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Abstract—This paper presents navigation for four-wheel 

Omni Robot using architecture deep reinforcement learning 

in an unknown environment. A deep reinforcement learning 

algorithm combines with effectively training data using 

stochastic gradient updates in order to connect a goal. The 

approach is simulated and visualized using Gazebo and is 

updated via policies trained by deep Q learning network. 

Using recent deep-learning techniques as the basis of the 

framework, our results indicate that it is capable of 

providing smooth navigation for the Omni robot in 

exploring unpredicted surroundings. Once extended to real-

world operation, this framework could enable the Omni 

Robot to gain achievement for self-driving tasks.  

 

Index Terms—deep reinforcement learning, omni robot, 

Robot operating system, navigation 

 

I. INTRODUCTION 

In recent years, a significant number of practical 

applications for Omni robots have been received much 

attention in the scientific community, especially 

applications in relation to navigation for autonomous 

robots. More importantly, the deep learning methods are 

enable Omni robots to interact and navigate environments 

as human interaction ways. For example, by gathering 

data during the interaction and using end-to-end 

reinforcement learning [1], robots are able to learn 

interaction behavior through high dimensional sensory 

and camera information. Clearly, the visual sensor system 

is one of the keys to solving any tasks in relation to 

navigation, path detection for robots in unpredicted 

situations. Besides, in order tackle problems of obstacle 

avoidance, reinforcement learning, which plays 

differently from supervised and unsupervised learning 

branches, is becoming an efficient solution for 

autonomous robots nowadays [2], [3]. 

                                                           
Manuscript received December 15, 2019; revised March 9, 2020. 

With the purpose of putting machines close to the 

human perception of artificially intelligent, the 

reinforcement learning approach is developed to address 

the problem of agent learning to operate in an 

environment through maximizing a scalar reward signal. 

Over the past decades, there are numerous publications 

that concentrate on the improvement of deep 

reinforcement learning (DRL). One of these is the 

successful game Atari 2600 or Go games in [4], [5] by 

observing just the screen pixels and receiving a reward 

calculated taking into consideration the game score. 

Reinforcement learning was successfully combined with 

a convolutional neural net to approximate the action 

value. Other successful works have shown in [6], Arun 

Nair at el displays architectures of deep reinforcement 

learning (DQN) algorithms by optimizing approximately 

the Bellman equation. In terms of an autonomous robot, 

some papers have been published in [7]-[9] shown that 

the Q learning network is trained by sampling mini-

batches of experiences from buffer uniformly at random. 

However, applying particularly reinforcement learning 

in robot setting suffers from many challenges since the 

high dimensionality and continuous states and actions of 

the robot [10]. In a simulation, creating an accurate model 

robot and its environment are challenging and often 

require a lot of sufficient data samples. To address these 

dilemmas, the operation of learning of robots is simulated 

and designed in Gazebo since its compatibility with the 

complex structure of the robot. More than that, Gazebo 

enables to construct of a virtual environment [11], which 

is imperative in the process of scrutinizing reinforcement 

learning algorithms. Beside, one of major problems in 

mobile robot navigation is that how the robot can find a 

collision free path from its starting point. With 

reinforcement learning algorithms integrated in Gazebo, 

several methods have been proposed to deal with obstacle 

avoidances [12]-[15].  

This paper aims to illustrate how the Omni robot 

performs navigation using model-free deep Q learning to 
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navigate in unpredicted environments. It will also explain 

how to obtain the policy when such a model is unknown 

in advance by using a virtual environment to conduct in 

simulation. In Section II, the background of deep 

reinforcement learning is presented in part A, then the 

deep Q learning algorithm for Omni robot has been 

illustrated. After that, the architecture of Omni robot with 

Q network is shown in Section III. Research results in 3D 

simulation using Gazebo is included in Section IV. 

Finally, a conclusion is mentioned in Section V. 

II. DEEP REINFORCEMENT LEARNING 

A. Background  

Markov processes and Markov decision processes are 

widely used in computer science and other engineering 

fields. In reinforcement learning, Markov decision 

process (MDP) is applied to calculating sequence 
tS as 

the state representation at time t. In other words, the 

Markov property requires the states of the system to be 

distinguishable from each other and unique.  

A typical MDP is represented using a 6-tuple (S, A, T , 

γ , D, R), where S is a (finite) set of possible states that 

represent a dynamic environment, A is a (finite) set of 

available actions that the agent can select at a certain 

state,1 T is the state transition probability matrix that 

provides the probability of the system transition between 

every pair of the states, γ ∈ [0, 1) is the discount rate that 

guarantees the convergence of total returns, D is the 

initial-state distribution, and R is the reward function that 

specifies the reward gained at a specific state by taking a 

certain action. 

1 1 1 0 0 1P(s |s ,a ,s ,a ,...,s ,a )=P(s |s ,a )t t t t t t t t          (1) 
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Reward the agent receives by taking an action 

determined by policy π at the present state. Given a 

policy π, the MDP in (1) is reduced to a Markov chain 

with transition probabilities, given by where γ is the 

discount rate.  

