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Abstract—Parallel robot control is a topic that many 

researchers are still developing. This paper presents an 

application of single neuron PID controllers based on 

recurrent fuzzy neural network identifiers, to control the 

trajectory tracking for a 3-DOF Delta robot. Each robot 

arm needs a controller and an identifier. The proposed 

controller is the PID organized as a linear neuron, that the 

neuron’s weights corresponding to Kp, Kd and Ki of the 

PID can be updated online during control process. That 

training algorithm needs an information on the object's 

sensitivity, called Jacobian information. The proposed 

identifier is a recurrent fuzzy neural network using to 

estimate the Jacobian information for updating the weights 

of the PID neuron. Simulation results on MATLAB/ 

Simulink show that the response of the proposed algorithm 

is better than using traditional PID controllers, with the 

setting time is about 0.3 ± 0.1 (s) and the steady-state error 

is eliminated.  

 

Index Terms—delta robot, single neural PID, recurrent 

fuzzy neural network, trajectory tracking 

 

Symbol Unit Meaning 

1 2 3, ,    Degrees Angle of the upper leg of robot 

R mm upper disc radius 

R mm lower disc radius 

L1 mm upper arm length 

L2 mm lower arm length 
 

Abbreviation 

DOF Degrees of freedom 

PID Proportional Integral Derivative 

DC Direct current 

RFNN Recurrent fuzzy neural network 

I. INTRODUCTION 

With flexible mechanisms, advantages of speed and 

force, and precision delta robots have become popular 

and widely used in industry [1]. The complex structure of 

this robot makes them an interesting in research focus. 

Delta robots were proposed in 1939, when Pollard built a 

robot to control the position of a spray gun [2]. In this 

context, other robots with the same structure have been 
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implemented. For example, a robot proposed by Stewart 

with two platforms ensures fixed stability in a stationary 

facility [3]. In 1985, a delta robot was developed and 

built in the Ecole Polytechnique Federale de Lausanne 

(EPFL) called delta robots focused on industrial work [4]. 

Based on this robot, the new architecture is implemented 

according to the necessary characteristics in industry and 

school. For example, it is a robot with high accuracy but 

slow motion is widely used in 3D printers [5]. In the 

industrial sector the need to optimize production has been 

a major challenge for robotics companies since the 1980. 

Delta robots have been successfully researched and 

manufactured in many countries. However, the high cost 

and operational control of delta robots has always been an 

interesting topic for many innovative studies.  

So that, the neural networks and fuzzy logic are 

applied for improving adaptive PID controllers for Delta 

robot [6]. A non-parametric identifier of each robot arm 

using recurrent fuzzy neural network is built and trained 

online during control to estimate the object's sensitivity to 

the input signal, also known as Jacobian information. 

Based on the Jacobian information, a single-neuron-

adaptive PID controller will be updated online with three 

connected weighs respectively three parameters Kp, Ki 

and Kd of the controller. Thus, with this principle, the 

PID controller will be automatically adapted due to the 

variation of the robot that classical control solutions can 

not achieve.  

In the process of making efforts for manufacturing 

delta robots to meet the industrial needs, this paper aims 

to control and conduct analysis, comparison, and 

evaluation of different algorithms. The comparison and 

evaluation of efficiencies between traditional PID 

controllers and fuzzy-neural based PID controllers are 

implemented and tested in MATLAB/Simulink which the 

absolute error values are used to evaluate the 

performances of the closed loop system. 

II. DELTA ROBOT 

A. Parallel Robot Model 

The model of delta robot is presented in Fig. 1 [7]-[9]. 

In this model, BiDi stitching is modeled into two material 

points located at Bi and Di. Each of them has a weight mb 
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and is connected by rigid, weightless rods. Thus, the 

dynamic model of this model consists of 4 solid objects, 

in which the AiBi (i = 1, 2, 3) stitches move around the 

axes perpendicular to the OAiBi plane. At Ai with mass 

m1 and remaining solid objects (including three points 

mounted at Di) with mass (mp+3mb), can be considered as 

a moving table of linear motion. Three points located at 

Bi having mass mp, where mp is the operation mass. 

