
Delta Robot Control Using Single Neuron PID

Algorithms Based on Recurrent Fuzzy Neural

Network Identifiers

Le Minh Thanh
1
, Luong Hoai Thuong

1
, Phan Thanh Loc

2
, Chi-Ngon Nguyen

2

1
Vinh Long University of Technical Education, Vietnam

2
Can Tho University, Vietnam

Email: thanhlm@vlute.edu.vn, thuonglh@vlute.edu.vn, locm3517004@gstudent.ctu.edu.vn, ncngon@ctu.edu.vn

Abstract—Parallel robot control is a topic that many

researchers are still developing. This paper presents an

application of single neuron PID controllers based on

recurrent fuzzy neural network identifiers, to control the

trajectory tracking for a 3-DOF Delta robot. Each robot

arm needs a controller and an identifier. The proposed

controller is the PID organized as a linear neuron, that the

neuron’s weights corresponding to Kp, Kd and Ki of the

PID can be updated online during control process. That

training algorithm needs an information on the object's

sensitivity, called Jacobian information. The proposed

identifier is a recurrent fuzzy neural network using to

estimate the Jacobian information for updating the weights

of the PID neuron. Simulation results on MATLAB/

Simulink show that the response of the proposed algorithm

is better than using traditional PID controllers, with the

setting time is about 0.3 ± 0.1 (s) and the steady-state error

is eliminated. 

Index Terms—delta robot, single neural PID, recurrent

fuzzy neural network, trajectory tracking

Symbol Unit Meaning

1 2 3, ,   Degrees Angle of the upper leg of robot

R mm upper disc radius

R mm lower disc radius

L1 mm upper arm length

L2 mm lower arm length

Abbreviation

DOF Degrees of freedom

PID Proportional Integral Derivative

DC Direct current

RFNN Recurrent fuzzy neural network

I. INTRODUCTION

With flexible mechanisms, advantages of speed and

force, and precision delta robots have become popular

and widely used in industry [1]. The complex structure of

this robot makes them an interesting in research focus.

Delta robots were proposed in 1939, when Pollard built a

robot to control the position of a spray gun [2]. In this

context, other robots with the same structure have been

Manuscript received January 16, 2020; revised August 15, 2020.

Corresponding author: Chi-Ngon Nguyen

implemented. For example, a robot proposed by Stewart

with two platforms ensures fixed stability in a stationary

facility [3]. In 1985, a delta robot was developed and

built in the Ecole Polytechnique Federale de Lausanne

(EPFL) called delta robots focused on industrial work [4].

Based on this robot, the new architecture is implemented

according to the necessary characteristics in industry and

school. For example, it is a robot with high accuracy but

slow motion is widely used in 3D printers [5]. In the

industrial sector the need to optimize production has been

a major challenge for robotics companies since the 1980.

Delta robots have been successfully researched and

manufactured in many countries. However, the high cost

and operational control of delta robots has always been an

interesting topic for many innovative studies.

So that, the neural networks and fuzzy logic are

applied for improving adaptive PID controllers for Delta

robot [6]. A non-parametric identifier of each robot arm

using recurrent fuzzy neural network is built and trained

online during control to estimate the object's sensitivity to

the input signal, also known as Jacobian information.

Based on the Jacobian information, a single-neuron-

adaptive PID controller will be updated online with three

connected weighs respectively three parameters Kp, Ki

and Kd of the controller. Thus, with this principle, the

PID controller will be automatically adapted due to the

variation of the robot that classical control solutions can

not achieve.

In the process of making efforts for manufacturing

delta robots to meet the industrial needs, this paper aims

to control and conduct analysis, comparison, and

evaluation of different algorithms. The comparison and

evaluation of efficiencies between traditional PID

controllers and fuzzy-neural based PID controllers are

implemented and tested in MATLAB/Simulink which the

absolute error values are used to evaluate the

performances of the closed loop system.

II. DELTA ROBOT

A. Parallel Robot Model

The model of delta robot is presented in Fig. 1 [7]-[9].

