
Thinging the Robotic Architectural Structure

Sabah Al-Fedaghi and Manar AlSaraf
Computer Engineering Department, Kuwait University, Kuwait

Email: sabah.alfedaghi@ku.edu.kw, manar.j.alsaraf@grad.ku.edu.kw

Abstract—Robot architecture refers to the architectural

structure of a system and its subsystems and how those

subsystems interact. From the modeling point of view, the

architecture is the conceptual model that defines the

structure, behavior, and other aspects of a system. This

paper proposes the adaptation of a recent modeling

technique, thinging machine (TM), to develop a high-level

neutral (no hardware or software) description of robot

architecture. Using the TM, several robot projects from the

literature are remodeled and an actual robot case study is

redesigned. The results point to the viability of applying the

TM in robotics.

Index Terms—robotic architectural model, conceptual

model, navigating robot, SLAM, thinging machine

I. INTRODUCTION

Many projects in robotics are developed from scratch

with an absence of a systematic approach that specifies

robotic architectures, which may cause ad hoc designs

that are not flexible and reusable [1]. According to

Ramaswamy [1], “In the last two decades, the robotics

research community has seen a large number of

middlewares, code libraries, and component frameworks

developed by different research laboratories and

universities… It is high time that roboticists transform

themselves as system thinkers in addition to being

domain experts.”

According to Kortenkamp and Simmons [2], robot

architecture refers to two related, but distinct, concepts.

(i) Architectural structure describes how a system is

divided into subsystems and how those subsystems

interact. From a robot architecture perspective, it facilitates the

decomposition of systems into simpler, largely

independent modules. This robot system structure is

often represented informally using traditional “boxes

and arrows” diagrams or more formally using

techniques such as UML. Marinho da Silva,

Rodrigues de Souza, Simões and Campos [3]

recently presented a framework based on Petri Net,

which is utilized in modeling multi-robot systems

due to the high interactions between them.

(ii) On the other hand, architectural style refers to the

computational concepts that underlie a given system.

In the robotics community, for example, one robot

system might use a message passing style of

communication, while another may use a

synchronous client-server approach.

Manuscript received October 23, 2019; revised July 13, 2020.

Many existing robot systems have unclear

architectures because the implementations have no

defined subsystem boundaries [2]. A well-defined

architecture has significant advantages in the

specification, execution, and validation of robot systems.

Robot architecture facilitates discipline in the design and

implementation of robotic systems. For example,

according to Kortenkamp and Simmons [2], “Separating

behaviors into modular units helps to increase

understandability and reusability, and can facilitate unit

testing and validation.”

In the modeling community, according to Jaakkola and

Thalheim [4], the architecture is the conceptual model

that defines the structure, behavior, and other aspects of

a system. We will adopt this definition.

Architecture in this context refers to the integration of

various functionalities to determine the overall behavior

of a system. It includes control architecture that integrates

various kinds of hardware and software modules [5].

According to Ramaswamy [1], an architecture model

captures multiple viewpoints that satisfy the requirements

of various stakeholders. A hardware engineer sees the

parts that need particular processors, whereas a system

architect is interested in component topology. A good

architecture model acts as a mediator between

requirements and implementation. The architecture model

plays a critical role in the development life cycle.

This paper proposes a systematic methodological

approach that helps in specifying various aspects of

robots at the architectural level. Section 2 provides a brief

review of related research with samples of current

diagramming methods. Section 3 introduces a brief

description of the TM model. Several robot projects from

the literature are remodeled using the thinging machine

(TM) concept in Sections 4 and 5. In Section 6, an actual

robot case study is redesigned using the TM.

II. RELATED WORKS

This section summarizes an extensive review of robot

architecture. Robot architecture and programming began

in the late 1960s using stepping motors, cameras, range-

finder sensors, touch sensors (to identify collisions), and

computer connections via radio links [6]. A major

development occurred in the 1980s with the so-called

subsumption architecture built from layers of interacting

finite state machines that each connect sensors to

actuators [7]. Several behavioral architectures arose in

addition to subsumption with schemes for combining the

outputs of behaviors [8]. Furthermore, Firby [9]

1110

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 8, August 2020

© 2020 Int. J. Mech. Eng. Rob. Res
doi: 10.18178/ijmerr.9.8.1110-1121

developed the Reactive Action Package system that

aimed at the integration of reactivity and deliberation in

three-layer architecture. Bonasso [10] devised the so-

called Rex machines with an architecture that guarantees

consistent semantics between a robot’s internal and

external states. Moving to the 21st century, the syndicate

architecture [11] extended the three tiers of interacting

control processes to multi-robot coordination.