 

 

Figure 1. Parallel robot model 3RUS [9]. 

The set of robot actuating includes: 

  1 2 3   P P Pq x y z .   

B. Establishing the Linking Equations 

From Fig. 1, we have the linking equation for points B1 

and D1 as follows: 

    
1 1 1 1

2 0
T

D B D Bl r r r r    . (1) 

where 
1Dr , 

1Br are the positioning vectors of points B1 and 

D1 in the Oxyz coordinate system, calculated according to 

the vector equation: 

 
1 1 1 1B A A Br r U  . (2) 

In which, the coordinates vector
1Ar , 

1 1A BU  in the 

coordinate system Ox1y1z1 have the forms: 

 1

1 1 1 1 1 1

[ 00]

  [ cos 0 sin ] 



 

T

A

A B

r R

U l l
 (3) 

Replace (3) with (2) and get the rB1 coordinate in 

Ox1y1z1 coordinate system 

  1 1 1 11 cos 0 sin   Br R l l  (4) 

The cosine matrix indicates the direction of the 

Ox1y1z1 coordinate system with the Oxyz coordinate 

system as: 

  
1 1

1 1 1

cos sin 0

sin cos 0

0 0 1

zA

 

  

 
 


 
  

 (5) 

Infer the coordinates of the rB1 vector in the Oxyz 

coordinate system: 

 

1

1 1 1 1

1 1

1 1

1 1 1 1

1 1 1 1

1 1

cos sin 0 cos

sin cos 0 0

0 0 1 sin

cos cos cos

sin sin cos

sin

  

 



  

  



 

 









   
   
   
      

 
 
 
  

B

R l

r

l

R l

R l

l

 (6) 

The coordinates of vector rD1 are calculated as follows: 

 

1 1 

1 1

1 1

1

1

0

0 0

0 0 1 0

D P PD

P

P

P

P

P

P

r u

x cos sin r

y sin cos

z

x cos r

y sin r

z

r

 

 





  

     
     

 
     
          

 
 


 
  

 (7) 

Combining equations (6) and (7) we have: 

 

 

 
1 1

1 1 1 1

1 1 1 1

1 1

P

D B P

P

cos R r l cos cos x

sin R r l sin cos y

l sin z

r r

  

  



   
 

    
 
 



 

 (8) 

Substituting (8) into (1), we get the equation linked to 

the first pin. Similarly, with the second and third legs, we 

get the link equation of the robot as follows: 

 

  

    

  

    

  

 

22

1 2 1 1 1 1 P

2 2

1 1 1 1 P 1 1 P

22

2 2 2 1 2 2 P

2 2

2 1 2 2 P 1 2 P

22

3 2 3 1 3 3 P

3 1 3

f = l - cosα R-r +l cosα cosθ -x

- sinα R-r +l sinα cosθ -y - l sinθ +z =0

f = l - cosα R-r +l cosα cosθ -x

- sinα R-r +l sinα cosθ -y - l sinθ +z =0

f = l - cosα R-r +l cosα cosθ -x

- sinα R-r +l sinα cosθ   
2 2

3 P 1 3 P-y - l sinθ +z =0

 (9) 

C. The Kinetic Energy and Potential of the Robot 

The kinetic energy of the AiBi stages is calculated as 

 2 2

1 1

1 1
 

2 2
  

i i i iA B y A B y iT I I   (10) 

The kinetic energy of mass mb is set at B1 as follow 

 2 2 2

1

1 1
 

2 2
 

b im b B b iT m v m l   (11) 

The kinetic energy of a moving table and mb masses is 

    2 2 2 2

3

1 1
3 3

2 2

 
      

 
P b P P b P P PT m m v m m x y z  (12) 

Combining the kinetic expressions above, we get the 

model kinetic expression of the robot: 

 
 

 

2 2 2 2

1 1 1 2 3

2 2 2

1
     

2

1
  3
2

  
 

    
 

 
    

 

y b

P b P P P

T I m l

m m x y z

  (13) 
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The potential energy of a robot is calculated as follows: 