In this model, BiDi stitching is modeled into two material

points located at Bi and Di. Each of them has a weight mb

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 10, October 2020

© 2020 Int. J. Mech. Eng. Rob. Res 1411
doi: 10.18178/ijmerr.9.10.1411-1418

and is connected by rigid, weightless rods. Thus, the

dynamic model of this model consists of 4 solid objects,

in which the AiBi (i = 1, 2, 3) stitches move around the

axes perpendicular to the OAiBi plane. At Ai with mass

m1 and remaining solid objects (including three points

mounted at Di) with mass (mp+3mb), can be considered as

a moving table of linear motion. Three points located at

Bi having mass mp, where mp is the operation mass.

Figure 1. Parallel robot model 3RUS [9].

The set of robot actuating includes:

  1 2 3   P P Pq x y z .

B. Establishing the Linking Equations

From Fig. 1, we have the linking equation for points B1

and D1 as follows:

    
1 1 1 1

2 0
T

D B D Bl r r r r    . (1)

where
1Dr ,

1Br are the positioning vectors of points B1 and

D1 in the Oxyz coordinate system, calculated according to

the vector equation:

1 1 1 1B A A Br r U  . (2)

In which, the coordinates vector
1Ar ,

1 1A BU in the

coordinate system Ox1y1z1 have the forms:

 1

1 1 1 1 1 1

[00]

 [cos 0 sin] 



 

T

A

A B

r R

U l l
 (3)

Replace (3) with (2) and get the rB1 coordinate in

Ox1y1z1 coordinate system

  1 1 1 11 cos 0 sin   Br R l l (4)

The cosine matrix indicates the direction of the

Ox1y1z1 coordinate system with the Oxyz coordinate

system as:

  
1 1

1 1 1

cos sin 0

sin cos 0

0 0 1

zA

 

  

 
 


 
  

 (5)

Infer the coordinates of the rB1 vector in the Oxyz

coordinate system:

1

1 1 1 1

1 1

1 1

1 1 1 1

1 1 1 1

1 1

cos sin 0 cos

sin cos 0 0

0 0 1 sin

cos cos cos

sin sin cos

sin

  

 



  

  



 

 









   
   
   
      

 
 
 
  

B

R l

r

l

R l

R l

l

 (6)

The coordinates of vector rD1 are calculated as follows:

1 1

1 1

1 1

1

1

0

0 0

0 0 1 0

D P PD

P

P

P

P

P

P

r u

x cos sin r

y sin cos

z

x cos r

y sin r

z

r

 

 





  

     
     

 
     
          

 
 


 
  

 (7)

Combining equations (6) and (7) we have:

 

 
1 1

1 1 1 1

1 1 1 1

1 1

P

D B P

P

cos R r l cos cos x

sin R r l sin cos y

l sin z

r r

  

  



   
 

    
 
 



 

 (8)

Substituting (8) into (1), we get the equation linked to

the first pin. Similarly, with the second and third legs, we

get the link equation of the robot as follows:

  

    

  

    

  

 

22

1 2 1 1 1 1 P

2 2

1 1 1 1 P 1 1 P

22

2 2 2 1 2 2 P

2 2

2 1 2 2 P 1 2 P

22

3 2 3 1 3 3 P

3 1 3

f = l - cosα R-r +l cosα cosθ -x

- sinα R-r +l sinα cosθ -y - l sinθ +z =0

f = l - cosα R-r +l cosα cosθ -x

- sinα R-r +l sinα cosθ -y - l sinθ +z =0

f = l - cosα R-r +l cosα cosθ -x

- sinα R-r +l sinα cosθ   
2 2

3 P 1 3 P-y - l sinθ +z =0

 (9)

C. The Kinetic Energy and Potential of the Robot

The kinetic energy of the AiBi stages is calculated as

 2 2

1 1

1 1

2 2
  

i i i iA B y A B y iT I I (10)