In subsumption architecture, behaviors run

concurrently with a hierarchical control scheme, whereas

in autonomous robot architecture, [12] behaviors are

combined using potential functions. Other architectures

[8] use explicit arbitration mechanisms to choose among

potentially conflicting behaviors.

Kortenkamp and Simmons [2] give an example of a

delivery robot that operates in an office building to

illustrate various architectural approaches that handle

robot behavior. The behavioral control layer contains the

functions to move and carry out delivery tasks, assuming

an a priori map. Some possible behaviors for this robot

include:

1. Move to location while avoiding obstacles

2. Move down hallway while avoiding obstacles

…

8. Determine location

9. Find the destination office

10. Announce delivery.

This paper proposes the adaptation of the recently

developed TM modeling technique to create a high-level

neutral (no hardware or software) description of robot

architecture. The service robot example above gives an

opportunity to examine the form of the description

produced by the TM.

Before giving our approach to modeling this problem,

we describe service robot architecture.

Kim [5] developed software for a service robot’s

autonomous navigation system using UML. According to

Kim, the functional requirements define what the system

should do. Kim used a use case model that is specified as

follows:

1. The commander enters a destination.

2. The system calculates the optimal path to the

destination.

3. The system commands the actuator to start moving to

the destination.

4. The actuator notifies the system that it has started

moving.

5. The system periodically reads sensor data and

calculates the current position.

6. The system determines that it has arrived at the

destination and stops.

7. The wheel actuator notifies the system that it has

stopped moving [5].

Figs. 1–5 show parts of the system’s different diagrams.

Static modeling is achieved using a class diagram. Kim

also used a state diagram, as well as collaboration,

sequence, and other diagrams. Additionally, to integrate

these diagrams, Kim [5] applied the concurrent object

modeling and architectural design method [13] to analyze

and design subsystem structures and interfaces, including

the synchronization and communication between them.

Figure 1. Use case diagram for navigation (partially redrawn from [5]).

Figure 2. Robot navigation system context class diagram (partially

redrawn from [5]).

Figure 3. Object structuring class diagram for navigation system

(partially redrawn from [5]).

Figure 4. Collaboration diagram for navigation use case (partially

redrawn from [5]).

Figure 5. State chart for navigation control (partially redrawn from
[5]).

III. ABOUT THE TM

The TM is centered on things and (abstract) machines

in a system. According to Malafouris [14], people are

1111

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 8, August 2020

© 2020 Int. J. Mech. Eng. Rob. Res

creative “thingers” in the sense that “we make new things

that scaffold the ecology of our minds, shape the

boundaries of our thinking and form new ways to engage

and make sense of the world.” The TM is based on

Heidegger’s philosophical concept of thinging [15].

According to Riemer et al. [16], Heidegger’s philosophy

gives an alternative analysis of “(1) eliciting knowledge

of routine activities, (2) capturing knowledge from

domain experts and (3) representing organizational reality

in authentic ways.” More information about this topic can

be found in [17]-[19].

The TM is the simplest type of the thing/machine and a

generalization of the known input-process-output model.

The flow of things in a TM refers to the exclusive

conceptual movement among five operations (stages) as

shown in Fig. 6. A thing is what is created, processed,

released, transferred, and/or received in a machine.

Figure 6. Thinging machine.

Accordingly, the TM stages can be described as

operations that transform, modify, etc. things either in the

abstract sense or in the “concrete” sense. They are briefly

described as follows.

Arrive: A thing flows to a new machine (e.g., packets

arrive at a port in a router).

Accept: A thing enters a TM after arrival (we will

assume that all arriving things are accepted). Hence, we

can combine arrive and accept as the receiving stage.

Release: A thing is marked as ready to be transferred

outside the machine (e.g., in an airport, passengers wait to

board after passport clearance).

Process: A thing is changed in description rather than

producing a new thing.

Create: A new thing is born in the machine (e.g., a

forward packet is generated in a machine).

Transfer: A thing is input or output in/out of the machine.

The TM includes one additional notation—triggering

(denoted by dashed arrows)—that initiates a new flow

(e.g., a flow of electricity triggers a flow of air). TM

modeling has been utilized in many applications (e.g., Al-

Fedaghi [20]-[42]).

IV. APPLYING THE PROPOSED ARCHITECTURAL

STRUCTURE

We simplify Kortenkamp and Simmons’ [2] example

by ignoring minor details (e.g., find doorknob). The TM

uses only five verbs: create, process (change), release,

transfer, and receive. It uses two types of arrows: a solid

arrow denotes flow, and a dashed arrow signifies

triggering. Fig. 7 shows the TM model of this example.

The figure includes the starting point (circle 1), the robot

inside the starting point area (2), other areas in the way to

the destination (3), and the destination (4).

