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Abstract— In the present research work discusses about 

trajectory planning of five degrees of freedom serial 

manipulator using higher order polynomials. This robotic 

arm is used to feed semi-liquid food to the physically 

challenged people having fixed seating arrangement. It is 

essential to plan a smooth trajectory for proper delivery of 

food, without wasting it. Trajectory planning can be done in 

the joint space as well as in the cartesian space. It is difficult 

to design trajectory in Cartesian scheme due to 

non-existence of the Jacobian matrix. In the present research 

work, trajectory planning is done using joint space scheme. 

The joint space scheme offers lower and higher order 

polynomial methods for the trajectory planning. In the 

present work parabolic and cubic functions are considered 

as lower polynomials and septic (7th order) and nonic (9th 

order) functions are considered as higher order polynomials. 

Lower order polynomial does not have any control over joint 

acceleration and velocity, which leads a servo actuator 

towards instantaneous velocity and infinite acceleration.  

This phenomenon can cause loss of food in the delivery root, 

lesser battery life, wear and tear in the joints and increases 

the probability of damaging the servo actuator. To address 

this problem, the proposed research work presents the 

methodology and trajectory planning of a serial manipulator 

using septic and nonic functions.  The higher order 

polynomials provide zero acceleration and velocity at the 

beginning and at the end.  It also gives the continuity in the 

displacement, velocity and acceleration, which is necessary 

for smoother delivery of the food.  

 
Index Terms—Feeding robot, trajectory planning, higher 

order polynomials, Lower order polynomials, septic function, 

nonic function, Physically challenged people.  

 

I. INTRODUCTION 

Trajectory planning of a robot is to generate function 

according to which a robot’s joint will move. Trajectory 

planning can be done using Cartesian scheme as well as 

joint space scheme [1]. However Cartesian scheme or 

inverse kinematics is essential to perform before getting 

into joint space scheme. Inverse kinematics mainly 

involves end-effector potion, its orientation and derivatives. 

 
Manuscript received July 17, 2019; revised May 24, 2020. 

Instead of planning the trajectory using Cartesian scheme, 

it is better to get the start point and end point of each joint 

[2]. After getting the joint angles from the operational 

space, trajectory planning can be done using joint space 

scheme. However trajectory planning in the Cartesian 

space allows accounting for the presence of any constraint 

along the path of the end-effector, but singular 

configuration and trajectory planning can’t be done with 

operational space [3]. In the case of inverse kinematics no 

joint angle can be computed due to non-existence of the 

inverse of the Jacobian matrix. That is the reason behind 

selecting the joint space scheme for the trajectory planning 

[4].  

Trajectory planning using joint space scheme can be 

done in many ways. General methods are linear function, 

parabolic function, cubic functions and quintic function. 

Above mentioned methods belong to lower order 

polynomial. This paper discusses about the trajectory 

planning using septic (7th order polynomials) and nonic 

(9th order polynomials).   Lower orders polynomials are 

sometimes not desired due to its discontinuities in joint 

rates. Furthermore use of lower order polynomials in 

trajectory planning may lead robot to nonzero acceleration 

and velocity values at the beginning and at the end points 

of the trajectory.   Sometimes use of first and second order 

polynomial may force servo actuator to provide 

instantaneous velocity and infinite acceleration, which 

leads servo motor towards locking or burning. Above 

mentioned conditions are not acceptable for this type of 

robot which carries food for patient.  

Shuang Fang [5] has planned a trajectory using seventh 

order polynomial method. That method was applied on a 

seven degree of freedom robot. He got a smooth trajectory 

response compare to lower order polynomials, but he had 

not shown the problem of acceleration and velocity over 

shoots. Jiayan Zhang and Qingxi Meng [6] developed 

trajectory using improved genetic algorithm. Using this 

method they were able to reduce the cycle time of the robot 

as well as the trajectory got improved. Huang T. [7] applied 

the seventh-order B-spline curve for the trajectory planning, 

which achieved the optimal planning goal and the angular 
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displacement, velocity and acceleration curve of each joint 

of the robot are smoother. However spline curves are the 

combination of higher order and lower order polynomials 

to achieve the replica of the exact trajectory. Xiaojie Zhao 

and Maoli Wang [8] planned the robot trajectory using 

quintic polynomial method, which is nothing but a fifth 

order polynomial method. However this method could be 

useful when, initial and final angular velocities and angular 

acceleration are nonzero values.   

The novelty of this research is; the robot trajectory is 

developed using seventh order and ninth order polynomials. 

In addition of angular displacement; angular velocity and 

acceleration are also given same the importance. The paper 

also discusses the merits and demerits of lower and higher 

order polynomials.      

