characterized by 

chairs, tables, some robots, and lab materials arranged 

alongside the walls. It can be described as rich both in 

structures (corners, planes) and in textures. The 

experiment was performed under constant lightning 

conditions (ceiling lights).  As this was a collision-free 

trajectory, the image center focused on fixed objects 

straight ahead, for example, two chairs and a table (see 

Fig. 2a). More objects rich in texture and structure 

were visible to the left and to the right (see Fig. 2b). 

During the experiment, the robot was carefully 

observed ensuring that only minor wheel slippage 

occurred to obtain very precise wheel odometry data. 

Dataset 2 also started inside the laboratory (see Fig. 

2c), then exited through a door and utilized the 

Mecanum wheels to drive the robot parallel to a wall 

of the hallway with the RGB-D camera facing the wall 

(see Fig. 2d). The motions in negative x-direction were 

carried out to turn the robot around inside the lab so that 

the camera would face in negative x-direction to look at 

the hallway wall, as soon as it exited the door. This 

second run was significantly longer than the first with a 

maximum velocity of 0.29 
𝑚

𝑠
 . The wall itself resembled 

a white plane, i.e., there was very little texture and not 

much variation in structure with the exception of two 

doors. The data was recorded as ROS bags containing 

the color (RGB), depth, camera info and IMU topics 

of the camera as well as the odometry of the robot. The 

ground truth was available through the tf topic and could 

be accessed through frame_ id /map and child_frame_ id 

/pose_ localizer messages. The download links of the 

datasets can be found on the Github page.9 

                                                           
11 https://github.com/ccny-ros-pkg/imu_tools 

D. Evaluation Metric 

The relative position error metric from [19] was 

applied to evaluate the relative translation error RMSE 

(rt), with a time interval of ∆t = 1 s between two 

compared positions. Since the estimated trajectory was 

transformed into the map coordinate system, only the 

relative trajectory error from [19] was used To 

calculate the absolute trajectory error, we proceeded as 

follows. The ground truth position P (t) at time t was 

computed using the ground truth position data P (t̂1) and 

P (t̂2) according to 

𝑃(𝑡) = 𝑎 ∙ 𝑃(�̂�2) + (1 − 𝑎) ∙ 𝑃(�̂�1)          (1) 

The weighting factor a was calculated as 

𝑎 =
𝑡−�̂�1

�̂�2−�̂�1
                                       (2) 

In this equation �̂�1  and �̂�2  are the closest time  

stamps  of the ground truth data right before and after 

the time stamp t of the estimated camera position. The 

error E(t) at time t is the difference between the 

position data of the estimated trajectory, Q(t), and the 

associated (interpolated) ground truth position, P (t). It 

can be expressed as: 

𝐸(𝑡) = 𝑄(𝑡) − 𝑃(𝑡)
 

(3)
 

Finally, the absolution translation RMSE(at) follows as
 

𝑅𝑀𝑆𝐸(𝐸0:𝑛) ≔ (
1

𝑛
∑ ‖𝐸(𝑡𝑖)‖

2)𝑛
𝑖=0

1

2
 (4) 

 

Here, n is the number of data points in the estimated 

trajectory, ti is the i-th timestamp of the estimated 

trajectory, and E(ti) is the error at the specific time. 

E.  Evaluation 

Besides performing a quantitative analysis, two-

dimensional plots of the results are provided to offer 

additional insights. Fig. 3a and 3b show the 

experimental results for the first dataset before and after 

fusion with wheel odometry and IMU. In Table II, the 

RMSEs regarding the absolute translation and relative 

translation, as well as the Maximum, Mean, Median 

and Standard deviation of the translational error are 

listed before and after fusing with odometry and IMU, 

respectively. From the trajectories (Fig. 3d), it is 

evident that after fusion the paths are much closer to 

the ground truth. The results show a significantly lower 

RMSE (absolute trajectory (at)) and RMSE (relative 

trajectory ( rt)) after fusion for all algorithms in both 

datasets. However, even after data fusion, wheel 

odometry was still superior in almost all cases. There 

are two reasons for this. First the tracks did not involve 

problematic situations for the wheel encoders such as 

slippage. The other reason is that even the second track 

with a length of 32 m is still rather short. This is why the 

accumulated drift of the wheel odometry was still low. 

