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Abstract—Robot architecture refers to the architectural 

structure of a system and its subsystems and how those 

subsystems interact. From the modeling point of view, the 

architecture is the conceptual model that defines the 

structure, behavior, and other aspects of a system. This 

paper proposes the adaptation of a recent modeling 

technique, thinging machine (TM), to develop a high-level 

neutral (no hardware or software) description of robot 

architecture. Using the TM, several robot projects from the 

literature are remodeled and an actual robot case study is 

redesigned. The results point to the viability of applying the 

TM in robotics.  

  
Index Terms—robotic architectural model, conceptual 

model, navigating robot, SLAM, thinging machine 

I. INTRODUCTION 

Many projects in robotics are developed from scratch 

with an absence of a systematic approach that specifies 

robotic architectures, which may cause ad hoc designs 

that are not flexible and reusable [1]. According to 

Ramaswamy [1], “In the last two decades, the robotics 

research community has seen a large number of 

middlewares, code libraries, and component frameworks 

developed by different research laboratories and 

universities… It is high time that roboticists transform 

themselves as system thinkers in addition to being 

domain experts.” 

According to Kortenkamp and Simmons [2], robot 

architecture refers to two related, but distinct, concepts. 

(i) Architectural structure describes how a system is 

divided into subsystems and how those subsystems 

interact. From a robot architecture perspective, it facilitates the 

decomposition of systems into simpler, largely 

independent modules. This robot system structure is 

often represented informally using traditional “boxes 

and arrows” diagrams or more formally using 

techniques such as UML.  Marinho da Silva, 

Rodrigues de Souza, Simões and Campos [3] 

recently presented a framework based on Petri Net, 

which is utilized in modeling multi-robot systems 

due to the high interactions between them.  

(ii) On the other hand, architectural style refers to the 

computational concepts that underlie a given system. 

In the robotics community, for example, one robot 

system might use a message passing style of 

communication, while another may use a 

synchronous client-server approach. 
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Many existing robot systems have unclear 

architectures because the implementations have no 

defined subsystem boundaries [2]. A well-defined 

architecture has significant advantages in the 

specification, execution, and validation of robot systems. 

Robot architecture facilitates discipline in the design and 

implementation of robotic systems. For example, 

according to Kortenkamp and Simmons [2], “Separating 

behaviors into modular units helps to increase 

understandability and reusability, and can facilitate unit 

testing and validation.” 

In the modeling community, according to Jaakkola and 

Thalheim [4], the architecture is the conceptual model 

that defines the structure, behavior, and other aspects of 

a system. We will adopt this definition.  

Architecture in this context refers to the integration of 

various functionalities to determine the overall behavior 

of a system. It includes control architecture that integrates 

various kinds of hardware and software modules [5]. 

According to Ramaswamy [1], an architecture model 

captures multiple viewpoints that satisfy the requirements 

of various stakeholders. A hardware engineer sees the 

parts that need particular processors, whereas a system 

architect is interested in component topology. A good 

architecture model acts as a mediator between 

requirements and implementation. The architecture model 

plays a critical role in the development life cycle. 

This paper proposes a systematic methodological 

approach that helps in specifying various aspects of 

robots at the architectural level. Section 2 provides a brief 

review of related research with samples of current 

diagramming methods. Section 3 introduces a brief 

description of the TM model. Several robot projects from 

the literature are remodeled using the thinging machine 

(TM) concept in Sections 4 and 5. In Section 6, an actual 

robot case study is redesigned using the TM. 

II. RELATED WORKS 

This section summarizes an extensive review of robot 

architecture. Robot architecture and programming began 

in the late 1960s using stepping motors, cameras, range-

finder sensors, touch sensors (to identify collisions), and 

computer connections via radio links [6]. A major 

development occurred in the 1980s with the so-called 

subsumption architecture built from layers of interacting 

finite state machines that each connect sensors to 

actuators [7]. Several behavioral architectures arose in 

addition to subsumption with schemes for combining the 

outputs of behaviors [8]. Furthermore, Firby [9] 
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developed the Reactive Action Package system that 

aimed at the integration of reactivity and deliberation in 

three-layer architecture. Bonasso [10] devised the so-

called Rex machines with an architecture that guarantees 

consistent semantics between a robot’s internal and 

external states. Moving to the 21st century, the syndicate 

architecture [11] extended the three tiers of interacting 

control processes to multi-robot coordination.  