The kinetic energy of mass mb is set at B1 as follow

 2 2 2

1

1 1

2 2
 

b im b B b iT m v m l (11)

The kinetic energy of a moving table and mb masses is

    2 2 2 2

3

1 1
3 3

2 2

 
      

 
P b P P b P P PT m m v m m x y z (12)

Combining the kinetic expressions above, we get the

model kinetic expression of the robot:

 

 

2 2 2 2

1 1 1 2 3

2 2 2

1

2

1
 3
2

  
 

    
 

 
    

 

y b

P b P P P

T I m l

m m x y z

 (13)

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 10, October 2020

© 2020 Int. J. Mech. Eng. Rob. Res 1412

The potential energy of a robot is calculated as follows:

 

 

1 1 1 2 3

1

2

3

   
 

    
 

 

b

b P P

gl m m sin sin sin

g m m z

 (14)

D. Set the Differential Equation of Motion of the Delta

Robot

We use the Lagrange factor to set the differential

equation of motion of this model with helium links with

the following form:

  
1

 1,2, .,


   
     

   


r
i

k i

ik k k

fd T T
Q k m

dt q q q
 (15)

where qk is the extrapolation coordinates of the robot, fi is

the linking equations, Qk is the extrapolation force, i is

the Lagrange factor. With this model, the vector of

extrapolation coordinates 
6R and the number of

associated equations is three, so m=6, r= 3. We divide the

forces acting on the robot into potential forces and forces

without potential energy, the extrapolation force Qk is

calculated as follows

 np

k k

k

Q Q
q


 


 (16)

where np

kQ are extrapolation forces corresponding to

forces without potential energy. Sum of extrapolation

forces is

1 1 2 2 3 3         A . (17)

So, we have

1 1 npQ  ,
2 2 npQ  ,

33 npQ  and

0?np

kQ  with k = 4, 5, 6.

Substituting kinetic and potential energies into (15),

we get the motion equations of the robot as follows:

 

 

2

1 1 1 1 1 1

1 1 1

1 1

1 1 1

1

2

2

  

  


  

 
    

 

  
  

   

Iy b b

p

p p

I m l gl m m cos

sin R r cos sin x
l

sin sin y cos z

 (18)

 

 

2 2 2

2 2 2

2

1 1 1

1 1

2 2 2

1

2

2

  

  


  

 
    

 

  
  

   

Iy b b

p

p p

I m l gl m m cos

sin R r cos sin x
l

sin sin y cos z

 (19)

 

 

2

1 1 1

1

3 3 3

3 3 3

3

3 3 3

1

2

2

  

  


  

 
    

 

  
  

   

Iy b b

p

p p

I m l gl m m cos

sin R r cos sin x
l

sin sin y cos z

 (20)

    

  

  

1 1 1 1 1

2 2 1 2 2

3 3 1 3 3

3 2

2

 2

   

   

   

     

   

   

p b p p

p

p

m m x cos R r l cos cos x

cos R r l cos cos x

cos R r l cos cos x

 (21)

 

  

  

  

1 1 1 1 1

2 2 1 2 2

3 3 1 3 3

3

2 sin

2 sin

 2 s

sin

sin

sinin

   

   

   

 

   

   

   

p b p

p

p

p

m m

R r l cos y

R r l cos y

R r l cos y

y

 (22)

      

   

1 1 1

2 1 2 3 1 3

3 3 2

2 2

 

   

     

   

p b p b p p

p p

m m m m g z l sin

z l sin z l sin

z
 (23)

  

  

 

2
2

1 1 1 1 1

2

1 1 1 1

2

1 1 0

  

  



   

   

  

p

p

p

l cos R r l cos cos x

sin R r l sin cos y

l sin z

 (24)

  

  

 

2
2

2 2 1 2 2

2

2 1 2 2

2

1 2 0

  

  



   

   

  

p

p

p

l cos R r l cos cos x

sin R r l sin cos y

l sin z

 (25)

  

  

 

2
2

3 3 1 3 3

2

3 1 3 3

2

1 3 0

  

  



   

   

  

p

p

p

l cos R r l cos cos x

sin R r l sin cos y

l sin z

 (26)

From the parallel motion equations of robots, we get

the model of robot as shown in Fig. 2 and Fig. 3.