Also note that when comparing the RMSE (rt) results, no 

VO of V-SLAM algorithm can reach the accuracy of 

wheel odometry, because the wheel odometry’s short 

term drift is far lower than any accuracy achievable by 
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visual algorithms, if no special circumstances such as 

slippage or bumps cause problems. The results show that 

over short distances under good operating conditions, 

wheel odometry is very hard to beat. However, over 

longer distances, fusion with V-SLAM algorithms can 

help to keep wheel odometry’s drift at bay as shown in 

dataset 2 for RGB-DSLAMv2. In this case, the 

maximum error after fusion reduced from 0.864 m to 

0.484 m, i.e., by about 44%.  The  reason  for  the  good  

performance was that  the  drift  early  on  the  track  of  

RGB-DSLAMv2 was compensated by the wheel 

odometry while the drift in the last 30% of the track of 

the wheel odometry was compensated by RGB-

DSLAMv2. This is an ideal case to demonstrate the 

benefits of senor fusion. Unlike V-SLAM methods, 

VO algorithms lack the ability to reduce drift. As a 

consequence, data fusion with VO techniques can at 

most serve as a fall-back when wheel odometry fails, 

e.g., in case of slippage. 

 

Figure 3. Comparison of vision based motion estimation algorithms before (Fig. 3a / Fig. 3c) and after fusion with odometry and IMU (Fig. 3b / Fig. 
3d) on Dataset 1 / 2. 

TABLE II. RMSE OF ABSOLUTE TRANSLATION(AT), RMSE OF RELATIVE TRANSLATION(RT),MAXIMUM TRANSLATION ERROR, MEAN TRANSLATION 

ERROR, MEDIAN TRANSLATION ERROR, STANDARD DEVIATION OF THE TRANSLATION ERROR BEFORE AND AFTER FUSION WITH EKF FOR 

DATASET 1 AND 2 (IN METERS). CORRESPONDING FRAME-PROCESS-RATES(FPS) IN HZ ARE SHOWN ON THE VERY RIGHT WITH VALUES CLOSER TO 

26 INDICATE REAL-TIME PERFORMANCE. 

 
When comparing the results obtained with the VO 

and V-SLAM algorithms, we found that both image-based, 

dense approaches, i.e. RTABMap and RGB-DOdometry, 

yielded similar results. They were outperformed by 

DVO, the third algorithm of the image-based, dense 

category. A possible reason for this outcome is that 

the trajectories were well captured by the underlying 

motion and sensor model of the DVO algorithm. The 

V-SLAM algorithms were superior with respect to the 

translational error. This is expected as those algorithms 

limit drift by matching an incoming image not only to 

the most recent one but to keyframes or even a model. 

In fact, ORB-SLAM2 delivered the best results (45% 

better than the 2nd best). RGB-DSLAMv2 was also 

ahead of the VO algorithms with the exception of 

CCNY. Note, however, that CCNY is a hybrid approach 

making use of frame-to-model matching to keep drift 

under control. Surprisingly, DVOSLAM performed 

worse than its VO counterpart although the same 

parameters were set. Since DVOSLAM not only tries to 

optimize the intensity error but also the depth error, 

unreliable depth estimates may have caused the inferior 

performance. This hypothesis is confirmed by the fact 

that, as shown in Fig. 3a, the initial direction of both 

methods was the same. However, the path length 

predicted by DVOSLAM differed strongly from the 

real length. Note that DVO did not have this problem, 

again confirming that an insufficiently accurate depth 

estimate caused the inferior performance of the 

DVOSLAM method. Unreliable depth estimates could 

also be the reason why ICPOdometry, another depth-

based matching method, fared rather poorly. Interestingly, 
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Fovis managed to outperform two V-SLAM techniques 

and most of the VO algorithms, although it does not 

build a map of the environment. It relies, however, on 

a frame-to-keyframe matching technique. This worked 

well for the trajectories traversed in the first dataset, 

where the same features were visible for extended time 

periods. In such a case, the V-SLAM algorithms 

performed only marginally better. In the second dataset 

(Tab II), a significantly higher translation error for all 

algorithms was observed. There are several reasons for 

this. First, the total trajectory length was about three 

times as much as in the first dataset (31.2 m vs. 12.8 m) 

leading to a stronger drift. There was also a long path 

parallel to an almost featureless flat, white wall spanning 

more than 50% of the total length (see Fig. 3c). As in the 

first dataset, the same V-SLAM approach, ORB-SLAM2, 

performed best. However, unlike in the first dataset, no 

places were revisited. This means that none of the V-

SLAM algorithms could perform loop closure. As a 

consequence, the performance differences between the 

V-SLAM and VO algorithms were much smaller. As 

expected, in a featureless environment the dense 

methods, RTABMap, DVO, and RGBD-Odometry 

performed better than feature-based techniques. The 

inferior performance of Fovis clearly demonstrated this. 

