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Abstract—The paper is dedicated to solving a problem of 

finding the area of values of unmanned underwater vehicle 

construction parameters providing desired oscillability 

degree of its motion control system with interval parameters. 

Construction parameters such as unmanned underwater 

vehicle length and maximal diameter, which are primary 

parameters, are linked with secondary parameters of 

unmanned underwater vehicle motion control system 

included in coefficients of its interval characteristic 

polynomial such as added masses of water and 

hydrodynamic coefficients. Authors propose a method of 

estimating unmanned underwater vehicle construction 

parameters by finding intervals of characteristic polynomial 

coefficients providing desired motion control quality. 

Example of the proposed method application is also 

provided. 

 

Index Terms—construction parameters, interval parameters, 

oscillability degree, interval characteristic polynomial, 

unmanned underwater vehicle, sixth term 

 

I. INTRODUCTION 

Developing unmanned underwater vehicles (UUV) and 

their motion control systems [1] – [7] requires estimating 

UUV construction parameters, such as UUV length and 

UUV maximal diameter. These parameters are not 

included in UUV motion control system model directly, 

but only as a part of added masses and hydrodynamic 

coefficients. Let us now designate length and diameters 

as primary parameters, added masses and hydrodynamic 

coefficients – as secondary parameters. Secondary 

parameters dependences on primary parameters are 

described via certain expressions. Secondary parameters 

are included in coefficients of interval characteristic 

polynomial of the system considered. Consequently, 

values of primary parameters can be found through 

estimating coefficients of characteristic polynomial and 

finding values of secondary parameters on their basis. 
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For each of values of primary parameters, nominal 

values of secondary parameters can be found. Then, on a 

basis of sector stability criterion, a linear controller can 

be synthesized. Let us assume, that controller synthesis 

resulted in a characteristic polynomial, whose coefficients 

(except m , 2m   nearest-neighbor lower coefficients) 

include secondary parameters of the system. As far as the 

aim is to find values of secondary parameters, they will 

be considered as uncertain ones varying within some 

intervals, which can be expressed from coefficients of 

characteristic polynomial. Let us designate a vector of 

secondary parameters as T and write a characteristic 

polynomial as follows: 
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Providing stability of (1) and its acceptable 

oscillability degree [8] – [14] consists in developing such 

characteristic polynomial, whose roots will be placed 

within desired sector on the left half of a complex plane. 

To do this, it is proposed to use an algebraic method 

based on coefficient indices of stability and oscillability 

[15], which can be expressed through coefficients of 

characteristic polynomial. 

The main aim of the research is to develop a method of 

finding an area of values of UUV construction parameters, 

within of which desired motion stability and oscillability 

are guaranteed despite interval parametric uncertainty of 

the system. To reach the aim formulated, it is proposed to 

accomplish several objectives: 

1. Derive a characteristic polynomial (1) of UUV 

motion control system. Deriving such polynomial 

consists in finding such interval coefficients  ia , 

,i m n , which provide desired oscillability 

degree of the system. 
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2. On a base of dependencies ( )ia T  and intervals 

 ia , ,i m n  find an area of acceptable 

oscillability degree in a space of secondary 

parameters. 

3. Obtain the area of primary parameters on a base of 

area of secondary parameters. 

II. DERIVING AN INTERVAL CHARACTERISTIC 

POLYNOMIAL OF THE SYSTEM WITH DESIRED 

SECTOR STABILITY 

Let us consider linear time-invariant continuous 

control system, whose characteristic polynomial is 

written as follows: 

 
1

1 0( ) n n

n nA s a s a s a

     (2) 

Stability index 
i  depending on each four nearest-

neighbor coefficients of (2) must be introduced as follows: 

  1 2 1/ ,   1, 2.i i i i ia a a a i n       (3) 

According to [14], to provide stability of the system 

with characteristic polynomial (2) it is enough to satisfy 

following inequality: 

 ,   0.465 1, 2.i i n     (4) 

Oscillability index 
i also should be introduced as 

follows: 

 

2

i

1 1

,   1, 1.i

i i

a

a a
i n

 

  
 (5) 

It was determined [14], that in order to place roots of 

(1) within desired sector  ( )
2


    following 

inequality should be satisfied. 