 
 

 

1 1 1 2 3

1
     

2

3

   
 

    
 

 

b

b P P

gl m m sin sin sin

g m m z

 (14) 

D. Set the Differential Equation of Motion of the Delta 

Robot 

We use the Lagrange factor to set the differential 

equation of motion of this model with helium links with 

the following form: 

  
1

       1,2, .,


   
     

   


r
i

k i

ik k k

fd T T
Q k m

dt q q q
 (15) 

where qk is the extrapolation coordinates of the robot, fi is 

the linking equations, Qk is the extrapolation force, i is 

the Lagrange factor. With this model, the vector of 

extrapolation coordinates  
6R and the number of 

associated equations is three, so m=6, r= 3. We divide the 

forces acting on the robot into potential forces and forces 

without potential energy, the extrapolation force Qk is 

calculated as follows 

   np

k k

k

Q Q
q


 


 (16) 

where np

kQ  are extrapolation forces corresponding to 

forces without potential energy. Sum of extrapolation 

forces is 

 
1 1 2 2 3 3             A . (17) 

So, we have 

1 1 npQ  , 
2 2 npQ   , 

33  npQ   and  

0?np

kQ  with k = 4, 5, 6. 

Substituting kinetic and potential energies into (15), 

we get the motion equations of the robot as follows: 

 

 

 

2

1 1 1 1 1 1

1 1 1

1 1

1 1 1

1
   

2

2

  

  


  

 
    

 

  
  

   

Iy b b

p

p p

I m l gl m m cos

sin R r cos sin x
l

sin sin y cos z

 (18) 

 

 

 

2 2 2

2 2 2

2

1 1 1

1 1

2 2 2

1
     

2

2

  

  


  

 
    

 

  
  

   

Iy b b

p

p p

I m l gl m m cos

sin R r cos sin x
l

sin sin y cos z

 (19) 

 

 

 

2

1 1 1

1

3 3 3

3 3 3

3

3 3 3

1
   

2

2

  

  


  

 
    

 

  
  

   

Iy b b

p

p p

I m l gl m m cos

sin R r cos sin x
l

sin sin y cos z

 (20) 

 

    

  

  

1 1 1 1 1

2 2 1 2 2

3 3 1 3 3

3 2

2

 2

   

   

   

     

   

   

p b p p

p

p

m m x cos R r l cos cos x

cos R r l cos cos x

cos R r l cos cos x

 (21) 

 

 

  

  

  

1 1 1 1 1

2 2 1 2 2

3 3 1 3 3

3

2 sin

2 sin

 2 s

sin

sin

sinin

   

   

   

 

   

   

   

p b p

p

p

p

m m

R r l cos y

R r l cos y

R r l cos y

y

 (22) 

      

   

1 1 1

2 1 2 3 1 3

3 3 2

2 2

 

   

     

   

p b p b p p

p p

m m m m g z l sin

z l sin z l sin

z
 (23) 

 

  

  

 

2
2

1 1 1 1 1

2

1 1 1 1

2

1 1 0

  

  



   

   

  

p

p

p

l cos R r l cos cos x

sin R r l sin cos y

l sin z

 (24) 

 

  

  

 

2
2

2 2 1 2 2

2

2 1 2 2

2

1 2 0

  

  



   

   

  

p

p

p

l cos R r l cos cos x

sin R r l sin cos y

l sin z

 (25) 

 

  

  

 

2
2

3 3 1 3 3

2

3 1 3 3

2

1 3 0

  

  



   

   

  

p

p

p

l cos R r l cos cos x

sin R r l sin cos y

l sin z

 (26) 

From the parallel motion equations of robots, we get 

the model of robot as shown in Fig. 2 and Fig. 3. 

 

 

Figure 2. Model of Delta robot in Simulink. 

 

Figure 3. Inside of Parallel robot model. 

III. CONTROLLER DESIGN 

 

Figure 4. Controller structure. 
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The structure of the control system for each robot arm 

is presented in Fig. 4. 

A. Single Neural Adaptive PID Controller 

1) Controller structure 

The PID controller is built by a linear neuron with 03 

inputs and zero trigger threshold [10] as shown in Fig. 5. 