In subsumption architecture, behaviors run 

concurrently with a hierarchical control scheme, whereas 

in autonomous robot architecture, [12] behaviors are 

combined using potential functions. Other architectures 

[8] use explicit arbitration mechanisms to choose among 

potentially conflicting behaviors. 

Kortenkamp and Simmons [2] give an example of a 

delivery robot that operates in an office building to 

illustrate various architectural approaches that handle 

robot behavior. The behavioral control layer contains the 

functions to move and carry out delivery tasks, assuming 

an a priori map. Some possible behaviors for this robot 

include:  

1. Move to location while avoiding obstacles  

2. Move down hallway while avoiding obstacles  

… 

8. Determine location  

9. Find the destination office 

10. Announce delivery. 

This paper proposes the adaptation of the recently 

developed TM modeling technique to create a high-level 

neutral (no hardware or software) description of robot 

architecture. The service robot example above gives an 

opportunity to examine the form of the description 

produced by the TM. 

Before giving our approach to modeling this problem, 

we describe service robot architecture. 

Kim [5] developed software for a service robot’s 

autonomous navigation system using UML. According to 

Kim, the functional requirements define what the system 

should do. Kim used a use case model that is specified as 

follows: 

1. The commander enters a destination.  

2. The system calculates the optimal path to the 

destination.  

3. The system commands the actuator to start moving to 

the destination.  

4. The actuator notifies the system that it has started 

moving.  

5. The system periodically reads sensor data and 

calculates the current position.  

6. The system determines that it has arrived at the 

destination and stops.  

7. The wheel actuator notifies the system that it has 

stopped moving [5]. 

Figs. 1–5 show parts of the system’s different diagrams. 

Static modeling is achieved using a class diagram. Kim 

also used a state diagram, as well as collaboration, 

sequence, and other diagrams. Additionally, to integrate 

these diagrams, Kim [5] applied the concurrent object 

modeling and architectural design method [13] to analyze 

and design subsystem structures and interfaces, including 

the synchronization and communication between them. 

 

 
Figure 1. Use case diagram for navigation (partially redrawn from [5]). 

 
Figure 2. Robot navigation system context class diagram (partially 

redrawn from [5]). 

 
Figure 3. Object structuring class diagram for navigation system 

(partially redrawn from [5]). 

 
Figure 4. Collaboration diagram for navigation use case (partially 

redrawn from [5]). 

 

Figure 5. State chart for navigation control (partially redrawn from 
[5]). 

III. ABOUT THE TM 

The TM is centered on things and (abstract) machines 

in a system. According to Malafouris [14], people are 
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creative “thingers” in the sense that “we make new things 

that scaffold the ecology of our minds, shape the 

boundaries of our thinking and form new ways to engage 

and make sense of the world.” The TM is based on 

Heidegger’s philosophical concept of thinging [15]. 

According to Riemer et al. [16], Heidegger’s philosophy 

gives an alternative analysis of “(1) eliciting knowledge 

of routine activities, (2) capturing knowledge from 

domain experts and (3) representing organizational reality 

in authentic ways.” More information about this topic can 

be found in [17]-[19]. 

The TM is the simplest type of the thing/machine and a 

generalization of the known input-process-output model. 

The flow of things in a TM refers to the exclusive 

conceptual movement among five operations (stages) as 

shown in Fig. 6. A thing is what is created, processed, 

released, transferred, and/or received in a machine. 
 

 

Figure 6. Thinging machine. 

Accordingly, the TM stages can be described as 

operations that transform, modify, etc. things either in the 

abstract sense or in the “concrete” sense. They are briefly 

described as follows. 