 ,( ,   1, 1)i д n i n     , (6)
 

where 
д  can be found from the diagram in the Fig. 1. 
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Figure 1.  Diagram of 
д  values depending on   for polynomials of 

different order 

Let us now develop an interval extension of 

expressions for stability index 
i  and oscillability index 

i  

      1

1 0( ) ,n n

n nD s a s a s a

      (7) 

where i i ia aa  ; ia  - minimal value of 
ia ; 

ia  - 

maximal value of 
ia .  

According to (3) and (4) to provide stability of ICP (7) 

it is enough to satisfy following inequalities: 
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According to (5) and (6), to place ICP roots in a 

desired sector it is enough to satisfy following inequality:  
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Let us assume, that in characteristic polynomial (7), 

whose order is higher than 3, values of at least two lower 

coefficients are known. Now it is necessary to find 

interval of other coefficients values, which include 

secondary parameters of the system and provide 

allocation of ICP roots in a desired sector.  

On a base of (8) and (9), let us derive a system of 

inequalities for a polynomial (1): 
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Let us notice, that inequalities system (10) includes 

inequalities with constant or uncertain lower coefficients 

for 3m  . These inequalities must be checked before 

solving a whole system (10). 

On a base of analyzing expressions from system (10), 

an algorithm of finding desired limits of unknown ICP (7) 

coefficients was developed. It include their subsequent 

calculation from lower ones to higher ones and includes 

following steps: 

1. Defining index I of the lower uncertain 

coefficient ( 2i  ). 

2. Defining acceptable values of oscillability index 

д  on a base of diagram in the Fig. 1. 

3. Finding 
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4. Composing a system of two inequalities 
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where unknown variables are ia  and 1ia  . 
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5. Solving the inequalities system for 0 i ia a   

and choosing values ia  and 
1ia 

 from the 

solution. 

6. Increasing coefficient index 1i i  . Steps 4 and 

5 must be repeated while i n . 

7. If i n  then limits of all ICP (7) coefficients are 

found besides na . It should be defined from the 

range 0 n na a  . 

III. FINDING AREAS OF PRIMARY AND SECONDARY 

PARAMETERS OF THE SYSTEM PROVIDING 

DESIRED SECTOR STABILITY 

The research resulted in a method of finding an area of 

acceptable values of control system parameters providing 

desired oscillability. The method includes following steps: 

1. Finding intervals of ICP coefficients 

  ;i i ia a a 
 

, which provide ICP stability and 

desired oscillability degree. 

2. Composing a system of double inequalities on a 

base of ICP coefficients dependencies from 

secondary parameters and previously obtained 

limits of ICP coefficients: 

 ( ) ,  ,i i ia a T a i m n   . (11)  

3. Solving inequalities system (11) and plotting an 

area of acceptable values of the systems secondary 

parameters T . 

4. Plotting the area of primary parameters of the 

system on a base of certain expressions linking 

them with secondary parameters. 

To obtain the area of primary parameters from the area 

of secondary parameters, expression linking the together 

should be used. In our case, expressions linking added 

mass of water 
11  and hydrodynamic coefficient of drag 

force 
xc  with length l  and diameter D  of UUV must be 

obtained. 

Estimate of drag force hydrodynamic coefficient can 

be calculated via following expression [16] - [18]: 

 chr( ),hs

x f ф xc k c c c      (12) 

where k  –coefficient of UUV hull curvature; ,f фc c  –

hydrodynamic coefficients of flat plate and UUV hull 

shape; chr  –correction on a UUV hull roughness; ha

xc  –

hydrodynamic coefficient of UUV hull appurtenances.  

