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Abstract—In this investigation the concept of the cable-

based tuned mass damper (CB-TMD) is presented. This is 

an oscillator that presents geometric nonlinearities and has 

peculiar characteristics of elasticity and energy dissipation. 

Through numerical simulations and experimental 

procedures, it is evaluated as an attenuator of free 

vibrations and forced vibrations. It was found that this 

shock absorber does not have a good performance in 

reducing the settling time of free vibrations; however, it can 

reduce the amplitude of forced vibration in a range of 

frequencies. 

 

Index Terms—Tuned mass damper, geometrically nonlinear 

systems, free vibrations, forced vibrations, nonlinear 

systems. 

I. INTRODUCTION 

For most practical cases in engineering, vibration is an 

undesirable feature. This problem occurs both in large 

civil structures such as buildings and bridges, and in 

mechanical structures such as engines, mechanisms, 

robots, among others. In order to reduce vibration, 

various damping techniques have been developed. One of 

these methodologies is the tuned mass damper (TMD). 

Some solutions of tuned mass dampers for vibration 

attenuation have been proposed in the work of Gutierrez 

and Adeli [1]; a summary of some types of tuned mass 

dampers and their application in civil engineering can be 

observed. Other authors have analyzed the effect of a 

nonlinear spring on TMD [2]. And some have added the 

concept of energy harvest along with the TMD [3]. 

In general, tuned mass dampers have been widely 

studied and various solutions have been proposed for 

very particular cases. But most studies have been done 

for linear systems. It seems that, the influence of tuned 

mass dampers with non-linear characteristics in the 

attenuation of structural vibrations has been little studied. 

In the present investigation, a numerical and experimental 

study of the effectiveness of tuned mass dampers with 

nonlinearities in free and forced vibrations of a main 

structure with linear behavior was carried out. 

                                                           
Manuscript received November 14, 2019; revised August 20, 2020. 

This work presents the concept of cable-based tuned 

mass damper (CB-TMD). This shock absorber design 

uses a planar arrangement of cables with a mass in the 

center. The idea comes from the configuration of planar 

cable robots. The mass has smaller dimensions with 

respect to the cables. The oscillation outside the plane of 

the cables has non-linear characteristics, this is due to the 

cables have an elongation and a change of direction, 

therefore, presents geometric nonlinearities. In a previous 

work it has been found that the characteristic behavior of 

this system  is due to a low stiffness zone and a low 

energy dissipation zone centered on the equilibrium point 

[4]. The axial vibration of the cables has been modeled as 

Kelvin-Voight. Alternatively, this model has been 

experimentally validated and its elastic and viscous 

parameters have been defined as a function of length [5]. 

Some authors have studied viscoelastic TMD [6] and 

others have studied geometric nonlinearities analytically, 

in particular, geometrically nonlinear damping can be 

reviewed in [7] and [8]. It was difficult to replicate these 

types of systems in the physical world because viscous 

dampers based on cylinders and lubricants oils cannot be 

considered with a negligible mass. Therefore, the 

dynamics of the idealized system could not be replicated. 

With the implementation of the CB-TMD a proposal of 

geometric nonlinearities with elastic and viscous 

elements of negligible masses is presented. This is 

achieved due to the mass of the cables is very small in 

comparison with the rest of the structure. 

It is assumed that CB-TMD can be used to attenuate 

the vibration of a structure that presents a linear vibration, 

this attenuation could be achieved in cases of free 

vibration and forced vibration. As a result of the behavior 

of geometrically nonlinear oscillations, a variation in the 

mass could decrease the settling time mainly upon 

resonance with the vibration of the first degree of 

freedom; also, vibratory amplitude of a structure due to a 

forced input could be reduced too. For this reason, a 

dynamic oscillatory system with two degrees of freedom 

has been designed and built. This test rig has the 

objective of validating the mathematical model 

experimentally. 
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In section number 2 of this article, we describe the 

mathematical model by which the vibration of two 

degrees of freedom is interpreted. It considers the 

geometric nonlinearities of the cables. In section number 

3, the design of the test rigs is used to validate the model 

is presented, and the specific features necessary to carry 

out precision measurements are discussed. Section 4 

describes the procedures for validation experiments were 

carried out the. Consequently, in section number 5, the 

results of the numerical simulations in comparison with 

the experimental data are presented. Finally, in section 

number 6 the pertinent conclusions and the suggested 

future work are shown. 