Figure 7. The static TM model of Kortenkamp and Simmons’ [2] simplified example.

1112

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 8, August 2020

© 2020 Int. J. Mech. Eng. Rob. Res

Figure 8. The static TM model of Kortenkamp and Simmons’ [2] simplified example.

a. A destination address is input to the robot (5;

upper left corner of the figure).

b. The robot receives (6) the address and sends it to

its mapping system.

c. In the mapping system, the address is received (7)

and processed (8), triggering the robot to create

the necessary coordinates (9) for the movement to

the destination.

d. The coordinates flow to be processed (10), which

triggers the control unit to create (11) instructions

that flow to the actuator (12).

e. The actuator processes the instructions and

triggers the processing (13) of the physical robot,

which involves creating (14) movement. Note that

the movement is a component of the physical

robot (white box inside the L-shaped purple

figure).

f. A signal is continuously (to be discussed in the

dynamic TM model) generated (15) that flows (16)

to any obstacle (if any exist) and reflected to be

processed (17) which stops (18) the robot’s

movement.

g. Creating the signal initializes the clock time (20).

If the time reaches a certain threshold (21), then it

triggers the robot to resume movement (22).

h. The robot’s movement triggers the creation of

current position data (23) that flow to the mapping

system, creating new coordinates that cause the

creation of new instructions.

i. The robot eventually moves (24) from one area to

another (25) on its way to the destination. In all

areas the robot’s description is identical to the

robot at the start, except for receiving the first

destination input (separated by a dotted line).

j. At last, the robot arrives (26) at the destination.

To build the dynamic model we use the notion of

events. We select the following events (see Fig. 8):

Event 1 (E1): The destination address is received by the

robot and processed.

Event 2 (E2): Coordinates are generated and flows to

the control unit to issue instructions to the actuator.

Event 3 (E3): The robot moves.

Event 4 (E4): Position data are generated and sent to

the mapping system.

Event 5 (E5): An obstacle causes the robot to stop.

Event 6 (E6): The robot avoids the obstacle and

movement is resumed.

Event 7 (E7): The robot moves to another area on its

way.

Event 8 (E8): The robot reaches its destination.

Fig. 9 shows the robot system’s behavior according to

the chronology of events.

Figure 9. Chronology of events in Kortenkamp and Simmons’ [2]
simplified example.

V. TM VS. UML ACTIVITY DIAGRAM

Matsas et al. [43] described a human-robot

collaboration project that involves hand lay-up process of

pre-impregnated carbon fabric in an industrial work cell.

In the project scenario, a robotic manipulator is

assigned the task of picking patches and transferring them

to a user. The user takes a patch from the robot and places

it in the correct position inside a metallic die, and the

robot proceeds to feed the next patch. The process is

1113

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 8, August 2020

© 2020 Int. J. Mech. Eng. Rob. Res

repeated until the user has placed all patches properly in

the die, hereby represented by the avatar’s hands. During

execution, the user is asked to wear a head-mounted

display. Calibration of the user against the avatar skeleton

is achieved by the user raising his or her hands with both

elbows, thereby standing in a “Y” posture. After

calibrating, users are allowed some time to familiarize

themselves with the system. When the user moves in real

space, the avatar’s body and the virtual viewpoint change

accordingly. When the user walks around in real space,

the avatar follows the same path in the virtual

environment. When the user turns his or her head, the

avatar’s head and the first-person camera attached to it

respond accordingly. The user can also collide or interact

with rigid bodies in the virtual scene and bend his or her

body in every direction.

Fig. 10 is a diagrammatic representation of the system

activity workflow using a UML activity diagram. This

gives us opportunity to contrast the TM (Fig. 11) model

with the UML representation.

In Fig. 11, the model starts with the user wearing the

head-mounted display (circle 1) and entering the system

area (2) to be processed (3), which involves the Kinect

tracker detecting the user (4). The user then stands in the

“Y” posture (5) for the Kinect tracker to detect (6). The

user creates an avatar (7), then presses the start button via

the avatar (8), which activates the robot (9 and 10). The

robot holds the first patch (11), and then the user

approaches (12) the robot (13).

Figure 10. UML activity diagram for the system workflow (partially redrawn from [43]).

Figure 11. The TM model that corresponds to the activity diagram of Fig. 9.

1114

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 8, August 2020

© 2020 Int. J. Mech. Eng. Rob. Res

Figure 12. The events in the human-robot collaboration system.

The avatar then interacts with the robot (14) to create a

collision state (15) in which the robot releases the patches

(16). The avatar then receives (17) the patches for

processing (18) and dying (19).

To construct the dynamic model, we identify the

following events (see Fig. 12).

Event 1 (E1): The user wears the head-mounted display.

Event 2 (E2): The user moves in the system area.