Figure 2. Model of Delta robot in Simulink.

Figure 3. Inside of Parallel robot model.

III. CONTROLLER DESIGN

Figure 4. Controller structure.

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 10, October 2020

© 2020 Int. J. Mech. Eng. Rob. Res 1413

The structure of the control system for each robot arm

is presented in Fig. 4.

A. Single Neural Adaptive PID Controller

1) Controller structure

The PID controller is built by a linear neuron with 03

inputs and zero trigger threshold [10] as shown in Fig. 5.

The input of neuron receives 03 corresponding values as

proportional, integral and differential components of the

difference between response and reference signal as (27).

Figure 5. Structure of a PID controller adapted to a neuron.

      
0

1 ; 2 ; 3
de k

e e k e e k dk e
dk



      (27)

The PID controller is set as follows:

   (k 1) 1 2 3p i du k u K e K e K e        (28)

where, e(k) is the difference between the reference signal

and the system response.

With the structure of a single neuron PID controller in

Fig. 5, the output of the neuron is also the output of the

PID controller, as shown in (29).

 

   

11 12 131 2 3

() (-1) ()

n w e w e w e

du k f n n

u k u k du k

     

 

 

 (29)

In which, w1i | I = 1,2,3 are the weights of the neurons,

which are the parameter sets (KP, Ki, Kd) of the PID

controller and they are updated online during the control

process.

2) Controller training

The goal of training the single neuron PID controller is

to adjust the network's weight set w1i (i=1,2,3) to minimize

the cost function (30).

        
2

21 1

2 2
refE k e k y k y k     (30)

where yref(k) is the reference signal and y(k) is the system

response.

To adjust the weight set w1i | i = 1,2,3, the gradient descent

method was applied:

     

     

     

11 11 11

12 12 12

13 13 13

1

1

1

p

i

d

K w k w k w k

K w k w k w k

K w k w k w k

    

    

    

 (31)

where w1,i(k) |i=1,2,3 are gradients defined by (32-34),

successfully verified by Zhang et al. [11]:

 

 

 

 

 

 

 

 

 
 

 

 

11

11

11

1

Kp

Kp Kp

E k
w k

w k

E k y k u k y k
e k e

y k u k w k u k



 

 
     

   
   

   

 (32)

 

 

 

 

 

 

 

 

 
 

 

 

12

12

12

2

Ki

Ki Ki

E k
w k

w k

E k y k u k y k
e k e

y k u k w k u k



 

 
     

   
   

   

 (33)

 
 

 

 

 

 

 

 

 
 

 

 

13

13

13

3

Kd

Kd Kd

E k
w k

w k

E k y k u k y k
e k e

y k u k w k u k



 

 
     

   
   

   

 (34)

With
| , ,

k

k Kp Ki Kd 
 are the learning rate constants; e1,

e1 and e3 determined by (27);  
 

y k

u k




 is the

response sensitivity to the control signal, also known as

Jacobian information, determined through recurrent fuzzy

neural network identifiers, which will presented in next

section.

Three neuron-adaptive PID controllers are set up by

MATLAB's three S-function, fully compatible with

Simulink's standard library, a single-neuron-adapted PID

controller depicted in Fig. 6 and two sets The remaining

is built in the same way as the SingleNeural_PID1.

Figure 6. Single neural PID controller.

B. Recurrent Fuzzy Neural Newtwork Identifier

1) Identifier structure

Figure 7. Diagram of the RFNN identifier.