II. MATHEMATICAL MODEL 

In this section, it is shown a dynamic discrete model of 

the dynamical system. The system has two degrees of 

freedom. The first degree of freedom corresponds to a 

linear oscillator with damping and stiffness; this is called 

the main structure. The second degree of freedom is a 

nonlinear oscillator; a system of wires in planar 

configuration was implemented. The stiffness and 

damping have geometrically induced nonlinear behavior, 

and is called the damper mass. 

A. Geometric Nonlinearities 

The geometric non linearities are due to the change in 

the direction of the cables during the vibration. The 

equivalent axial elasticity and viscosity of the cable is 

linear, but the change in the direction brings another 

behavior. Fig. 1 shows a diagram of the geometrically 

nonlinear oscillation. 

 

 

Figure 1.  Diagram of the full dynamic model. 

The forces in 𝑧𝑓  direction of the described system is 

described as follows. The forces through the cable in all 

the moment are defined by 𝑓𝑐𝑛 ; this is the sum of the 

spring 𝑓𝑐𝑘𝑛 force and the pretention 𝑓𝑝𝑡𝑛. 
 

𝑓𝑐𝑛 = 𝑓𝑐𝑘𝑛 + 𝑓𝑝𝑡𝑛 (1) 
      

The main force is the spring force in 𝑧𝑓 direction. This 

force is defined by 
 

𝑓𝑘𝑧𝑛 = 𝑓𝑐𝑛𝑆𝑒𝑛(𝜃1) = (𝑓𝑐𝑘𝑛 + 𝑓𝑝𝑡𝑛)𝑆𝑒𝑛(𝜃1) (2) 
 

Where the force due to the elongation is 
 

𝑓𝑘𝑛 = 𝑘𝑐𝑛(𝑙𝑛 − 𝑙𝑜𝑛) (3) 
 

The length of the spring in all the time is 
 

𝑙𝑛 = √𝑙𝑜𝑛
2 + 𝑧2 (4) 

 

Thus, the force due to the equivalent spring in the 

cable is a function of cable elongation. In all time, its 

value is 
 

𝑓𝑘𝑛 = 𝑘𝑐𝑛 (√𝑙𝑜𝑛
2 + 𝑧2 − 𝑙𝑜𝑛) (5) 

 

The force in 𝑧𝑓 direction due to just the spring is the 

vertical component of the previously defined force. 
 

𝑓𝑘𝑧𝑛 = 𝑘𝑐𝑛𝑆𝑒𝑛(𝜃𝑛) (√𝑙𝑜𝑛
2 + 𝑧2 − 𝑙𝑜𝑛) (6) 

 

Incorporating the force of pretention, the equation has 

the following form. 
 

𝑓𝑘𝑧𝑛 = 𝑆𝑒𝑛(𝜃𝑛) [𝑘𝑐𝑛 (√𝑙𝑜𝑛
2 + 𝑧2 − 𝑙𝑜𝑛) + 𝑓𝑝𝑡𝑛] (7) 

 

The angles 𝜃𝑛  can be formulated through known 

variables in the system. 
 

𝑆𝑒𝑛(𝜃𝑛) =
𝑧

√𝑙𝑜𝑛
2 + 𝑧2

 
(8) 

 

Thus, the equation that defines the cable force due to a 

spring elongation and a pretention has the following form. 

 

𝑓𝑘𝑧𝑛 =
𝑧

√𝑙𝑜𝑛
2 + 𝑧2

[𝑘𝑐𝑛 (√𝑙𝑜𝑛
2 + 𝑧2 − 𝑙𝑜𝑛)

+ 𝑓𝑝𝑡𝑛] 

(9) 

 

     

After a simplification, the equation takes the following 

form. 
 

𝐹𝑘𝑧𝑛 =

𝑧 [𝑓𝑝𝑡𝑛 − 𝑘𝑐𝑛 (𝑙𝑜𝑛 − √𝑙𝑜𝑛
2 + 𝑧2)]

√𝑙𝑜𝑛
2 + 𝑧2

 (10) 

          
The development of the geometrically nonlinear 

damper is described as follow. The general expression of 

the force that generates to a damper in function to 

velocity is the following. 
 