Event 3 (E3): The user is tracked by the Kinect tracker.

Event 4 (E4): The user takes the “Y” posture, which is

detected by the Kinect tracker.

Event 5 (E5): The user performs animation of the

avatar.

Event 6 (E6): The user presses the start button, which

activates the robot.

Event 7 (E7): The robot holds a patch.

Event 8 (E8): The user approaches the robot.

Event 9 (E9): The avatar collides with the robot to

create a collision state.

Event 10 (E10): The robot releases the patch, which the

avatar receives for processing and dying.

Fig. 13 shows the chronology of events.

Figure 13. The chronology of events for the human-robot collaboration
system.

VI.

CASE STUDY:

THE SLAM

ROBOT PROJECT

In this section, we introduce an actual university

project that involves the well-known simultaneous

localization and mapping (SLAM) algorithm [44]. The
project aims to develop a robot that traverses an
environment and provides a map of the environment.

A. Project Description

According to the researchers’ final report, almost all
current technology that allows a robot to traverse an area
uses Global Positioning System (GPS) data.” However,
the university researchers want the robot to navigate
inside buildings or dangerous locations when GPS cannot
be used.

In the review of SLAM implementations in their final
report, the researchers discussed an overall flow chart of
the robot navigation developed by French company NAO
[45] (see Fig. 14). We show such a diagram to illustrate
the description of the interest level in the project.

Figure 14. The NAO overall navigation flow chart (from [45]).

The authors in [44] created a new robot named The
Exploring Master (TEM) that outperforms similar
projects. Many hardware and software tools are
compared/contrasted, including platforms, motors,
sensors, and software tools (e.g., robot control center,
phidgets, stepper drives, interface kits, adapters, and
sonar range finders) to decide which hardware best suits
the project. This indicates that implementation details are
considered very early in the robot development cycle.

1115

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 8, August 2020

© 2020 Int. J. Mech. Eng. Rob. Res

Then came a system architecture as a model that
defines the structure and behavior of a system. “Basically,
it is a representation of the system that contains the
system’s components and the relationships between them
including the direction of data transfer” [44]. Architecture
diagrams mostly involve hardware devices, such as a PC,
monitor, phidgets, battery, and stepper motor. A use-case
system is shown in Fig. 15.

The next section in the university researchers’ report

discusses the hardware and software components. Fig. 16

shows the flowchart of the movement subsystem.

Figure 15. TEM use-case diagram (partially redrawn from [44]).

Figure 16. Movement subsystem flowchart (partially redrawn from

[44]).

In addition, the researchers discuss the obstacle

detection subsystem, including the problem faced and

how to overcome it. Furthermore, to reduce measurement

errors, the researchers used a compass to orient the angles

of the robot’s movement. Finally, they introduce the

testing results.

B. Observation

The robot was built without substantial reliance on

requirement analysis and logical design. For example, the

researchers never mentioned the use-case model in

implementing the project. The project is based on

hardware-oriented construction and lacks a conceptual

architecture model that integrates various functionalities

to determine the overall behavior of the system. As

mentioned previously in the introduction, a good

architecture model acts as a mediator between

requirements and implementation, and it plays a critical

role in the development life cycle. We believe that the

TM can play a role that enhances the analysis and design

phases in the robotics development cycle.

C. General Problem

We claim that constructing robots based mainly on

hardware with little attention to conceptual modeling in

requirement analysis and design is a common problem in

robotics, especially in university environments. We give

another example of a University of Auckland project, as

described in Looker et al. [46].

Looker et al. [46] state that the SLAM problem is

difficult because sensors do not receive enough

information about the robot’s surroundings. They

identified critical tasks (e.g., motor control and

movement, sensor management and scanning, and map

generation and presentation) and studied motor control,

including the motor speeds and their signals. They

conducted a series of tests (with equations and graphs)

using a tachometer, and they analyzed trajectory control,

wall follow control, yaw control, and position control,

which they integrated in a unified control system shown

in Fig. 17.

Figure 17. Position control system diagram.

Figure 18. Finite state diagram.

Looker et al. [46] discussed blockage identification

using an in-depth level of description. Furthermore, they

used mathematical equations and diagrams to discuss

sensing, scanning, and geometry calculations.

They used a finite state machine (Fig. 18) to describe

the robot’s highest level of intelligence. The description

level of the robot’s dynamic behavior is specified as

follows: “When the robot first starts up there are 3 basic

steps it completes. Throughout all these steps, obstacle

detection and avoidance is automatically running. During

the start state, when a blockage is identified as an

obstacle, the robot rotates 20˚ and rescans, this is done

continuously until an orientation is found in which there

are no obstacles blocking the wall.”