A Q-network can be trained by minimizing a sequence 

of loss functions   that changes at each iteration i . 

arg 2
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target for iteration I and (s,a)p is a probability 

distribution over sequence s and action a. 

The parameters   of the so-called Q-network are 

optimized so as to approximately solve the Bellman 

equation. Differentiating the loss function with respect to 

the weights we arrive at the following gradient: 
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The Agent’s behavior at each time-step is selected by 

an ε-greedy policy where the greedy strategy is adopted 

with probability 1 – ε while the random strategy with 

probability ε. 

B. Learning Procedure for Deep Q Learning of Omni 

Robot in ROS 

The system observes the current scene including depth 

frames, and take action based ε-greedy strategy. The 

interaction experience 
1(s ,a , r ,s )i i i ie   is stored in 

replace memory M  keeps N most recent experiences by 

interacting with the environment , then DQN agent 

samples the mini batch from replay memory and train 

network on this mini batch. 

 

Algorithm for Deep Q learning with replace memory  

Initialize replay memory  to size N  

Initialize the Q- network (s,a, )Q    

Initialize the Omni robot system 

For episodes = 1,  do 

   Initialize sequence s1 = {x1} and sequence 
1(s )   

   For t, 1, T do 

          With probability ε select a random action at
ta        

          Otherwise select  *a max ( ( ), ; )t t iQ s a   

          
1,t ts r   Execute action 

ta  observe reward 
tr  

          Store transition
1( ,a , r , )t t t t  

 in   

           Sample random mini batch of                       

1( ,a , r , )t t t t  
 from     

           Set: 

1*

1 1

                                 for terminal 

max ( ,a ; )for non-terminal  

i i

i a j i

r
Q

r Q



   



  


 


 

          Perform a gradient descent step on        
2( ( , ; ))i iy Q s a   according to equation (4) 

     End for 

End for  

 

III. THE ARCHITECTURE OF CONTROL SYSTEM OF 

OMNI ROBOT 

A. Robot Controller Design 

 
Figure 1.  Omni robot. 

The Omni robot has four wheels which are 90 degrees 

apart. The robot movement would be identified for the 
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navigation stack. As the global coordinate chosen in Fig. 

1, it is obvious that the velocity of the robot contains 

three components: a linear velocity along Ox-axis and 

Oy-axis an angular velocity.  

 The robot’s coordinate vector is defined as 

 
T

q x y   and the velocity of the robot in the 

global coordinate could be obtained by taking the 

derivative of q . Oxy represents the global coordinate 

axis, the distance between wheels and the robot center 

was defined by d .To facilitate the robot controller 

design, the relationship between the velocity in the 

robot’s axis and the velocity in the world’s axis is 

described by the kinematic model of the robot: 

cos sin 0

sin cos 0 .

0 0 1

q v

 

 

 
 

  
 
 

                       (5) 

From (1), we obtain the equations which would be 

used to program the robot’s navigation in ROS: 

            

cos sin

sin cos

x y

x y

x v v

y v v

w

 

 



  


 

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       (6) 

where , ,x yv v  and w  are the velocity in the robot’s axis 

and the velocities is the control signal generated from the 

local planner. The robot position is directly controlled by 

these signals which are transformed into the desired 

signals for four wheels of the robot. The transformation 

formula is described as below: 

1 2 3 4

1 2 3 4

1 2 3 4 1 2 3 4

2
( )

8

2
( )

8

( ) ( )

4 4
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y
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


   


     
 



      (7) 

With the references value transformed from the local 

planner, the velocity for each wheeled can be computed 

to ensure the robot to track the desired value 

B. Architecture Omni with Deep Learning  

To handle the large number of state-action pairs in 

autonomous mobile robot avoiding obstacle problems, we 

implemented deep Q-learning using a neural network to 

select appropriate action with environment. Fig. 2 shows 

that the structure of the robot learning system with a Q 

network. 

The Omni robot selects 8 actions shown as Fig. 3 by 

Q-values and reflects it in the environment by 

observation spaces. Afterward, the reward will be stored 

from an environment in replace memory, which is inputs 

of Omni as sample random transitions for training the Q-

network.  

 

 

Figure 2.  Architecture of robot learning system based on deep network. 

The input of the network is state vectors generated by 

concatenating 26 range-scan measurements with the 

angle and distance to the objective. In the range of 360 

degree of Lidar, robot scan any obstacles with its max 

radius 20 m, the output of eight possible actions is 

interpreted as movement of a straight line. the CNN 

network comprises of three convolution layers and two 

fully connected layers with a single linear output. When 

using simple CNN network, Omni robot is capable of 

using graphical computing units for faster.  

 

 

Figure 3.  Actions of Omni robot. 