𝑓𝑏𝑛 = 𝑏𝑐𝑛
𝑑𝑥

𝑑𝑡
 (11) 

       

The horizontal component of 𝑓𝑏𝑛 , this is in t 𝑧𝑓 

direction is presented in the following equation. 
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𝑓𝑏𝑧𝑛 = 𝑓𝑐𝑏𝑛 sin 𝜃𝑛 = (𝑏𝑐𝑛
𝑑𝑥

𝑑𝑡
) sin 𝜃𝑛 (12) 

 

The coefficient must consider the geometric properties 

of the shock absorber in any position; therefore, the 

expression is as follows. 
 

𝑓𝑏𝑛 = 𝑏𝑐𝑛
𝑑𝑥

𝑑𝑡
= 𝑏𝑐𝑛

𝑧

√𝑎2 + 𝑧2
(
𝑑𝑧

𝑑𝑡
) (13) 

     
The angles 𝜃𝑛  can be presented through variables 

known in the system. 
 

𝑆𝑒𝑛(𝜃𝑛) =
𝐶𝐴

𝐻
=

𝑧

√𝑎2 + 𝑧2
 (14) 

 

Finally, the full equation has the following form. 
 

𝐹𝑏𝑧𝑛 = 𝑏𝑐𝑛 (
𝑧2

𝑙𝑜𝑛
2 + 𝑧2

)
𝑑𝑧

𝑑𝑡
 (15) 

      
Some authors have studied the geometrically nonlinear 

damping phenomenon [7], [8] y [9]. 

B. Full Dynamic Model 

In Fig. 2 it is shown the dynamic diagram of the 

proposed system. The mass of the structure is represented 

by 𝑚𝑒, it is connected to mechanical ground through the 

linear spring 𝑘𝑒  and the linear damper 𝑏𝑒 . The second 

mass 𝑚𝑎  is connected to the mass 𝑚𝑒  through six steel 

cables, which are represented by the diagonal springs and 

dampers 𝑘𝑐1, 𝑏𝑐1  and 𝑘𝑐2, 𝑏𝑐2 . Each mass represents one 

degree of freedom that have a linear displacement in the 

𝑧𝑓 direction according to the reference frame ℎ𝑓. 

 

 

Figure 2.  Diagram of the full dynamic model. 

The equations of motion that define this model are 

shown below. 
 

𝑚𝑒

𝑑2𝑧1
𝑑𝑡2

+ 𝑏𝑒
𝑑𝑧1
𝑑𝑡

+ 𝑘𝑒𝑧1 + 𝐹𝑘𝑧𝐴

+ 𝐹𝑘𝑧𝐵 + 𝐹𝑏𝑧 = 0 

(16) 

  

𝑚𝑎

𝑑2𝑧2
𝑑𝑡2

+ 𝑏𝑎
𝑑𝑧2
𝑑𝑡

+ 𝑓𝑘𝑧𝐴 + 𝑓𝑘𝑧𝐵 + 𝑓𝑏𝑧 = 0 (17) 

 

The terms 𝐹𝑘𝑧𝑛𝐴 + 𝐹𝑘𝑧𝑛𝐵 + 𝐹𝑏𝑧𝑛  represent the cable 

spring and damper force in 𝑧𝑓  direction. These are the 

equations previously defined for the geometric 

nonlinearities of the cables. 

 

𝐹𝑘𝑧𝐴 = ∑𝐹𝑘𝑧𝑛𝐴

4

𝑛=1

  

(18) 

𝐹𝑘𝑧𝑛𝐴 =
(𝑧1 − 𝑧2)

√𝑙𝑜𝑛
2 + (𝑧1 − 𝑧2)

2

[𝑓𝑝𝑡𝑛 + 𝑇𝑤

− 𝑘𝑐𝑛 (𝑙𝑜𝑛 − √𝑙𝑜𝑛
2 + (𝑧1 − 𝑧2)

2)] 

 

𝐹𝑘𝑧𝐵 = ∑𝐹𝑘𝑧𝑛𝐵

2

𝑛=1

 

(19) 

𝐹𝑘𝑧𝑛𝐵 =
(𝑧1 − 𝑧2)