1116

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 8, August 2020

© 2020 Int. J. Mech. Eng. Rob. Res

They described the code structure in plain English and

made a class diagram showing the direction controller,

sensors, map maker, collision detection, motor, and motor

controller. In addition, they included hardware

descriptions of various types of sensors.

Looker et al. [46] concluded that the project was very

successful: “Unfortunately on the day of assessment there

were issues with the sensor and some minor code fixes.

These problems were fixed later.” The author believed

that the verification of functioning hardware could have

been improved. One other difficulty faced while working

in a group is understanding each other’s code and

ensuring various modules match.

As we can observe, Looker et al. [46] progressed the

project from the hardware and mathematics stages but

without an architectural view that ties the project together.

They developed a state diagram but it hardly expressed

the project.

VII. TM MODEL OF A SIMPLE NAVIGATING ROBOT

We have decided to redesign the navigating robot

described in section 6 (A) to demonstrate the proposed

TM-based architecture. It is important to note that one of

the authors of this paper was part of the team that built

that robot. For practical reasons, the navigating robot will

be simplified as follows.

The simplified problem involves a robot that navigates

to measure the length of a wall, as shown in Fig. 19. The

robot’s first task is to reach one end of the wall, then it

goes to the other end to measure the distance between the

two ends (i.e., the wall’s distance).

Fig. 20 shows the static TM representation of the robot

system that includes a user interface, a processor, and the

robot itself.

Figure 19. The problem of measuring the length of a wall.

The robot consists of two parts: the internal controller

and the physical robot. The user enters a one-time

threshold (1), and a signal is generated in the user

interface (2) that flows to the processor (3) then to the

robot controller (4). In the robot controller, the signal is

processed (5) to trigger the state of the physical robot to

be ON (6), which triggers (7) the sensor to be ON (8).

Accordingly, the robot works as follows.

The sensor generates signals (9) that flow to the robot

controller (10) to move the robot toward the wall (11)

where we have three situations.

i. Location beside wall (not corner): The signal is

reflected (12) and arrives to the robot controller

where it is processed (13) and triggers a one-step

movement of the robot (14). This updates the counter

(15) and triggers (16) the sensor to generate another

signal (9).

Location at the corner: Upon receiving the signal

(17), the clock time is triggered to be ON (18) and is

triggered every incoming sensor signal in which it

takes its course (i.e., processed (19)). In addition, the

threshold (2) is frequently compared to the clock

time, in other words, processed (20). If the clock

time is greater than the threshold, then the following

occurs:

ii. First corner: Upon the robot’s arrival at the first

corner, a first-time flag is set (21). In addition, the

robot is triggered to rotate 180° (22), followed by

initializing the counter (23) and generating a new

signal (24).

iii. Second corner: The signal triggers the counter (25)

to be transferred (26) to the processor to generate (27)

the display of the distance on the user interface (28).

To build the dynamic model, we identify the following

events (see Fig. 21).

Event 1 (E1): The user enters a one-time threshold.

Event 2 (E2): The user turns the robot on.

Event 3 (E3): The processor sends the TURN ON

signal to the robot.

Event 4 (E4): The first-time flag is turned ON, and the

distance field is created.

Event 5 (E5): The robot is switched ON.

Event 6 (E6): The sensor is switched ON.

Event 7 (E7): The sensor sends a signal to the

controller.

Event 8 (E8): The controller sends a signal to the wall.

Event 9 (E9): The signal is reflected by the controller.

Event 10 (E10): The robot takes one step forward and

updates the counter.

Event 11 (E11): The time at which the sensor sent the

signal is registered

Event 12 (E12): The robot reaches the first or second

corner.

Event 13 (E13): The flag is updated and the robot

rotates 180° (corner 1).

Event 14 (E14): The counter is reset (corner 2).

Event 15 (E15): The distance is retrieved and displayed.

Fig. 22 shows the behavior of the robot system

according to the chronology of events.

VIII. CONCLUSION

It has been proven that robot architectures play an

important role in fully understanding any system. In

addition, they allow systems to control actuators, monitor

execution, and be flexible with any changes. Researchers

have come up with several architectures that can be

applied in various projects. It is up to the researcher to

choose among the available architectures which

architecture is best depends upon the requirements. This

paper includes a new model (i.e., TM) that may be used

in systems with conceptual movement between real and

virtual objects. This type of model contains five

operations with transition flow, providing a more detailed,

expressive methodology than common models used today.

Therefore, we used it to remodel existing robot projects

for better understanding and visualization of the robots’

systems.