The input of neuron receives 03 corresponding values as 

proportional, integral and differential components of the 

difference between response and reference signal as (27). 

 

  

Figure 5. Structure of a PID controller adapted to a neuron. 

      
0

1 ; 2 ; 3
de k

e e k e e k dk e
dk



       (27) 

The PID controller is set as follows: 

   (k 1) 1 2 3p i du k u K e K e K e          (28) 

where, e(k) is the difference between the reference signal 

and the system response. 

With the structure of a single neuron PID controller in 

Fig. 5, the output of the neuron is also the output of the 

PID controller, as shown in (29). 

 

 

   

11 12 131 2 3

( ) ( -1) ( )

n w e w e w e

du k f n n

u k u k du k

     

 

 

  (29) 

In which, w1i | I = 1,2,3 are the weights of the neurons, 

which are the parameter sets (KP, Ki, Kd) of the PID 

controller and they are updated online during the control 

process.  

2) Controller training 

The goal of training the single neuron PID controller is 

to adjust the network's weight set w1i (i=1,2,3) to minimize 

the cost function (30). 

        
2

21 1

2 2
refE k e k y k y k      (30) 

where yref(k) is the reference signal and y(k) is the system 

response. 

To adjust the weight set w1i | i = 1,2,3, the gradient descent 

method was applied: 

 

     

     

     

11 11 11

12 12 12

13 13 13

1

1

1

p

i

d

K w k w k w k

K w k w k w k

K w k w k w k

    

    

    

  (31) 

where w1,i(k) |i=1,2,3 are gradients defined by (32-34), 

successfully verified by Zhang et al. [11]: 

 
 

 

 

 

 

 

 

 

 
 

 

 

11

11

11

1

Kp

Kp Kp

E k
w k

w k

E k y k u k y k
e k e

y k u k w k u k



 

 
     

   
   

   

 (32) 

 
 

 

 

 

 

 

 

 

 
 

 

 

12

12

12

2

Ki

Ki Ki

E k
w k

w k

E k y k u k y k
e k e

y k u k w k u k



 

 
     

   
   

   

 (33) 

 

 
 

 

 

 

 

 

 

 
 

 

 

13

13

13

3

Kd

Kd Kd

E k
w k

w k

E k y k u k y k
e k e

y k u k w k u k



 

 
     

   
   

   

 (34) 

With 
| , ,

k

k Kp Ki Kd 
 are the learning rate constants; e1, 

e1 and e3 determined by (27);  
 

y k

u k




 is the 

response sensitivity to the control signal, also known as 

Jacobian information, determined through recurrent fuzzy 

neural network identifiers, which will presented in next 

section.  

Three neuron-adaptive PID controllers are set up by 

MATLAB's three S-function, fully compatible with 

Simulink's standard library, a single-neuron-adapted PID 

controller depicted in Fig. 6 and two sets The remaining 

is built in the same way as the SingleNeural_PID1. 

 

Figure 6. Single neural PID controller. 

B. Recurrent Fuzzy Neural Newtwork Identifier 

1) Identifier structure 

 

Figure 7. Diagram of the RFNN identifier. 
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The identifier is a recurrent fuzzy neural network 

(RFNN - Fig. 7). The RFNN identifier has 4 layers, with 

an input layer of 2 nodes, a fuzzy layer of 10 nodes, a 

fuzzy rule class of 25 nodes, and an output layer with 1 

node. The structure of the RFNN identifier can be 

described as follows [12]: 

Layer 1 - Input layer: This layer consists of 2 nodes 

that convey the input values to the next layer. Here 

feedback links are added to increase the responsiveness 

of the network. The output of layer 1 is described as (35): 

      1 1 1 1 , 1,2k

i i i iO k x k O k i      (35) 

With 1

i  
is the connection weight at the current time k. 

The input of the corresponding RFNN identifier is the 

current control signal and the past output of the response: 

 
   

   

1

1

1

2 1

x k u k

x k y k



 
  (36) 

Layer 2 - Fuzzy layer: This layer consists of (2x5) 

nodes, each node representing a related function of the 

Gaussian form with mean value mij and standard 

deviation σij, and defined as (37). 