√𝑙𝑜𝑛
2 + (𝑧1 − 𝑧2)

2

[𝑓𝑝𝑡𝑛

− 𝑘𝑐𝑛 (𝑙𝑜𝑛 − √𝑙𝑜𝑛
2 + (𝑧1 − 𝑧2)

2)] 

 

𝐹𝑏𝑧 = ∑𝐹𝑏𝑧𝑛

6

𝑛=1

 

 

𝐹𝑏𝑧𝑛 = 𝑏𝑐𝑛(
(𝑧1 − 𝑧2)

2

𝑙𝑜𝑛
2 + (𝑧1 − 𝑧2)

2
)(
𝑑𝑧1
𝑑𝑥

−
𝑑𝑧2
𝑑𝑥

) (20) 

 

The terms 𝑓𝑘𝑧𝑛𝐴 + 𝑓𝑘𝑧𝑛𝐴 + 𝑓𝑏𝑧𝑛  are similar equations 

to the (18), (19) and (20) with some differences in terms 

of position and velocity, these equations are shown below. 
 

𝑓𝑘𝑧𝐴 = ∑𝑓𝑘𝑧𝑛𝐴

4

𝑛=1

  

 (21) 

𝑓
𝑘𝑧𝑛𝐴

=
(𝑧2 − 𝑧1)

√𝑙𝑜𝑛
2 + (𝑧2 − 𝑧1)

2

[𝑓𝑝𝑡𝑛 + 𝑇𝑤

− 𝑘𝑐𝑛 (𝑙𝑜𝑛 − √𝑙𝑜𝑛
2 + (𝑧2 − 𝑧1)

2)] 

 
 

  

 (22) 

𝑓𝑘𝑧𝑛𝐵 =
(𝑧2 − 𝑧1)

√𝑙𝑜𝑛
2 + (𝑧2 − 𝑧1)

2

[𝑓𝑝𝑡𝑛

− 𝑘𝑐𝑛 (𝑙𝑜𝑛 − √𝑙𝑜𝑛
2 + (𝑧2 − 𝑧1)

2)] 
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𝑓𝑏𝑧 = ∑𝑓𝑏𝑧𝑛

6

𝑛=1

 

 

 

𝑓𝑏𝑧𝑛 = 𝑏𝑐𝑛(
(𝑧2 − 𝑧1)

2

𝑙𝑜𝑛
2 + (𝑧2 − 𝑧1)

2
)(
𝑑𝑧2
𝑑𝑥

−
𝑑𝑧1
𝑑𝑥

) (23) 

The previous model considers the number of cables, 

the effect of the end effector weight 𝑇𝑤and the friction 

between the second degree of freedom and the air 𝑏𝑒. 

III. EXPERIMENTAL PROCEDURE 

Experimentation consisted in evaluate the free and 

forced response of the first Degree of Freedom (1st dof or 

main structure) with the implementation of a second 

degree of freedom (2nd dof) with geometrical 

nonlinearities. The nonlinearities consist of an 

arrangement of cables in a planar configuration. To 

achieve this, a special test rig was built and characterized. 

A diagram set up of the experiment is shown in Fig. 3. 

Firstly, free vibration was studied. The settling time 

was the parameter of interest in that test. The 1st dof 

settling time of the free vibration without a CB-TMD was 

compared with the 1st dof settling time of the free 

vibration implementing a 2nd dof, that is, the CB-TMD. 

Masses of 0.350-0.750-1.350 in CB-TMD were used for 

this comparison. Initial condition of 25 mm in both 

positions were set. 

Secondly, forced vibration was studied. The vibratory 

amplitude of the stationary response was the parameter of 

interest in that test. The vibratory amplitude of the 1st dof 

without a CB-TMD was compared with the vibratory 

amplitude of the 1st dof implementing a 2nd dof, that is, 

the CB-TMD. The input force was 1.7 N and frequencies 

from 1 Hz to 3 Hz was used. 

 

 

Figure 3.  A block diagram of experimental set up 

A photograph of the test rig is shown in Fig. 4. It was 

designed to study the response either free vibrations or 

forced vibrations of systems with a main linear structure, 

this is, the 1st dof. A 2nd dof with geometrical 

nonlinearities was designed to function as a CB-TMD. 