The first phase of the paper shows the basic details of 

robot, hardware set up, a 3D CAD model, forward and 

inverse kinematics. However forward and inverse 

kinematics are not necessary to show, but before discussing 

about the trajectories, velocity and acceleration, it becomes 

extremely important to discuss about forward and inverse 

kinematics. In addition with that forward kinematics gives 

information about the end-point of the robot (In this case 

end point is fixed). Based on this end-point in the Cartesian 

space, joint angles can be found (which is called inverse 

kinematics). The joint angles are found from inverse 

kinematics, can be rectified using joint space.  

The second phase of the paper discusses about 

methodology of generating trajectories using septic and 

nonic functions. In addition with that, all the trajectories 

are compared and plotted along with velocity and 

acceleration.  

A. Hardware Setup of the System  

According to Fig. 1 (left), the robot is vertically 

downward and includes one twisting joint along with four 

revolute joints. The kinematic chain diagram is shown in 

Fig. 1 (right) along with the 3D model of the robot. In the 

kinematic chain diagram, the base and the spoon 

(end-effector) are denoted as B and G respectively. All the 

hardware details are shown in Table I. 

        

 
  

Figure 1.  Hardware Setup and 3D CAD model along with kinetics 

diagram 

      TABLE   I.  HARDWARE DETAILS   

Sr. 

No. 

Details of Robot  used in this paper  

Particular  
Details  

Remarks 

1 Degreeof Freedom  5 

2 Type of Robot  T-R-R-R-R  

3 Servo Motors X 5 
Metal Gears, 15kg/cm torque 

(Stall torque) 

4 Working Speed 
0.13 sec/ 60 degree at 7.2 volts 

(No load)   

5 Working Voltage  4.8 volt-7.2 volts  

6 Controller Used  ARDUINO MEGA 

7 Battery  LI-PO 7.2 volt  

8 Sensor used  
Gyroscope MPU6050 for 

Acceleration 

B. Problem Description, Methodology and Work Flow 

 As discussed in the introduction part, lower order 

polynomial method does not provide any control over 

acceleration and velocity. However some researchers and 

text book authors has proposed a linear trajectory with 

parabolic blend, which is able to solve the problem of 

infinite acceleration. But this method contains linear 

trajectory, which makes angular acceleration almost zero 

and makes angular velocity maximum in the middle 

portion. So above mentioned method is also not desirable 

as far as the case of feeding robot is concerned. Then we 

tried to incorporate full cycloid trajectory based on cam 

and follower, but unfortunately it gave couple of 

acceleration and deceleration peaks. Next we replaced 

linear trajectory with exponential function. it worked well 

in the case of smoothness, but somehow, it got failed to 

provide zero acceleration and velocity at the end of the 

trajectory. At last we planned trajectory using seventh and 

ninth order polynomial methods. The purpose of zero 

acceleration and velocity at the beginning and end point of 

the trajectory is solved along with smother trajectory.  

II. KINEMATIC MODELING USING DH MATRIX  

Forward kinematics is for determining the position and 

orientation of a robot end-effector with respect to a 

reference coordinate system. In this case the joint variables 

and the arm parameters are already defined. Inverse 

kinematics of a robot manipulator deals with the 

calculation of each joint variable, given the position and 

orientation of end effector [9]. Forward kinematics is done 

using DH matrix frame assignment, where the 

methodology is explained to find end point of the 

end-effector using known Joint angle)twisting 

angle)a (Link length) and d (joint distance) 

A.  Forward Kinematics Using DH Matrix Method   

In (1), F is the function of , by putting the value of , 

values of desired position and rotation can be found [10]. 

Here θ1, θ2, θ3, θ4, and θ5 are the input variables and x,y,z 

and R are the desired position and rotation respectively. 

The robot arm parameters are shown in Table II, which are 

generated using DH matrix frame assignment shown in Fig. 

2. 

     F(θ1, θ2, θ3, θ4, θ5) = [x, y, z, R]                     (1) 
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The forward kinematics assignment helps in finding the 

transformation of end-effector with respect to origin, which 

is shown in (2).  Matrix shown in (3) is a transformation 

matrix, which is a combination of rotation matrix (3X3) 

and orientation (3X1) matrix. Equations 4 to 8 are derived 

by DH matrix frame assignment along with screw principle 

of rotation and translation. Equation 9 is a reference matrix 

to find all transformation matrices of the consecutive links. 

Based on (9), all the transformation matrices are 

calculated for each joint.  Referring Table II and putting all 

the initial values of each joint (column 1) in (9), we get the 

initial transformation matrix of the robot shown in (10). 