1117

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 8, August 2020

© 2020 Int. J. Mech. Eng. Rob. Res

Create

ON
Signal

Release Transfer

Robot

Process
 State Create

 ON

OFF

Sensor
 State

Signal

Create

Process (movement takes

its course)

Wall

Transfer

Process

Increment

Create

zero

Distance

Initially zero

First-

time

flag

Receiv

e

Transfe

r

Process

Create

Transfe
r

Receive Release

 Data

Process
Process: display

Transfe
r

Receive Release Transfer
Transfe

r

Release

Transfer

Transfer Receive Process

Controller
 Physical

Robot

Create Release Transfer

GUI Controller User Interface

Processor
Receive

Process

If time of sending >

threshold and 1sst time

 Else

Threshold

Create

ON

3

4 5

6

18

7

Time

Rotation 180

Counter

Forward

movement one-

step

Process

 Input

Transfe

r

Transfer Receive

Create Release

9
10

11

12

13
14

15

19

2

17

16

21

20 22

23

26

27

Release

Transfer

Receive

28

24

25

Receive

Transfer

Transfe

r

Transfe

r

 Create ON

 OFF

8

Releas
e

Time of

sending

1

Figure 20. The static TM model of the measuring the wall problem.

1118

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 8, August 2020

© 2020 Int. J. Mech. Eng. Rob. Res

Create

Create E1

Transfer

Releas

e

E2

Wall

ON
Signal

Transfer

Process Process: display

Transfer Receive Release Transfer
Transfe

r

GUI

Controller
User Interface

Processor
Receive

Threshold

Transfe
r

Release

Release

E3

Figure 21. The dynamic model of measuring the length of a wall.

 Create

 ON
OFF

Sensor

Create

Process

Increment

Create

zero

Process

Create

Process

 Controller
 Physical

Robot

Create

Process

If time of sending > threshold

and 1sst time

 Else

Threshold

Create

 ON

Time

Counter

Forward

movement one-

step

Process
Receive Release

Transfe

r

Receive

Transfe

r

Robot

Process
State

Receive Transfe
r

 State

 Create ON

 OFF

E5

E4

Release Transfer Transfe

r
Receive Release Transfe

r

E10

E9
Transfer Receive

E7

E6

E1

1

E14

Time of

sending

E12

Process (movement takes
its course)

Receive

Transfe

r

E8 Transfer

 Data

 Release

Transfe

r

E15

Distance

 Signal

First-

time

flag

Rotation 180
E13

E4

1119

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 8, August 2020

© 2020 Int. J. Mech. Eng. Rob. Res

Figure 22. The chronology of events in the model of measuring the length of a wall.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

The first author is the main developer of the TM model

as described in Section III. The second author is one of

the builders of the navigating robot described in Section

VI. Both authors developed the TM model in Section VI.

REFERENCES

[1] A. Ramaswamy, “A model-driven framework development

methodology for robotic systems,” Ph.D. thesis, Dept. Comput.

Sci. and Syst. Eng., Univ. Paris-Saclay, France, September, 2017.
[2] D. Kortenkamp and R. Simmons, “Chapter 8: Robotic systems

architectures and programming,” in Handbook of Robotics, Berlin:
Springer-Verlag, 2008, pp. 187-206.

[3] R. Marinho da Silva, J. Rodrigues de Souza; M. A. C. Simões and

J. A. P. Campos, “Framework for modeling autonomous multi-
robots systems,” 15th Latin American Robotics Symposium (LARS)

Joao Pessoa, Brazil. November 6-10, 2018.
[4] H. Jaakkola and B. Thalheim, “Architecture-driven modelling

methodologies,” Frontiers in Artificial Intelligence and

Applications, vol. 225, pp. 97-116, 2010.
[5] M. Kim, S. Kim, S. Park, M. Choi, M. Kim and H. Gomaa,

“UML-based service robot software development: A case study,”
in 28th International Conference on Software Engineering (ICSE

2006), Shanghai, 2006, pp. 534-543.

[6] N.J. Nilsson, “A mobile automaton: An application of AI
techniques,” in Proc. of the First International Joint Conference

on Artificial Intelligence, San Francisco, 1969, pp. 509-520.
[7] R. A. Brooks, “A robust layered control system for a mobile

robot,” IEEE Journal of Robotics and Automation, vol. 2, no. 1,

1986, pp. 14-23.
[8] J. K. Rosenblatt, “DAMN: A distributed architecture for mobile

robot navigation,” PhD dissertation, Carnegie Mellon University,

United States, 1997.
[9] R. J. Firby, “An investigation into reactive planning in complex

domains,” in Proc. the Fifth National Conference on Artificial
Intelligence, 1987.

[10] R. P. Bonasso, “Integrating reaction plans and layered

competences through synchronous control,” in Proc. International
Joint Conferences on Artificial Intelligence, 1991.