Some design principles were used on the test bench. 

These are kinematic design, direct application of forces, 

and minimal contact surfaces. 

 

Figure 4.  Test rig 

A. Mechanical Integration of the Test Bench 

A kinematic mechanical design was implemented to 

avoid over constraints in the displacement of the main 

structure. To ensure a soft displacement without 

undesirable blockages in the mechanism, a cylindrical 

joint was placed in one side of the linear displacement 

and in the other side a rolling joint was placed. This is 

shown in Fig. 5. 

 

Figure 5.  Kinematic design  

The test bench table is made of aluminum profiles and 

rests firmly on the ground. The main structure or 1st gdl 

has a rhombus shape in order to increase its rigidity and 

be considered as a rigid solid. It is symmetrical to ensure 

that the center of mass coincides with the geometric 

center. It is made of aluminum profiles. Between the 

mechanical ground (table) and the 1st dof (main structure) 

there are the springs and the linear bearings. 

The 2nd dof or CB-TMD is a polymer (PLA) structure 

that enable to change mass on a discrete manner. The way 

in which it is held by the cables decreases its sensitivity 

to rotations or translations in a direction other than z. The 

CB-TMD is joined to the main structure by cables, stress 

can be setting through a precision screw. This is shown in 

Fig. 6. 

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 10, October 2020

© 2020 Int. J. Mech. Eng. Rob. Res 1374



 

Figure 6.  Laser sensors on main structure and 2° dof 

Forced forces are generated by a disbalanced rotor, it is 

actuated with a servo motor mounted in the main 

structure. This is shown in Fig. 7. The servo motor works 

to constant velocity controlled through a LabView 

interface. The rotation generates a centrifugal force sine 

as F=meω^2*sinωt. Since the point of view of the main 

structure there is a sinusoidal force in the z direction. 

Manipulation the parameters velocity of the motor, mass 

in the rotor and distance of these mass it is obtained 

different combinations of force and frequencies. 

 

 

Figure 7.  Components in test bench 

Characterization of elements used in the test bench: 

Spring: To obtain the spring stiffness constant, one 

extreme of the spring was fixed and the other was loaded 

with a set of different masses, the length change was 

measured. The spring used in the experiment has a linear 

behavior under the studied range.  

Damper:  Free vibration was used to obtain the main 

structure damping, it was displaced since equilibrium and 

released, displacement was measured and processed. 

Response was compared with known linear damping with 

viscous through a graphical method. Finally, value was 

adjusted to find damping coefficients. Main structure 

damping is present in springs and bearings. 

Cables: Based on previous researches, cables were 

characterized through free vibrations. The axial 

viscoelasticity of the cables behaves like a kelvin-voigt 

model. Therefore, the characterized parameters were 

spring constant and viscosity. The spring and damping 

characteristics of the cable are a function of the cable 

length. 

TABLE I.  PARAMETERS USED IN THE TEST RIG 

Parameter Value 

𝑚𝑒 14.2 Kg 

𝑘𝑒 1540 N/m 

𝑏𝑒 18.5 N/(m/s) 

𝑚𝑎 0.375; 0.896; 1.35 kg 

𝑘𝑐1 30000 N/m 

𝑏𝑐1 100 N/(m/s) 

𝑝𝑡 6 N 

𝑙𝑜 0.625 m 

𝑇𝑤 4.9135 N 

𝑏𝑎 0.01 N/(m/s) 

B. Sensors and Instruments 

Designed test rig uses two load cells and two 

displacement laser sensors. The load cells have a capacity 

of 15 kg and 3 kg, these were used to measure input 

forces of the 1 dof and to measure stress on cables 

respectively. Input force is measured between mechanical 

ground and main structure, while stress on cables are 

measured between 2°DOF and the main structure. 

Displacement laser sensors have a range of measurement 

of 300 m and a resolution of 30 mm, these are used to 

measure displacement of each degree of freedom. These 

are fixed on mechanical ground.   

We used an industrial computer NI PXIe-1082 with a 

controller NI PXIe-8135. There are two modules in the 

computer, one module of multiple purpose I/O model NI 

PXIe-6363 and a module of load cells model NI TB-4330. 

There are a Compact Rio 9030 that control a servo motor. 