It should be noticed, that all summands in (12) depend 

on UUV size. For example, coefficient of UUV hull 

curvature k  depends on relative lengthening of UUV and, 

consequently, on it diameter and length. Hydrodynamic 

coefficients fc  and фc  of flat plate and UUV hull shape 

depend on Reynolds number and, consequently, on UUV 

length. Assuming that on early steps of UUV 

development there is now information about UUV hull 

appurtenances, let us ignore their hydrodynamic 

coefficient ha

xc . Also, let us consider UUV surface 

smooth enough to ignore roughness correction 
chr .  

Let us use the following formula of added mass in 

following calculations: 

 
2

11 ,
4

D
      (13) 

where   –water density; D  –maximal diameter of UUV. 

Finally, the fourth step of the method proposed 

(transfer from are of secondary parameters to area of 

primary parameters) will be performed on a base of 

expressions (12) and (13). 

IV. EXAMPLE 

Let us consider a characteristic polynomial of the 

forward motion of the unmanned underwater vehicle: 
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Coefficients of (14) include following parameters of a 

UUV: 0.01 ST s – time constant of a sensor;  1 TT s – 

time constant of a thruster; 1140 m kg – UUV mass; 

311 V m – water displacement of a UUV; 
31000 /kg m  – water density; 1k  – linearization 

coefficient; 0.7PK   and 0.03IK  – parameters of PI-

controller; 50TK  – transfer coefficient of a thruster; 

1SK  – transfer coefficient of a sensor. Let us notice, 

that 
x – added mass of water and 

xc – hydrodynamic 

coefficient of drag force are secondary to parameters 

determining UUV size: diameter D and length L, which 

are primary parameters.  

Parameters 
x  and 

xc  are not included in two lower 

coefficients of characteristic polynomial. There is a 

problem of finding an area of values of these two 

parameters providing desire stability degree and 

oscillability degree of the system considered. To do this, 

all coefficients including 
x  and 

xc  will be considered 

uncertain and interval. Considering this, interval 

characteristic polynomial (14) can be rewritten as follows: 

       5 4 3 2

5 4 3 2( ) s s s s 241s 9.2D s a a a a      . (15) 

On a base of (8) and (9) let us derive a system of 

inequalities (10) for polynomial (15). Solution of this 

system gives interval values of (15) coefficients: 

   5 100;500 ;a     4 3000;5000 ;a 

   3 6000;9000 ;a     2 2000;3100a  .  
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Then, on a base of dependencies of these coefficients 

and parameters 
x  and 

xc , a system of inequalities (11) 

with two variables can be derived. Solution of this system 

is shown in the Fig. 2. 

 

Figure 2.  Values area of secondary parameters 

Aforementioned calculations resulted in the area of 

values of secondary parameters 
x  and 

xc . To plot this 

area in coordinates of UUV length and diameter, a 

Monte-Carlo method [19], [20] and expressions (12) and 

(13) were used. First, with the help of Monte-Carlo 

method an image of the area shown in the Fig. 2 was built 

(see Fig. 3(a)). Then, with the help of (12) and (13) 

coordinates of each dot within the source domain were 

recalculated and plotted in a plane of UUV diameter and 

length (see Fig. 3(b)). 

Dotted line in the Fig. 3b shows the set of values of 

UUV diameter and length, which provide desired volume 

inside UUV hull and water displacement. So, all 

calculations performed via proposed method resulted in 

hatched area shown in the Fig. 3b. Every combination of 

UUV diameter and length chosen within the hatched area 

will provide desired control quality and UUV motion 

dynamics. It should be noticed, that on the late steps of 

development UUV dynamics can be improved by proper 

controller synthesis. 

 
a) 

 
b) 

Figure 3.  Area of parameters values in a plane of (a) secondary 
parameters and (b) primary parameters of UUV 

V. CONCLUSION 

Considered research resulted in a method of estimating 

primary parameters of control system on a base of desired 

control quality. An example of finding area of values of 

UUV length and diameter on a base of desire stability 

degree and oscillability degree of its motion control 

system with interval parameters was provided. 
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