Similarly putting all the final values of each joint in 

(column 2) (9), we get the final transformation matrix, 

shown in (11). It should be noted that (Px, Py, Pz) is the 

positional vector, whereas v11 to v33 is the rotational 

vector.   

TABLE II.  ROBOT ARM PARAMETERS (FORWARD KINEMATICS) 


(Joint angle) 

Initial in 
Radian 


(Joint angle) 

Final in 
Radian 

d 
(joint 

distance

)mm 



twistin
g 

angle)

Radian 

a (Link 

length) 
mm 

  50  0 

  0 0 140 (L1) 

  0 0 120 (L2) 

  0  100(L3) 

  0 0 80(L4) 

       T5
0 = T1

0 T2
1 T3

2 T4
03 T5

4
                                            (2) 

                      T =5
0





















1000

Pvvv

Pvvv

Pvvv

z333231

y232221

x131211

                                         

(3)

 

                   T1
0 = Rot( Ẑ, θ1)Rot( X̂, −90)              (4) 

                         T2
1 = Rot( Ẑ, θ2)Trans( X̂, L1)                   (5) 

 

 

Figure 2.  DH Matrix Frame Assignemnts on the current robotic system 

    

                        
T3
2 = Rot( Ẑ, θ3)Trans( X̂, L2)

 
                   (6)

 

           

                         
T4
3 = Rot( Ẑ, θ4)Trans( X̂, L3)                   (7)  

           

                         
T5
4 = Rot( Ẑ, θ5)

 
Trans( X̂, L4)                 (8)                      

                        
 

              
T =i

i−1




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
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
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
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







1000

dCS0

SaSCCCS

CaSSCSC

iii

iiiiiii

iiiiiii

 

                (9)     
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
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




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


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320010

0100

130001

 
               

(10)

 

             
T5
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

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
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


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

1000

10209848.01736.0

0100
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(11)

 

 

Figure 3. 
 

Initial and final postion of the robot in  XYZ plane before and 

after perfomaing DH frame assignment 
 

B. Inverse Kinematics of the Robot 
 

Inverse kinematics of a robot manipulator deals with the 

calculation of each joint variable, given the position and 

orientation of end effector. The computation of the inverse 

kinematics of robot manipulator is quite difficult if 

compared to the forward kinematics because of the 

nonlinearities and multiple solutions involved
 
[12].

  

Inverse kinematics helps in finding
 

modified joint 

angles, founded from forward kinematics. It
 

should be 

noted that, C2345 = cos (θ2 + θ3 + θ4 + θ5)
 
and S234 =

sin (θ2 + θ3 + θ4) .
 

Here the positional vector is the 

function of joint variables, shown in (12).
 
The positional 

vectors can be given by (14) to (16)
 
in XYZ plane. It can be 

found using the product of overall transformation matrix 

and inverse of first transformation matrix. 
  

                       

F(x, y, z, R) = [θ1, θ2, θ3, θ4, θ5]               (12)

 

           

               [ T1
0 ]−1 T5

0 = T2
1 T3

2 T4
3 T5

4
                              (13)
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Figure 4. 
 

Final postion of the robot in XYZ plane after inverse 
kinematics

 

 

        PX = C1(L1C2 + L2C23 + L3C234 + L4C2345)
 
   (14)

 

        Py = S1(L1C2 + L2C23 + L3C234 + L4C2345)     (15)
 

      Pz = 50 − (L1S2 − L2S23 − L3S234 − L4S2345)     (16)
 

After performing the inverse kinematics, the final 

position of the robot is shown in Fig. 4.All the joint angles, 

calculated using IK, are shown in Table III.                         

TABLE III. ROBOT INVERSE KINEMATIC ANALYSIS 

Joints 

i 

(Joint 

angle) 

Initial in 
Radian 

f 

(Joint 

angle) 

Final in 
Radian 

i 

(Joint 

angle) 

Initial in 
Degree 

f 

(Joint 

angle) 

Final in 
Degree 

Joint 1    

Joint 2    

Joint 3    

Joint 4    

Joint 5    

III. ROBOT TRAJECTORY PLANNING  

As discussed earlier, robot trajectory planning is to 

ensure the smooth variation in the robotic joints. Trajectory 

planning also gives time history of position, velocity and 

acceleration at the intermediate point as well as final and 

starting point [13].  

In the present case all the initial and final values of all 

the joints are known. Apart from that angular velocity at 

the beginning and at the end is kept zero [14].  is the angle 

in degree whereas ti and tf are the initial and final time 

respectively. i and f are the initial and final angles of the 

joints. All the angles are in degree and θi, θi̇ θï , θi⃛  and 
𝑑 θi⃛ 

𝑑𝑡
are the initial angular displacement, angular velocity, 

angular acceleration,  jerk and jounce respectively, 

whereas θf, θf,̇  θf̈  a θf⃛  and 
𝑑 θf⃛ 

𝑑𝑡
are the final angular 

displacement, angular velocity, angular acceleration, jerk 

and jounce (4
th
 time derivative) respectively [10].   