A human machine interface was programed in 

LabView® software, where the tests are executed and 

controlled. It has an interactive panel to view the force, 

displacements and cable stress, also settings for start and 

stop the test. 

C. Procedure for Numerical Simulations 

Computational numeric methods were used to simulate 

the dynamic models in a computer. In Matlab® software 

version R2019a there are schedule scripts which call 

functions of the dynamic models. The dynamical models 

were solved with default ode45 Matlab® function. It is 

used to solve nonlinear systems. 

Frequency response simulation algorithm uses a sweep 

parameter methodology, one “for” cycles sweep the 

parameters for desired range of input frequency 𝜔. The 

step for simulations were used to achieve legible graphics 

and describe the phenomenon. In each iteration, the 

amplitude and frequency of the signal is calculated and 

saved in a matrix, finally these values are plotted. A 

resume of the algorithm is shown in Fig. 8. ___________________________________________ 
For (Minimum 𝐹 to Maximum 𝐹) 

       For (Minimum 𝜔 to Maximum 𝜔) 
Run the simulation 

 Get the amplitude of the signal 

 Save the amplitude time in matrix1 
 Get the frequency of the signal 

 Save the frequency in a matrix2 

 end 
Graph surface (matrix1) 

Graph surface (matrix2) ___________________________ 
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 Free vibration simulation algorithm uses a sweep 

parameter methodology, one “for” cycles sweep the 

parameters for desired range of input mass. Data were 

analyzed considered setting time to free vibrations. The 

default command step info in Matlab® was used to know 

steady-state response within the 5% of the final. 

Data for frequencies response were analyzed as a 

function of the vibration's amplitude in the steady-state 

response, known maximum and minimum response 

values. We used defaults max and min Matlab® functions. 

IV.

 

RESULTS

 In this section, the mathematical model described in 

section II was simulated through numerical methods in 

Matlab® software. First a comparison between simulated 

and real free vibration of the first and second degree of 

freedom is presented. Then, the effectiveness of the CB-

TMD is evaluated in the cases of free vibration and 

forced vibration. Evaluation criterion is the settling time 

in case of free vibration and the vibratory amplitude in 

the case of forced vibration.

 A.

 

Behaviour of Each Degree of Freedom 

Fig. 9 shows the graph that represent real and 

simulated free vibration responses of the main structure, 

this is the first degree of freedom. The free vibration is 

due to an initial position condition of -30 mm. The black 

line is the simulated data and the blue line is the real data 

obtained through the test rig. It is observed that the real 

oscillation has a linear decrement in the amplitude while 

the simulated has an exponential decrement. This 

behavior could be due to Coulomb friction components in 

the main structure vibration 𝑚𝑒. Also settling time of the 

simulated vibration is 5.79 s and the settling time of the 

real structure is 5.85 s. 

 

 
Figure 9. 

 
Comparison between real and simulated free vibration 

response of the main structure. 

Fig 10 shows the graph that represent real and 

simulated free vibration responses of the damper mass, 

this is the second degree of freedom 𝑚𝑎 . The free 

vibration is due to an initial position condition of 30 mm. 

The black line is the simulated data and the blue line is 

the real data obtained through the test rig. To make this 

test the main structure was fixed to mechanical ground so 

that the damper mass vibrates with reference to 

mechanical ground. It is observed that both graphs are 

similar. This kind of oscillation has a long settling time 

and a big amplitude. The internal viscous friction looks 

evident in its exponential decrement. 

 

Figure 10.  Comparison between the real and simulated free vibration 
response of damper mass. 

B. Effectivness of the CB-TMD in the Free Vibrations 

To evaluate the influence of CB-TMD in the settling 

time of the main structure 𝑚𝑒, simulations and validation 

experiments were carried out in the test rig. The 

mathematical model was simulated to evaluate the 

settling time of the structure with respect to different 

mass values. Subsequently, experimental validations were 

performed by varying the mass of the damper 𝑚𝑎 in the 

test rig. 

Fig. 11 shows the graph that represent in the black line 

the simulation for a variation of the mass of the damper 

𝑚𝑎 from 0.1 Kg to 1.5 Kg. The blue dots represent the 

real values obtained through experimentation. An 

increase in settling time is observed with respect to an 

increase in the mass of the damper 𝑚𝑎. The theoretical 

and experimental results were evaluated for an initial 

position condition of 25 mm. 