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 10, October 2020

© 2020 Int. J. Mech. Eng. Rob. Res 1414

The identifier is a recurrent fuzzy neural network

(RFNN - Fig. 7). The RFNN identifier has 4 layers, with

an input layer of 2 nodes, a fuzzy layer of 10 nodes, a

fuzzy rule class of 25 nodes, and an output layer with 1

node. The structure of the RFNN identifier can be

described as follows [12]:

Layer 1 - Input layer: This layer consists of 2 nodes

that convey the input values to the next layer. Here

feedback links are added to increase the responsiveness

of the network. The output of layer 1 is described as (35):

      1 1 1 1 , 1,2k

i i i iO k x k O k i    (35)

With 1

i
is the connection weight at the current time k.

The input of the corresponding RFNN identifier is the

current control signal and the past output of the response:

   

   

1

1

1

2 1

x k u k

x k y k



 
 (36)

Layer 2 - Fuzzy layer: This layer consists of (2x5)

nodes, each node representing a related function of the

Gaussian form with mean value mij and standard

deviation σij, and defined as (37).

  
  

 

2
1

2

2
exp , 1,2; 1,2,...,5

i ij

ij

ij

O k m
O k i j



  
    

  

 (37)

At each node on the fuzzy layer, there are 2 parameters

that are automatically adjusted during the online training

of the RFNN identifier, that is mij and σij.

Layer 3 - Law class: This layer consists of (5x5) nodes.

The output of the q node in this class is determined as

follows:

    3 2 , 1,2,...,5; 1,2,...,5
iq iq i

i

O k O k i q   (38)

Layer 4 - Output layer: This layer includes 1 linear

neuron with the defined output as follows:

    4 4 3 , 1; 1,2,...,25i ij j

j

O k w O k i j   (39)

where
4

ijw is the connecting weights from 3
rd

 layer to 4
th

layer. The output of this layer is also the output of the

RFNN identifier:

       

   

4

1 1 2
ˆ ,

ˆ , 1

mO k y k f x k x k

f u k y k

    

   

 (40)

2) Training the RFNN identitifiers

The goal of an online training algorithm for RFNN

identifier is to adjust the weighting sets of the network

and the parameters of the fuzzy class dependent functions

to achieve the minimum value of cost function (41):

          
22 4

1

1 1

2 2
mE k y k y k y k O k         (41)

Using back-propagation technique, RFNN's set of

connection weights will be adjusted according to the

following:

        
 

1
E k

W k W k W k W k
W


 

      
 

 (42)

In which,  is the learning rate constant and W is the

parameter to be adjusted during the training of the RFNN

identifier.

Given e(k)=y(k)-ym(k) and W=[, m, σ, w]
T
 are the

error and the connection weight vector of the RFNN

identifier, then the gradient of E(.) in (41) according to W

is determined as follows:

 

 
 

 
 4

1mE k y k O k
e k e k

W W W

  
   

  
 (43)

With this principle, the weight of each RFNN network

layer is updated as follows [13]:

    
 

   4 4 4 3

4
1 w w

ij ij ij i

ij

E k
w k w k w k e k O

w
 

 
      

  

 (44)

   
 

   
 

 

1

4 3

2

1

2

m

ij ij

ij

ij ijm

ij ik k

k
ij

E k
m k m k

m

O k m
m k e k w O






 
    

  

  
  

 (45)

   
 

   
 

 

2
1

4 3

3

1

2

ij ij

ij

ij ij

ij ik k

k
ij

E k
k k

O k m
k e k w O





  


 


 
    

  

  
  

 (46)

   
 

   
     

 

1 1

1

1 1

1 4 3

2

1

2 1

i i

i

ij ij ij

i ik k

k
ij

E k
k k

O k m O k
k e k w O





  


 


 
    

 

    
  

 (47)

where | , , ,

s

s w m    are the corresponding learning rate

constants. In addition, to estimate the output of the object

model ym(k), the RFNN identifier must also estimate

Jacobian information
 

 
y k

u k




 for online training of

the single neuron PID controller. Jacobian information is

determined as follows [14]-[19]:

 

 

   

 

3 34 425 25
41

3
1 1

3 2

4

2

13

4

2 2

. .