During training, we used the RMSPropOptimizer 

because of its lowest variance. The network parameter is 

installed by the learning rate of 0.005, decay of 0.99. The 

learning rate was decreased during the training as this 

also proved to stabilize the learning. 

 

 

Figure 4.  Architecture of robot learning system in Gazebo. 
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In order to overcome the dimensional problems of 

robot, the Omni robot system is installed in Fig. 4 

including main blocks, namely map_server, Odometry, 

Robot controller, and Reinforcement learning, which are 

encapsulated in nodes. In Gazebo, sensors like IMU and 

RPLidar are the importance components to set up 

information states of Omni robot. The laser sensor is used 

to recognize the obstacles around the robot in the virtual 

map while the current position of Omni robot is updated 

by using the odometry mearsurements from 

Odometry_source in environment. Map_server is used for 

updating the map with the new obstacle. During trial-and-

error with the unknown environment, Reinforcement 

learning block returns angular and linear velocity. DQN 

network is also updated after 50 epochs in order to 

modify appropriate weights for network that estimate 

what the optimal Q-value by defining clearly it 

interpretation between action and states of robot. 

IV. SIMULATION 

In order to examine adequately the capability of the 

mobile robot, some tasks are performed in simulations by 

designing a robot simulator in Gazebo. 

A. Experiment Setup  

An Omni robot is considered as an agent. The 

simulation constructed in a static map shown as Fig. 5. 

The desired area is spawned randomly as the target area 

and a goal of agent. When reaching the destination or 

colliding to the wall, the reward was set +40 or -20 

respectively.  

 

 

Figure 5.  Robot model and environment in Gazebo. 

 

Figure 6.  Robot model occur collision. 

The robot model is designed using the URDF package, 

the Astra camera and the RPLidar are placed on the top of 

the robot while Omni wheels are designed with some 

rollers arranged around the perimeter of the wheel, which 

allows the Omni robot can move in all directions. 

At the initial time, the robot model is placed on the 

generated map shown in Fig. 6 with some walls built in 

Gazebo. The blue area depicts the laser scan signal 

generated from RPLidar that used to identify the obstacle 

around the Omni robot. 

B. Simulation Result 

The Omni robot learns when a collision occurs, then it 

returns to the initiative position and adjust the net weight 

again based on the former learning result. From the result, 

when the robot is not high-understanding of the 

surrounding, the robot trajectories at early stages is not 

smooth. It takes a long time to acquaint the environment 

and reach toward the goal. After 300 epochs, the robot is 

capable of obstacle avoidance and has tendency toward 

the goal shown as Fig. 7. The Fig. 8 shows that the Omni 

robot perceives the shorter trajectory of toward goal with 

after approximately 700 epochs.   

 

 

Figure 7.  The ability of Obstacle avoidance. 

 

Figure 8.  The ability of Obstacle avoidance. 

RVIZ is a powerful tool in ROS to visualize and 

monitor the movement of the robot as well as the values 

of the sensors. The red lines show the range of the laser 
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scan which is published by Rplidar in Fig. 9. The robot 

model which is construccted in Gazebo is also monitored 

with its coordinates. Moreover the coordinate and the 

position of the robot are easy to observe. 

 

 

Figure 9.  Robot movement in monitoring software RVIZ. 

 

Figure 10.  The total rewards of each epoch. 

Fig. 10 shows the total reward obtained by the robot in 

each epoch. During the initial period, when the Omni 

robot inadequately gets information on the environment, 

there are two tendencies in the robot movement. The first 

trend of that is the collision with the surround obstacles 

due to the knowledge shortage of the robot about the 

landmarks. The remaining trend is the robot’s motion 

described by randomly navigating in any directions and 

this motion is performed based on the defined robot’ 

actions. Therefore, the robot is not likely to reach the goal 

position so that the total reward points fluctuate around 

some negative values. After a hundred epochs, the states 

of environment gradually are identified by the designed 

reinforcement network, leading to an upward trend of the 

reward point as well as the robot has the ability to move 

to the reference position. When the robot’s knowledge 

reaches a certain threshold, the robot is capable to move 

smoothly to the desired goal, that leads to the increase to 

positive values of the reward point as verifying the 

effectiveness of the proposed method. 

V. CONCLUSION 

This paper has presented the construction of the 

navigation task for the four-wheeled Omnidirectional 

mobile robot and proposed the reinforcement learning 

method for implementing the robot’s operating process in 

the virtual map built in Gazebo. The robot system and the 

reinforcement network are built in ROS. The task are 

based on the network with the laser scan signal generated 

from RPLidar is the input data. The simulation results 

show the significant performance of the proposed method 

in obstacle avoidance and finding the path toward the 

goal destination for the Omni robot. Moreover, the 

robot’s operation could be monitored through the 

visualization tool and opens high likelihood DQN 

algorithm into differently specific environments. The 

practical model for the Omni robot will be constructed 

and the reinforcement learning network will be 

implemented in the robot’s navigation task in the real 

environments for the future work. 
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