[11] B. Sellner, F. W. Heger, L. M. Hiatt, R. Simmons, and S. Singh.
“Coordinated multiagent teams and sliding autonomy for

largescale assembly,” in Proc. the IEEE, Special Issue on Multi-

Agent Systems, vol. 94, no. 7, July 2006.

[12] R. C. Arkin and T. Balch, “AuRA: Principles and practice in
review,” Journal of Experimental and Theoretical Artificial

Intelligence, vol. 9, no. 2/3, pp. 175-188, April 1997.
[13] H. Gomaa, “Designing concurrent, distributed, and real-time

applications with UML,” in Designing Concurrent, Distributed,

and Real-Time Applications with UML, Boston, USA: Addison-
Wesley Longman Publishing Co., Inc. 2000.

[14] L. Malafouris, “The feeling of and for clay,” Pragmatics &
Cognition, vol. 22, no. 1, pp. 140–158, January 2014.

[15] M. Heidegger, “The thing,” in Poetry, Language, Thought, A.

Hofstadter, Trans. New York, NY: Harper & Row, 1975, pp. 161-
184.

[16] K. Riemer, R. B. Johnston, D. Hovorka, and M. Indulska,
“Challenging the philosophical foundations of modeling

organizational reality: The case of process modeling,”

International Conf. on Information Systems, Milan, Italy, 2013.
Available:

http://aisel.aisnet.org/icis2013/proceedings/BreakthroughIdeas/4/
[17] S. Al-Fedaghi, “Five generic processes for behavior description in

software engineering,” Int. J. Comput. Sci. Inf. Secur., vol. 17, no.

7, pp. 120-131, July 2019.
[18] S. Al-Fedaghi, “Thing/Machine-s (Thimacs) applied to structural

description in software engineering,” Int. J. Comput. Sci. Inf.

Secur., vol. 17, no. 8, August 2019.
[19] S. Al-Fedaghi, “Toward maximum grip process modeling in

software engineering,” Int. J. Comput. Sci. Inf. Secur., vol. 17, no.
6, pp. 8-18, June 2019.

[20] S. Al-Fedaghi and A. AlQallaf, “Modeling and control of

engineering plant processes,” Int. J. Applied Syst. Studies, vol. 8,
no. 3, pp. 255-277, 2018.

[21] S. Al-Fedaghi and N. Al-Huwais, “Conceptual modeling of
inventory management processes as a thinging machine,” Int. J.

Advanced Comput. Sci. and Applications, vol. 9, no. 11,

November 2018.
[22] S. Al-Fedaghi and M. Al-Otaibi, “Conceptual modeling of a

procurement process: Case study of RFP for public key
infrastructure,” Int. J. Advanced Comput. Sci. and Applications,

vol. 9, no. 1, January 2018.

[23] S. Al-Fedaghi, “Privacy things: Systematic approach to privacy
and personal identifiable information,” Int. J. Comput. Sci. and Inf.

Sec., vol. 16, no. 2, February 2018.
[24] S. Al-Fedaghi and J. Al-Fadhli, “Modeling an unmanned aerial

vehicle as a thinging machine,” in Proc. 5th International

Conference on Control, Automation and Robotics (ICCAR 2019),
Beijing, 2019.

[25] S. Al-Fedaghi and G. Aldamkhi, “Conceptual modeling of an IP
phone communication system: A case study,” in Proc. 18th

1120

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 8, August 2020

© 2020 Int. J. Mech. Eng. Rob. Res

Annual Wireless Telecommunications Symposium (WTS 2019),
New York, 2019.

[26] S. Al-Fedaghi and E. Haidar, “Programming is diagramming is

programming,” in Proc. 3rd International Conference on
Computer, Software and Modeling, Barcelona, 2019.

[27] S. Al-Fedaghi and M. Al-Otaibi, “Service-oriented systems as a
thinging machine: A case study of customer relationship

management,” IEEE International Conference on Information and

Computer Technologies (ICICT), Kahului, HA, 2019.
[28] S. Al-Fedaghi and Y. Atiyah, “Modeling with thinging for

intelligent monitoring system,” IEEE 89th Vehicular Technology
Conference: VTC2019-Spring, Kuala Lumpur, Malaysia, 2019.

[29] S. Al-Fedaghi and A. Hassouneh, “Modeling the engineering

process as a thinging machine: A case study of chip
manufacturing,” in Proc. 8th Computer Science On-line

Conference (CSOC 2019). Springer Advances in Intelligent
Systems and Computing, in press.

[30] S. Al-Fedaghi and H. Alnasser, “Network architecture as a

thinging machine,” Symposium on Mobile Computing, Wireless
Networks, & Security (CSCI-ISMC), Las Vegas, Nevada, 2018.