. .

2
. .

q q

ij

q qq

q qs

ij

q s qs

ij ijq

ij

q s qs
ij

O Oy k O O
w

u k u u uO

O O
w

uO

O k mO
w

O 

 

         
     

         

   
  

  

     
  

  

 

 

 

 (48)

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 10, October 2020

© 2020 Int. J. Mech. Eng. Rob. Res 1415

The RFNN identifier for each robot arm is built in

MATLAB's S-function as Fig. 8.

Figure 8. The RFNN identifier in Simulink.

    ˆ () () (1), ()m my k y k x k x k u kf    (49)

IV. SPECIFICATIONS AND SIMULATION RESULTS

A. Simulation Parameters

The specifications of the robot are shown in Table I [6].

Parameters of the single neuron PID controller are given

in Table II. And the parameters of RFNN identifiers are

presented in Table III.

TABLE I. DELTA ROBOT MECHANICAL SPECIFICATIONS

Symbol Value Unit

L1 0.3 m

L2 0.8 m

R 0.26 m

r 0.04 m

α1 0 rad/s

α2 2π/3 rad/s

α3 4π/3 rad/s

m1 0.42 kg

mb 0.2 kg

mp 0.75 kg

TABLE II. PARAMETERS OF ADAPTIVE NEURAL PID CONTROLLER

Symbol Meaning Value

p I D

T

K K Kw w w 
 

Initial parameters of the
PID neuron  800 100 150

T

p I D

T

K K K   
 

Learning rates of the

PID neuron  0.2 0.1 0.1
T

TABLE III. PARAMETERS OF THREE RFNN IDENTIFIERS

Symbol Meaning Value

1 2 3
[; ;]   The learning

factor of the

neuron network

  0.01 0.01 0.01
T

1ic RFNN1
network center

vector

-1.5 -0.75 0 0.75 1.5
-1.5 -0.75 0 0.75 1.5
 
  

2ic RFNN2
network center

vector

-1.35 -0.675 0 0.675 1.35
-1.35 -0.675 0 0.675 1.35
 
  

3ic RFNN3
network center

vector

-3.05 -1.525 0 1.525 3.05
-3.05 -1.525 0 1.525 3.05
 
  

1ib Activation
threshold 1

0.5 0.5 0 0.5 0.5
0.5 0.5 0 0.5 0.5
 
  

2ib Activation
threshold 2

 

0.5 0.5 0 0.5 0.5
0.5 0.5 0 0.5 0.5

0.1 0.1
T

 
  

3ib Activation

threshold 3
0.5 0.5 0 0.5 0.5
0.5 0.5 0 0.5 0.5
 
  

 1

T
w

Weighted

vector 1 (25×1)  0.1 0.1 0.1 0.1
T

 2

T
w

Weighted
vector 2 (25×1)  0.15 0.15 0.15 0.15

T

 3

T
w

Weighted

vector 3(25×1)  0.1 0.1 0.1 0.1
T

1iw Weighted
vector RFNN1

0.1 0.1 0 0.1 0.1
0.1 0.1 0 0.1 0.1
 
  

2iw Weighted

vector RFNN2
0.125 0.125 0.125 0.125 0.125
0.125 0.125 0.125 0.125 0.125
 
  

3iw Weighted
vector RFNN3

0.15 0.15 0.15 0.15 0.15
0.15 0.15 0.15 0.15 0.15
 
  

i Network inputs 2

Figure 9. Delta parallel robot controller diagram in MATLAB / Simulink.

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 10, October 2020

© 2020 Int. J. Mech. Eng. Rob. Res 1416

B. Simulation Results

The control system for the Delta robot is illustrated in

Fig. 9 with the desired trajectory as (50).

 

x = 0.17sin(2 t)+0.3

y = 0.17cos(2 t)+0.2

z = -0.7

d

d

d m



 (50)

The response of the traditional PID and the single

neuron PID to the reference trajectory are presented in

Fig. 10, Fig. 11, Fig. 12, and Fig. 13 with changing load.