Remarkably, the CCNY hybrid approach was clearly 

outperformed by RGB-DICPOdometry. This is 

because RGB-DICPOdometry uses all 3D points of an 

incom-ing frame to perform (dense) matching to other 

frames. Such an approach can cope well in an 

environment characterized by little texture. This does, 

however, not apply to CCNY as a feature-based 

approach. The jumps in the track of RGB-DSLAMv2 

are related to the featureless environment, which caused 

wrong results for the comparison with previous frames. 

These jumps must be suppressed by filtering if the 

data is to be used for robot control. Among the VO 

methods, DVO yielded slightly better results than RGB-

DOdometry when looking at the absolute translation 

error. When judged by the relative translation error, then 

DVO was clearly better. RGB-DICPOdometry, a hybrid 

approach, performed best among all VO methods, and it 

was the second best overall. The second performance 

criterion was the ability to perform in real-time. This was 

measured using the frame-process-rate as introduced in 

Section IV-B. Several algorithms were found to have a 

lower processing rate making them less suitable for real-

time applications. Faster algorithms are, however, 

available as demonstrated by RGB-DSLAMv2 with 26 

fps and CCNY with 21 fps. One reason for the 

somewhat slow processing speed of the other algorithms 

was the matrix size of the input streams. The image 

data had a resolution 3.5 times higher than what most 

of the algorithm were originally developed for 

(640x480). However, the higher image resolution led to 

better results by enabling more precise keypoint 

detection and better resolved depth values. The 

performance of RGB-DSLAMv2 is especially interesting 

because even with its underlying V-SLAM approach it 

can perform in real-time making it very suitable for 

practical robotic applications. 

V. DISCUSSION AND CONCLUSIONS 

In this paper, the most common RGB-D based position 

estimation algorithms were classified first. Second, their 

performance was experimentally evaluated with respect 

to localization accuracy and ability to work in real-time 

using two indoor navigation scenarios. As expected, V-

SLAM algorithms yielded more accurate results 

compared to VO algorithms under normal operating 

conditions. However, the present paper also shows that 

there can be situations in which appropriately designed 

VO algorithms can outperform V-SLAM techniques. A 

very strong drift in the predicted absolute position data in 

both data sets was observed when using visual odometry 

methods. This suggests that VO techniques may not yet 

be sufficiently reliable for position estimation over 

longer distances. Even for a rather short trajectory (12m), 

the position deviated by over 1 meter by the end of the 

run in one case. There are several ways to deal with this 

issue. First, one can use a V-SLAM algorithm and try to 

perform as many loop closures as possible to reduce drift. 

Second, when a VO approach is the method of choice, 

then another source for reliable relocalization is essential. 

This cannot be the wheel odometry as it is also subject to 

drift. Third, better vision sensors could be employed such 

as the new Intel RealSense LiDAR Camera L515, which 

is planned to become available mid-2020. Fourth, data 

fusion may be applied. The experiments revealed that by 

fusing vision-based position predictions with wheel 

odometry and IMU estimates, the translation error could 

be halved. More precisely, the average performance gain 

was 67.45%. The results also show that there is probably 

no single algorithm that performs best for every dataset. 

However, ORB-SLAM2 can be considered as a stand-

alone solution that performs well in environment with 

high texture. It can even deal with low texture without 

losing too much accuracy. When it comes to real-time 

constraints, RGB-DSLAMv2 seems to be a good choice. 

Based on the findings in this work, a technique for 

switching between vision algorithms at run time, 

adapting to the situation at hand, could significantly 

boost the performance. Implementing such a technique is 

planned as part of our future work. Furthermore, a study 

of more sophisticated data fusion strategies could be 

considered. To this end, sensor modalities other than 

vision such as radar or ultrasound could be integrated. In 

addition, it is also conceivable to fuse outputs of 

sufficiently different and complementary VO or V-

SLAM algorithms.  
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