Arrive: A thing flows to a new machine (e.g., packets 

arrive at a port in a router). 

Accept: A thing enters a TM after arrival (we will 

assume that all arriving things are accepted). Hence, we 

can combine arrive and accept as the receiving stage. 

Release: A thing is marked as ready to be transferred 

outside the machine (e.g., in an airport, passengers wait to 

board after passport clearance). 

Process: A thing is changed in description rather than 

producing a new thing. 

Create: A new thing is born in the machine (e.g., a 

forward packet is generated in a machine).  

Transfer: A thing is input or output in/out of the machine.  

The TM includes one additional notation—triggering 

(denoted by dashed arrows)—that initiates a new flow 

(e.g., a flow of electricity triggers a flow of air). TM 

modeling has been utilized in many applications (e.g., Al-

Fedaghi [20]-[42]). 

IV. APPLYING THE PROPOSED ARCHITECTURAL 

STRUCTURE 

We simplify Kortenkamp and Simmons’ [2] example 

by ignoring minor details (e.g., find doorknob). The TM 

uses only five verbs: create, process (change), release, 

transfer, and receive. It uses two types of arrows: a solid 

arrow denotes flow, and a dashed arrow signifies 

triggering. Fig. 7 shows the TM model of this example. 

The figure includes the starting point (circle 1), the robot 

inside the starting point area (2), other areas in the way to 

the destination (3), and the destination (4).  

 

 

 

Figure 7. The static TM model of Kortenkamp and Simmons’ [2] simplified example. 
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Figure 8. The static TM model of Kortenkamp and Simmons’ [2] simplified example. 

a. A destination address is input to the robot (5; 

upper left corner of the figure). 

b. The robot receives (6) the address and sends it to 

its mapping system. 

c. In the mapping system, the address is received (7) 

and processed (8), triggering the robot to create 

the necessary coordinates (9) for the movement to 

the destination. 

d. The coordinates flow to be processed (10), which 

triggers the control unit to create (11) instructions 

that flow to the actuator (12). 

e. The actuator processes the instructions and 

triggers the processing (13) of the physical robot, 

which involves creating (14) movement. Note that 

the movement is a component of the physical 

robot (white box inside the L-shaped purple 

figure). 

f. A signal is continuously (to be discussed in the 

dynamic TM model) generated (15) that flows (16) 

to any obstacle (if any exist) and reflected to be 

processed (17) which stops (18) the robot’s 

movement. 

g. Creating the signal initializes the clock time (20). 

If the time reaches a certain threshold (21), then it 

triggers the robot to resume movement (22). 

h. The robot’s movement triggers the creation of 

current position data (23) that flow to the mapping 

system, creating new coordinates that cause the 

creation of new instructions. 

i. The robot eventually moves (24) from one area to 

another (25) on its way to the destination. In all 

areas the robot’s description is identical to the 

robot at the start, except for receiving the first 

destination input (separated by a dotted line). 

j. At last, the robot arrives (26) at the destination.  

To build the dynamic model we use the notion of 

events. We select the following events (see Fig. 8): 

Event 1 (E1): The destination address is received by the 

robot and processed. 

Event 2 (E2):  Coordinates are generated and flows to 

the control unit to issue instructions to the actuator. 

Event 3 (E3): The robot moves. 

Event 4 (E4): Position data are generated and sent to 

the mapping system. 

Event 5 (E5): An obstacle causes the robot to stop.  

Event 6 (E6): The robot avoids the obstacle and 

movement is resumed. 

Event 7 (E7): The robot moves to another area on its 

way.  

Event 8 (E8): The robot reaches its destination. 

Fig. 9 shows the robot system’s behavior according to 

the chronology of events. 

 

Figure 9. Chronology of events in Kortenkamp and Simmons’ [2] 
simplified example. 

V. TM VS. UML ACTIVITY DIAGRAM 

Matsas et al. [43] described a human-robot 

collaboration project that involves hand lay-up process of 

pre-impregnated carbon fabric in an industrial work cell.  