  
  

 

2
1

2

2
exp , 1,2; 1,2,...,5

i ij

ij

ij

O k m
O k i j



  
    

  

 (37) 

At each node on the fuzzy layer, there are 2 parameters 

that are automatically adjusted during the online training 

of the RFNN identifier, that is mij and σij. 

Layer 3 - Law class: This layer consists of (5x5) nodes. 

The output of the q node in this class is determined as 

follows: 

    3 2 , 1,2,...,5; 1,2,...,5
iq iq i

i

O k O k i q    (38) 

Layer 4 - Output layer: This layer includes 1 linear 

neuron with the defined output as follows: 

    4 4 3 , 1; 1,2,...,25i ij j

j

O k w O k i j     (39) 

where
4

ijw  is the connecting weights from 3
rd

 layer to 4
th

 

layer. The output of this layer is also the output of the 

RFNN identifier: 

 
       

   

4

1 1 2
ˆ ,

ˆ , 1

mO k y k f x k x k

f u k y k

    

   

 (40) 

2) Training the RFNN identitifiers 

The goal of an online training algorithm for RFNN 

identifier is to adjust the weighting sets of the network 

and the parameters of the fuzzy class dependent functions 

to achieve the minimum value of cost function (41): 

          
22 4

1

1 1

2 2
mE k y k y k y k O k           (41) 

Using back-propagation technique, RFNN's set of 

connection weights will be adjusted according to the 

following: 

        
 

1
E k

W k W k W k W k
W


 

      
 

 (42) 

In which,  is the learning rate constant and W is the 

parameter to be adjusted during the training of the RFNN 

identifier. 

Given e(k)=y(k)-ym(k) and W=[, m, σ, w]
T
 are the 

error and the connection weight vector of the RFNN 

identifier, then the gradient of E(.) in (41) according to W 

is determined as follows: 

 
 

 
 

 
 4

1mE k y k O k
e k e k

W W W

  
   

  
 (43) 

With this principle, the weight of each RFNN network 

layer is updated as follows [13]: 

    
 

   4 4 4 3

4
1 w w

ij ij ij i

ij

E k
w k w k w k e k O

w
 

 
      

  

 (44) 
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
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    

  
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  

 (45) 
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  (46) 

 

   
 

   
     

 

1 1

1

1 1

1 4 3

2

1

2 1

i i

i

ij ij ij

i ik k

k
ij

E k
k k

O k m O k
k e k w O





  


 


 
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 (47) 

where | , , ,

s

s w m     are the corresponding learning rate 

constants. In addition, to estimate the output of the object 

model ym(k), the RFNN identifier must also estimate 

Jacobian information 
 

 
y k

u k




 for online training of 

the single neuron PID controller. Jacobian information is 

determined as follows [14]-[19]: 
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 (48) 
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The RFNN identifier for each robot arm is built in 

MATLAB's S-function as Fig. 8.  

 

Figure 8. The RFNN identifier in Simulink. 

    ˆ ( ) ( ) ( 1), ( )m my k y k x k x k u kf     (49) 

IV. SPECIFICATIONS AND SIMULATION RESULTS 

A. Simulation Parameters 

The specifications of the robot are shown in Table I [6]. 

Parameters of the single neuron PID controller are given 

in Table II. And the parameters of RFNN identifiers are 

presented in Table III. 