 

 

Figure 11.  Comparison between the real and simulated free vibration 
response of damper mass. 
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Fig. 12 shows the graph that represent the response in 

time of the two degrees of freedom during a free 

vibration. The mass value of the damper was 0.896 kg. 

The blue line is the vibration of the main structure, the 

red line is the vibration of the damper mass. The graph 

shows real data generated with the test rig. It is 

appreciated the interaction between both displacements, 

the difference between the amplitudes and the 

discrepancy in settlement times. Due to the low energy 

dissipation characteristic of the second degree of freedom, 

it remains oscillating long time after the oscillation of the 

main structure has already stopped or settled. 

 

Figure 12.  Response in time of the two degrees of freedom during a free 
vibration.  

C.  Effectivness of the CB-TMD in the Forced Vibrations 

  Fig. 13 shows real and simulated values of frequency 

response of the main structure. Two cases are presented, 

in black line the frequency vs. amplitude of the main 

structure without the use of CB-TMD and in red line the 

frequency against amplitude of the main structure with a 

CB-TMD. Black circles represent experimental 

measurements of vibrational amplitude without CB-TMD 

and red circles represent experimental measurements of 

the vibrational amplitude with CB-TMD. 
 

 
Figure 13.  Real and simulated values of frequency response of the main 

structure 
 

Fig. 14 shows the response in time of the two degrees 

of freedom during a forced vibration. The mass value of 

the damper was 0.896 kg. Both graphs show main 

structure vibration and correspond to the first degree of 

freedom. The blue line shows vibration without a CB-

TMD, and the red line shows vibration with a CB-TMD. 

The graph shows real data that was generated using 

designed test rig. Differences in amplitude between both 

cases can be observed. 

 

Figure 14. 

 

Response in time of the two degrees of freedom during a 

force vibration 

V.

 

CONCLUSIONS

 

In this investigation, the concept of cable-based tuned 

mass damper with geometric nonlinearities was presented, 

and the mathematical model of this system was 

developed. Its effectiveness to attenuate the vibration of a 

linear oscillatory system was evaluated numerically and 

experimentally. Specifically, its effectiveness was 

analyzed to decrease the settling time of the free vibration 

of a structure and to decrease the forced vibrational 

amplitude of the same structure. To achieve this, 

computer simulations of the mathematical model were 

performed. Subsequently, a test rig was built, dynamic 

parameters were characterized and experiments in free 

and forced vibration were performed in order to validate 

the mathematical model. 

From the numerical and experimental observations, it 

is concluded that the cable-based tuned mass damper with 

geometric nonlinearities does not contribute in reducing 

settling time of the free vibrations of linear oscillations of 

a degree of freedom, contrary it presents an increase in 

settlement time. Based on the numerical and experimental 

evidence, this phenomenon is attributed to the increase in 

the potential energy of the system with the addition of the 

second degree of freedom, and to the zone of low energy 

dissipation presented by the geometrically non-linear 

oscillator. 

From the behavior of the structural vibration due to a 

forced entry, it is concluded that the cable-based tuned 

mass damper with geometric non-linearities is viable for 

the reduction of the vibrational amplitude of the first 

degree of freedom. There is no great dissipative capacity 

in the tuned mass damper due to a low energy dissipation 

zone near the equilibrium point; therefore, the decrease in 

the first degree vibrational amplitude is due to resonant 

interference between the first and second degree of 

freedom, transmitting energy to the second degree of 

freedom. 
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The cable-based tuned mass damper with geometric 

nonlinearities is a concept whose advantages and 

disadvantages are still being evaluated. It is necessary to 

continue researching to explore its characteristics which 

are the areas of low rigidity and low energy dissipation 

centered on the equilibrium point. From the experience of 

the authors at the time of design and construction, some 

other advantages can be mentioned, which are a simple 

mechanical structure and fast implementation. It implies 

lower design, manufacturing and maintenance costs. 

As a future work, it is suggested a study of the 

influence of other variables such as the length of the 

cables, the number of cables and the level of tension of 

the cables is suggested. As well as the research of the 

frequency response of the nonlinear oscillatory system as 

a 1st degree of freedom. 
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