Simulation results show that single neural PID controllers

are better than traditional PID controllers with the setting

times are about 0.3±0.1 seconds, the steady-state errors

are eliminated.

Figure 10. Comparison of traditional PID and single neuron PID
controllers.

Figure 11. Errors of responses.

Figure 12. Trajectory tracking of traditional PID and single neural PID

controller.

Figure 13. Responses when changing load from 3.21 Kg to 4.11 Kg.

TABLE IV. SYSTEM QUALITY STANDARDS

Quality indicators PID Neuron PID

Settling time 0.4±0.001(s) 0.3±0.001(s)

Overshoot 1.991 (%) 1.97 (%)

Rising time 2.535 s 2.688 s

V. CONCLUSION

This paper has applied single neural PID controllers

based on RFNN identifiers to control a 3-DOF delta robot,

a nonlinear MIMO system. Each robot arm is controlled

by a single neural PID controller that can be online

training with the Jacobian information of that arm given

by a RFNN identifier. Simulation results show that the

controllers and identifiers can be updated online during

control action. The quality standards of improved system

responses better than using traditional PID controllers

(Table IV). The proposed algorithm is stable and fast

response when simulating on Delta robot. In next step,

the controllers will be tested on a real robot system.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Mr. Le Minh Thanh, first author, is a PhD candidate

under supervising of Prof. Chi-Ngon Nguyen (last and

corresponding author), who has prepared the manuscript.

Mr. Luong Hoai Thuong, 2
nd

 author, has helped on

correcting the paper. Mr. Phan Thanh Loc, 3
rd

 author, is a

Master’s degree student, also supervised by Prof. Nguyen,

has built the simulation model. And Prof. Nguyen is chef

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 10, October 2020

© 2020 Int. J. Mech. Eng. Rob. Res 1417

of research group, who has supervised for this study and

finalized this paper.

REFERENCES

[1] J. Merlet, Parallel Robots. P.O. Box 17, 3300 AA Dordrecht, The

Netherlands: Kluwer Academic Publishers, 2000.
[2] P. W. L. V, Position-Controlling Apparatus, Patent US2 286 571

A, June, 16, 1942.
[3] D. Stewart, A platform with Six Degrees of Freedom, 1991.

[4] R. Clavel, Conception D’Un Robot Parallele Rapide a 4 Degres

de Liberte, Ph.D. dissertation, Ecole Polytechnique Federale de
Lausanne, Lausanne.

[5] M. Bouri and R. Clavel (2010), The Linear Delta: Developments
and Applications, in ISR 2010 (41st Inter. Symposium on

Robotics and ROBOTIK 2010 (6th German Conference on

Robotics), Munich, Germany, 2010, pp. 1-8.

[6] W. Widhiada, T. G. T. Nindhia, and N. Budiarsa, “Robust control

for the motion five fingered robot gripper,” International Journal
of Mechanical Engineering and Robotics Research, vol. 4, no. 3,

pp. 226-232, 2015.

[7] O. T. Abdelaziz, S. A. Maged, M. I. Awad, “Towards dynamic
task/posture control of a 4dof humanoid robotic arm,”

International Journal of Mechanical Engineering and Robotics
Research, vol. 9, no. 1, pp. 99-105, 2020.

[8] D. Elayaraja, R. Ramakrishnan, M. Udhayakumar, and S.

Ramabalan, Intelligent Control of Mobile Robot Using C++,
International Journal of Mechanical Engineering and Robotics

Research, vol. 3, no. 2, pp. 429-434, 2014.
[9] N. D. Dung, Reverse Dynamics of Parallel Delta Space Robots,

LATS Mechanical and mechanical engineering: 9.52.01.01,

Vietnam National Library, code: 629.892 / Đ455L, 2018.
[10] S. Slama, A. Errachdi, and M. Benrejeb, Neural Adaptive PID and

Neural Indirect Adaptive Control Switch Controller for Nonlinear
MIMO Systems, Mathematical Problems in Engineering, vol. 2019,

2019.