In the project scenario, a robotic manipulator is 

assigned the task of picking patches and transferring them 

to a user. The user takes a patch from the robot and places 

it in the correct position inside a metallic die, and the 

robot proceeds to feed the next patch. The process is 
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repeated until the user has placed all patches properly in 

the die, hereby represented by the avatar’s hands. During 

execution, the user is asked to wear a head-mounted 

display. Calibration of the user against the avatar skeleton 

is achieved by the user raising his or her hands with both 

elbows, thereby standing in a “Y” posture. After 

calibrating, users are allowed some time to familiarize 

themselves with the system. When the user moves in real 

space, the avatar’s body and the virtual viewpoint change 

accordingly. When the user walks around in real space, 

the avatar follows the same path in the virtual 

environment. When the user turns his or her head, the 

avatar’s head and the first-person camera attached to it 

respond accordingly. The user can also collide or interact 

with rigid bodies in the virtual scene and bend his or her 

body in every direction.  

Fig. 10 is a diagrammatic representation of the system 

activity workflow using a UML activity diagram. This 

gives us opportunity to contrast the TM (Fig. 11) model 

with the UML representation.  

In Fig. 11, the model starts with the user wearing the 

head-mounted display (circle 1) and entering the system 

area (2) to be processed (3), which involves the Kinect 

tracker detecting the user (4). The user then stands in the 

“Y” posture (5) for the Kinect tracker to detect (6). The 

user creates an avatar (7), then presses the start button via 

the avatar (8), which activates the robot (9 and 10). The 

robot holds the first patch (11), and then the user 

approaches (12) the robot (13). 

 

 

Figure 10. UML activity diagram for the system workflow (partially redrawn from [43]). 

 

Figure 11. The TM model that corresponds to the activity diagram of Fig. 9. 
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Figure 12. The events in the human-robot collaboration system. 

The avatar then interacts with the robot (14) to create a 

collision state (15) in which the robot releases the patches 

(16). The avatar then receives (17) the patches for 

processing (18) and dying (19). 

To construct the dynamic model, we identify the 

following events (see Fig. 12). 

Event 1 (E1): The user wears the head-mounted display. 

Event 2 (E2): The user moves in the system area. 

Event 3 (E3): The user is tracked by the Kinect tracker. 

Event 4 (E4): The user takes the “Y” posture, which is 

detected by the Kinect tracker.  

Event 5 (E5): The user performs animation of the 

avatar. 

Event 6 (E6): The user presses the start button, which 

activates the robot. 

Event 7 (E7): The robot holds a patch. 

Event 8 (E8): The user approaches the robot. 

Event 9 (E9): The avatar collides with the robot to 

create a collision state. 

Event 10 (E10): The robot releases the patch, which the 

avatar receives for processing and dying. 

Fig. 13 shows the chronology of events. 

 

 

Figure 13. The chronology of events for the human-robot collaboration 
system. 

VI.
 

CASE STUDY:
 
THE SLAM

 
ROBOT PROJECT

 
In this section, we introduce an actual university 

project that involves the well-known simultaneous 

localization and mapping (SLAM) algorithm [44]. The 
project aims to develop a robot that traverses an 
environment and provides a map of the environment. 

A. Project Description  

According to the researchers’ final report, almost all 
current technology that allows a robot to traverse an area 
uses Global Positioning System (GPS) data.” However, 
the university researchers want the robot to navigate 
inside buildings or dangerous locations when GPS cannot 
be used.  

In the review of SLAM implementations in their final 
report, the researchers discussed an overall flow chart of 
the robot navigation developed by French company NAO 
[45] (see Fig. 14). We show such a diagram to illustrate 
the description of the interest level in the project. 

 

 

Figure 14. The NAO overall navigation flow chart (from [45]). 