TABLE I. DELTA ROBOT MECHANICAL SPECIFICATIONS 

Symbol Value Unit 

L1 0.3 m 

L2 0.8 m 

R 0.26 m 

r 0.04 m 

α1 0 rad/s 

α2 2π/3 rad/s 

α3 4π/3 rad/s 

m1 0.42 kg 

mb 0.2 kg 

mp 0.75 kg 

TABLE II. PARAMETERS OF ADAPTIVE NEURAL PID CONTROLLER  

Symbol Meaning Value 

p I D

T

K K Kw w w 
   

Initial parameters of the 
PID neuron  800 100 150

T
 

p I D

T

K K K   
   

Learning rates of the 

PID neuron  0.2 0.1 0.1
T

  

TABLE III. PARAMETERS OF THREE RFNN IDENTIFIERS 

Symbol Meaning Value 

1 2 3
[ ; ; ]    The learning 

factor of the 

neuron network 

   0.01 0.01 0.01
T

  

1ic  RFNN1 
network center 

vector 

-1.5 -0.75 0 0.75 1.5
-1.5 -0.75 0 0.75 1.5
 
  

  

2ic  RFNN2 
network center 

vector 

-1.35 -0.675 0 0.675 1.35
-1.35 -0.675 0 0.675 1.35
 
  

 

3ic  RFNN3 
network center 

vector 

-3.05 -1.525 0 1.525 3.05
-3.05 -1.525 0 1.525 3.05
 
  

 

1ib  Activation 
threshold 1 

0.5 0.5 0 0.5 0.5
0.5 0.5 0 0.5 0.5
 
  

 

2ib  Activation 
threshold 2 

 

0.5 0.5 0 0.5 0.5
0.5 0.5 0 0.5 0.5

0.1 0.1
T

 
    

3ib  Activation 

threshold 3 
0.5 0.5 0 0.5 0.5
0.5 0.5 0 0.5 0.5
 
  

 

 1

T
w  

Weighted 

vector 1 (25×1)  0.1 0.1 0.1 0.1
T

  

 2

T
w  

Weighted 
vector 2 (25×1)  0.15 0.15 0.15 0.15

T
 

 3

T
w  

Weighted 

vector 3(25×1)  0.1 0.1 0.1 0.1
T

 

1iw  Weighted 
vector RFNN1 

0.1 0.1 0 0.1 0.1
0.1 0.1 0 0.1 0.1
 
  

 

2iw  Weighted 

vector RFNN2 
0.125 0.125 0.125 0.125 0.125
0.125 0.125 0.125 0.125 0.125
 
  

 

3iw  Weighted 
vector RFNN3 

0.15 0.15 0.15 0.15 0.15
0.15 0.15 0.15 0.15 0.15
 
  

 

i  Network inputs 2 

 

 

 

Figure 9. Delta parallel robot controller diagram in MATLAB / Simulink.
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B. Simulation Results 

The control system for the Delta robot is illustrated in 

Fig. 9 with the desired trajectory as (50). 

 

 

x  = 0.17sin(2 t)+0.3 

y  = 0.17cos(2 t)+0.2 

z  = -0.7

d

d

d m



  (50) 

The response of the traditional PID and the single 

neuron PID to the reference trajectory are presented in 

Fig. 10, Fig. 11, Fig. 12, and Fig. 13 with changing load. 

Simulation results show that single neural PID controllers 

are better than traditional PID controllers with the setting 

times are about 0.3±0.1 seconds, the steady-state errors 

are eliminated. 

 

Figure 10. Comparison of traditional PID and single neuron PID 
controllers. 

 
Figure 11. Errors of responses. 

 
Figure 12. Trajectory tracking of traditional PID and single neural PID 

controller. 

 
Figure 13. Responses when changing load from 3.21 Kg to 4.11 Kg. 

 

TABLE IV. SYSTEM QUALITY STANDARDS 

Quality indicators PID Neuron PID  

Settling time 0.4±0.001(s) 0.3±0.001(s) 

Overshoot 1.991 (%)   1.97 (%) 

Rising time  2.535 s 2.688 s 

V. CONCLUSION 

This paper has applied single neural PID controllers 

based on RFNN identifiers to control a 3-DOF delta robot, 

a nonlinear MIMO system. Each robot arm is controlled 

by a single neural PID controller that can be online 

training with the Jacobian information of that arm given 

by a RFNN identifier. Simulation results show that the 

controllers and identifiers can be updated online during 

control action. The quality standards of improved system 

responses better than using traditional PID controllers 

(Table IV). The proposed algorithm is stable and fast 

response when simulating on Delta robot. In next step, 

the controllers will be tested on a real robot system. 
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