[11] Zhang, M. X. Wang, M. Liu, Adaptive PID Control Based on RBF
Neural Network Identification, in Proc. 17th IEEE Inter. Conf. on

Tools with Artificial Intell, ICTAI'05, 2005, pp. 681
[12] C. H. Lee and C. C. Teng, “Identification and control of dynamic

systems using recurrent fuzzy neural networks,” IEEE Transaction

on Fuzzy Systems, vol. 8, no.4, pp. 349-366, 2000.
[13] S. Wei, Z. Lujin, Z. Jinhai, and M. Siyi, Adaptive Control Based

On Neural Network. Adaptive Control, Kwanho You (Ed.), InTech,
2009.

[14] J. Fabian, C. Monterrey, “Students member and ruth canahuire,

member,” Trajectory Tracking Control of a 3 DOF Delta Robot: a
PD and LQR Comparison, Department of Electrical Engineering,

Universidad de Ingenieriay Tecnologia UTEC, Lima Peru, 2016
IEEE XXIII International Congress on Electronics, Electrical

Engineering and Computing, 2-5 Aug 2016.

[15] M. Guang, Z. Xing-gui Wang, Man-qiang Liu, Adaptive PID

Control Based on RBF Neural Network Identification, in Proc. the

17th IEEE International Conference on Tools with Artificial
Intelligence, 2015.

[16] R. Jafari and R. Dhaouadi, Adaptive PID Control of a Nonlinear

Servomechanism Using Recurrent Neural Networks, Advances in
Reinforcement Learning, 2014.

[17] R. Jafari and R. Dhaouadi, Adaptive PID Control of a Nonlinear
Servomechanism Using Recurrent Neural Networks, Advances in

Reinforcement Learning, Prof. Abdelhamid Mellouk, InTech,
2011.

[18] A. Errachdi and M. Benrejeb, “Performance Comparison of

Neural Network Training Approaches in Indirect Adaptive
Control,” International Journal of Control, Automation and

Systems, vol. 16, no. 3, pp. 1448–1458, 2018.
[19] X. Y. Zhou, C. Yang, and T. Cai, “A model reference adaptive

control/PID compound scheme on disturbance rejection for an

aerial inertially stabilized platform,” Journal of Sensors, vol. 2016,
2016.

Copyright © 2020 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any
medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Le Minh Thanh received a Bachelor of

Engineering degree in Electrical and Electronic
Engineering at Cuu Long University in 2006, a

Master's degree in Automation at the University of

Transport in Ho Chi Minh City in 2011. He is now
a lecturer of the Faculty Electrical – Electronics,

Vinh Long University of Technical Education.

Luong Hoai Thuong received a Bachelor of
Engineering in Control Engineering from Can Tho

University in 2009, a Master's degree in Electronic

Engineering at Ho Chi Minh City University of
Technical Education in 2015. He is currently a

lecturer in the Faculty of Electrical - Electronics,
Vinh Long University of Technical Education.

Phan Thanh Loc received an engineering degree
in Control and Automation Engineering 2016, and

is currently pursuing a master's degree in control

and automation engineering program 2017 up to
now at Can Tho University.

Chi-Ngon Nguyen received his B.S. and M.S.

degree in Electrical Engineering from Can Tho

University and Ho Chi Minh City University of
Technology, in 1996 and 2001, respectively. The

degree of Ph.D. was award by the University of
Rostock, Germany, in 2007.

Since 1996, he has worked at the Can Tho

University. Currently, he is an associate professor

in automation of the Department of Automation

Technology. He is working as a position of Dean of the College of
Engineering Technology at the Can Tho University. His research

interests are intelligent control, medical control, pattern recognition,

classifications, speech recognition and computer vision.

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 10, October 2020

© 2020 Int. J. Mech. Eng. Rob. Res 1418

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