[31] S. Al-Fedaghi and M. Alsulaimi, “Privacy thinging applied to the
processing cycle of bank cheques,” in Proc. 3rd International

Conference on System Reliability and Safety (ICSRS 2018),

Barcelona, Spain, 2018.
[32] S. Al-Fedaghi and H. Almutairi, “Diagramming language for

process documentation,” in Proc. 15th International Conference
on Applied Computing (AC 2018), Budapest, Hungary, 2018.

[33] S. Al-Fedaghi and H. Aljenfawi, “A small company as a thinging

machine,” in Proc. 10th International Conference on Information
Management and Engineering (ICIME 2018), Manchester, UK,

2018.
[34] S. Al-Fedaghi and M. Alsharah, “Security processes as machines:

A case study,” in Proc. Eighth international conference on

Innovative Computing Technology (INTECH 2018), London, 2018.
[35] S. Al-Fedaghi and R. Al-Azmi, “Control of waste water treatment

as a flow machine: A case study,” in Proc. 24th IEEE
International Conference on Automation and Computing

(ICAC’18), Newcastle upon Tyne, UK, 2018.

[36] S. Al-Fedaghi and M. Allah Bayoumi, “Computer attacks as
machines of things that flow,” International Conference on

Security and Management (SAM'18), Las Vegas, 2018.
[37] S. Al-Fedaghi and N. Al-Huwais, “Toward modeling information

in asset management: Case study using Maximo,” 4th

International Conference on Information Management
(ICIM2018), Oxford, UK, 2018.

[38] S. Al-Fedaghi and N. Warsame, “Provenance as a machine,”
International Conference on Information Society (i-Society),

Dublin, Ireland, 2018.

[39] S. Al-Fedaghi and M. Alsharah, “Modeling IT processes: A case
study using Microsoft Orchestrator,” in Proc. 4th IEEE

International Conference on Advances in Computing and
Communication Engineering, Paris, 2018.

[40] S. Al-Fedaghi, “User interface as a machine of things that flow,”

The 2nd SERSC International Conference on Multimedia
Technology and Human-Computer, Interaction 2018 (MTHCI

2018), Bangkok, 2018.

[41] S. Al-Fedaghi and M. Alsulaimi, “Re-conceptualization of IT
services in banking industry architecture network,” in Proc. 7th

IEEE International Conference on Industrial Technology and

Management (ICITM 2018), Oxford, UK, 2018.
[42] S. Al-Fedaghi and M. BehBehani, “Modeling banking processes,”

in Proc. International Conference on Information and Computer
Technologies (ICICT 2018), DeKalb, IL, 2018.

[43] E. Matsas and G. C. Vosniakos, “Design of a virtual reality

training system for human-robot collaboration in
manufacturing tasks,” Int. J. Interact. Des. Manuf., vol. 11,

no. 2, pp. 1-15, 2017.
[44] N. A. Al-Hirz, M. J. Al-Sarraf and M. J Hussain, “A SLAM

Project,” Ph.D. dissertation, Compute. and Elect. Eng. Dept.,

American University of Kuwait, May 2015.
[45] S. Wen, K. M. Othman, A. B. Rad and Y. Zhang, “Indoor SLAM

using laser and camera with closed-loop controller for NAO
humanoid,” Abstract and Applied Analysis, vol. 1, no. 1-8, July

2014.

[46] T. Looker, K. Brown, K. Turner and M. Walbran, “SLAM Robot
Project,” University of Auckland (no date). Available:

http://homepages.engineering.auckland.ac.nz/~pxu012/mechatroni
cs2015/group8.pdf

Copyright © 2020 by the authors. This is an open access article
distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-
commercial and no modifications or adaptations are made.

Sabah S. Al-Fedaghi is an associate professor in

the Department of Computer Engineering at

Kuwait University. He holds an MS and a PhD
from the Department of Electrical Engineering

and Computer Science, Northwestern University,
Evanston, Illinois, and a BS in Engineering

Sciences (computer) from Arizona State

University. He has published more than 320
journal articles and papers in conferences on

software engineering, database systems,
information ethics, privacy, and security. He previously worked as a

programmer at the Kuwait Oil Company, where he headed the Electrical

and Computer Engineering Department (1991–1994) and the Computer
Engineering Department (2000–2007).

Manar J. AlSaraf is a research assistant in the

Kuwait Institute of Scientific Research (2017
onwards). She holds a BS in Computer

Engineering from The American University of
Kuwait, Kuwait, and is currently a Computer

Engineering MS student in Kuwait University.

She previously worked as a Computer Engineer
specialist for 6 months in Abu Dhabi (Abu

Dhabi’s Louvre museum project).

1121

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 8, August 2020

© 2020 Int. J. Mech. Eng. Rob. Res