The authors in [44] created a new robot named The 
Exploring Master (TEM) that outperforms similar 
projects. Many hardware and software tools are 
compared/contrasted, including platforms, motors, 
sensors, and software tools (e.g., robot control center, 
phidgets, stepper drives, interface kits, adapters, and 
sonar range finders) to decide which hardware best suits 
the project. This indicates that implementation details are 
considered very early in the robot development cycle. 
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Then came a system architecture as a model that 
defines the structure and behavior of a system. “Basically, 
it is a representation of the system that contains the 
system’s components and the relationships between them 
including the direction of data transfer” [44]. Architecture 
diagrams mostly involve hardware devices, such as a PC, 
monitor, phidgets, battery, and stepper motor. A use-case 
system is shown in Fig. 15.  

The next section in the university researchers’ report 

discusses the hardware and software components. Fig. 16 

shows the flowchart of the movement subsystem.  

 

 

Figure 15. TEM use-case diagram (partially redrawn from [44]). 

 

Figure 16. Movement subsystem flowchart (partially redrawn from 

[44]). 

In addition, the researchers discuss the obstacle 

detection subsystem, including the problem faced and 

how to overcome it. Furthermore, to reduce measurement 

errors, the researchers used a compass to orient the angles 

of the robot’s movement. Finally, they introduce the 

testing results.  

B. Observation  

The robot was built without substantial reliance on 

requirement analysis and logical design. For example, the 

researchers never mentioned the use-case model in 

implementing the project. The project is based on 

hardware-oriented construction and lacks a conceptual 

architecture model that integrates various functionalities 

to determine the overall behavior of the system. As 

mentioned previously in the introduction, a good 

architecture model acts as a mediator between 

requirements and implementation, and it plays a critical 

role in the development life cycle. We believe that the 

TM can play a role that enhances the analysis and design 

phases in the robotics development cycle. 

C. General Problem 

We claim that constructing robots based mainly on 

hardware with little attention to conceptual modeling in 

requirement analysis and design is a common problem in 

robotics, especially in university environments. We give 

another example of a University of Auckland project, as 

described in Looker et al. [46]. 

Looker et al. [46] state that the SLAM problem is 

difficult because sensors do not receive enough 

information about the robot’s surroundings. They 

identified critical tasks (e.g., motor control and 

movement, sensor management and scanning, and map 

generation and presentation) and studied motor control, 

including the motor speeds and their signals. They 

conducted a series of tests (with equations and graphs) 

using a tachometer, and they analyzed trajectory control, 

wall follow control, yaw control, and position control, 

which they integrated in a unified control system shown 

in Fig. 17. 
 

 

Figure 17. Position control system diagram. 

 

Figure 18. Finite state diagram. 

Looker et al. [46] discussed blockage identification 

using an in-depth level of description. Furthermore, they 

used mathematical equations and diagrams to discuss 

sensing, scanning, and geometry calculations. 

They used a finite state machine (Fig. 18) to describe 

the robot’s highest level of intelligence. The description 

level of the robot’s dynamic behavior is specified as 

follows: “When the robot first starts up there are 3 basic 

steps it completes. Throughout all these steps, obstacle 

detection and avoidance is automatically running. During 

the start state, when a blockage is identified as an 

obstacle, the robot rotates 20˚ and rescans, this is done 

continuously until an orientation is found in which there 

are no obstacles blocking the wall.” 
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They described the code structure in plain English and 

made a class diagram showing the direction controller, 

sensors, map maker, collision detection, motor, and motor 

controller. In addition, they included hardware 

descriptions of various types of sensors. 

Looker et al. [46] concluded that the project was very 

successful: “Unfortunately on the day of assessment there 

were issues with the sensor and some minor code fixes. 

These problems were fixed later.” The author believed 

that the verification of functioning hardware could have 

been improved. One other difficulty faced while working 

in a group is understanding each other’s code and 

ensuring various modules match. 

As we can observe, Looker et al. [46] progressed the 

project from the hardware and mathematics stages but 

without an architectural view that ties the project together. 

They developed a state diagram but it hardly expressed 

the project.  

VII. TM MODEL OF A SIMPLE NAVIGATING ROBOT 

We have decided to redesign the navigating robot 

described in section 6 (A) to demonstrate the proposed 

TM-based architecture. It is important to note that one of 

the authors of this paper was part of the team that built 

that robot. For practical reasons, the navigating robot will 

be simplified as follows. 

The simplified problem involves a robot that navigates 

to measure the length of a wall, as shown in Fig. 19. The 

robot’s first task is to reach one end of the wall, then it 

goes to the other end to measure the distance between the 

two ends (i.e., the wall’s distance). 

Fig. 20 shows the static TM representation of the robot 

system that includes a user interface, a processor, and the 

robot itself. 

 

 

Figure 19. The problem of measuring the length of a wall. 

The robot consists of two parts: the internal controller 

and the physical robot. The user enters a one-time 

threshold (1), and a signal is generated in the user 

interface (2) that flows to the processor (3) then to the 

robot controller (4). In the robot controller, the signal is 

processed (5) to trigger the state of the physical robot to 

be ON (6), which triggers (7) the sensor to be ON (8). 

Accordingly, the robot works as follows. 

The sensor generates signals (9) that flow to the robot 

controller (10) to move the robot toward the wall (11) 

where we have three situations. 

i. Location beside wall (not corner): The signal is 

reflected (12) and arrives to the robot controller 

where it is processed (13) and triggers a one-step 

movement of the robot (14). This updates the counter 

(15) and triggers (16) the sensor to generate another 

signal (9). 

Location at the corner: Upon receiving the signal 

(17), the clock time is triggered to be ON (18) and is 

triggered every incoming sensor signal in which it 

takes its course (i.e., processed (19)). In addition, the 

threshold (2) is frequently compared to the clock 

time, in other words, processed (20). If the clock 

time is greater than the threshold, then the following 

occurs: 

ii. First corner: Upon the robot’s arrival at the first 

corner, a first-time flag is set (21). In addition, the 

robot is triggered to rotate 180° (22), followed by 

initializing the counter (23) and generating a new 

signal (24). 

iii. Second corner: The signal triggers the counter (25) 

to be transferred (26) to the processor to generate (27) 

the display of the distance on the user interface (28).  

To build the dynamic model, we identify the following 

events (see Fig. 21). 

Event 1 (E1): The user enters a one-time threshold. 

Event 2 (E2): The user turns the robot on. 

Event 3 (E3): The processor sends the TURN ON 

signal to the robot.  

Event 4 (E4): The first-time flag is turned ON, and the 

distance field is created. 

Event 5 (E5): The robot is switched ON. 

Event 6 (E6): The sensor is switched ON. 

Event 7 (E7): The sensor sends a signal to the 

controller. 

Event 8 (E8): The controller sends a signal to the wall. 

Event 9 (E9): The signal is reflected by the controller. 

Event 10 (E10): The robot takes one step forward and 

updates the counter. 

Event 11 (E11): The time at which the sensor sent the 

signal is registered  

Event 12 (E12): The robot reaches the first or second 

corner. 

Event 13 (E13): The flag is updated and the robot 

rotates 180° (corner 1). 

Event 14 (E14): The counter is reset (corner 2). 

Event 15 (E15): The distance is retrieved and displayed. 

Fig. 22 shows the behavior of the robot system 

according to the chronology of events.  

VIII. CONCLUSION 

It has been proven that robot architectures play an 

important role in fully understanding any system. In 

addition, they allow systems to control actuators, monitor 

execution, and be flexible with any changes. Researchers 

have come up with several architectures that can be 

applied in various projects. It is up to the researcher to 

choose among the available architectures which 

architecture is best depends upon the requirements. This 

paper includes a new model (i.e., TM) that may be used 

in systems with conceptual movement between real and 

virtual objects. This type of model contains five 

operations with transition flow, providing a more detailed, 

expressive methodology than common models used today. 

Therefore, we used it to remodel existing robot projects 

for better understanding and visualization of the robots’ 

systems. 
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Figure 20. The static TM model of the measuring the wall problem. 
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Figure 22. The chronology of events in the model of measuring the length of a wall. 
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