A. Trajectory Planning Using 7
th

 Order Polynomial   

Angular displacement with respect to time with the 

order of seven is shown in (17). Since nth order polynomial 

would have n+ 1 coefficient, seventh order polynomial 

would have 8 coefficients. It’s first, to fourth time 

derivatives are given in (18), (19) and (20) respectively. 

Here the first derivative represents angular velocity, second 

time derivative represents acceleration, whereas third and 

fourth derivative represents jerk and jounce respectively. 

All the initial and final conditions at time t=0 seconds and 

t=tf (final time) are shown in (21) to (24) respectively. All 

eight unknowns are found using AX=B (shown in 25). All 

the initial conditions, initial angles, final angles and all 

coefficients are shown in Table IV.  In (27), the 

displacement function with respect to time is shown for all 

the joints. It should be noted that jounce is not discussed in 

this case. Eq. 26 to 31 represents all unknown coefficients.  

Eq. (31) represents generalized equation for displacement 

with all initial and final conditions. All the initial 

conditions for all the joints are shown in Table V. 

Coefficient values are shown in Table IV for septic 

function for all the joints. 
𝜃(𝑡) = 𝑎 + 𝑏𝑡 + 𝑐𝑡2 + 𝑑𝑡3 + 𝑒𝑡4 + 𝑓𝑡5 + 𝑔𝑡6 + ℎ𝑡7      (17) 
 

𝜃(𝑡) =̇  𝑏 + 2𝑐𝑡 + 3𝑑𝑡2 + 4𝑒𝑡3 + 5𝑓𝑡4 + 6𝑔𝑡5 + 7ℎ𝑡6       (18) 
 

𝜃(𝑡) =̈ 2𝑐 + 6𝑑𝑡1 + 12𝑒𝑡2 + 20𝑓𝑡3 + 30𝑔𝑡4 + 42ℎ𝑡5         (19) 
 

𝜃(𝑡)⃛ =  6𝑑 + 24𝑒𝑡 + 60𝑓𝑡2 + 120𝑔𝑡3 + 210ℎ𝑡4                    (20) 
 
𝜃(𝑡)

= {
𝜃𝑖 = 𝑎,      𝑡 = 0 𝑠𝑒𝑐

𝜃𝑓 = 𝑎 + 𝑏𝑡𝑓 + 𝑐𝑡𝑓
2 + 𝑑𝑡𝑓

3 + 𝑒𝑡𝑓
4 + 𝑓𝑡𝑓

5 + 𝑔𝑡𝑓
6 + ℎ𝑡𝑓

7,      𝑡 = 𝑡𝑓 𝑠𝑒𝑐
 

   (21) 

 
𝜃̇(𝑡)

= {
𝜃̇𝑖 = 𝑏,      𝑡 = 0 𝑠𝑒𝑐

𝜃̇𝑓 = 𝑏 + 2𝑐𝑡𝑓 + 3𝑑𝑡𝑓
2 + 4𝑒𝑡𝑓

3 + 5𝑓𝑡𝑓
4 + 6𝑔𝑡𝑓

5 + 7ℎ𝑡𝑓
6,      𝑡 = 𝑡𝑓 𝑠𝑒𝑐

 

(22) 
𝜃(𝑡)̈

= {
𝜃𝑖̈ = 2𝑐,      𝑡 = 0 𝑠𝑒𝑐

𝜃𝑓̈ = 2𝑐 + 6𝑑𝑡𝑓 + 12𝑒𝑡𝑓
2 + 20𝑓𝑡𝑓

3 + 30𝑔𝑡𝑓
4 + 42ℎ𝑡𝑓

5,      𝑡 = 𝑡𝑓 𝑠𝑒𝑐
 

    

(23) 
 

𝜃(𝑡)⃛

= {
𝜃⃛𝑖 = 6𝑑,      𝑡 = 0 𝑠𝑒𝑐

𝜃⃛𝑓 = 6𝑑+ 24𝑒𝑡𝑓 + 60𝑓𝑡𝑓
2 + 120𝑔𝑡𝑓

3 +210ℎ𝑡𝑓
4,   𝑡 = 𝑡𝑓 𝑠𝑒𝑐

 

(24) 

































4
f

3
f

2
ff

5
f

4
f

3
f

2
ff

6
f

5
f

4
f

3
f

2
ff

7
f

6
f

5
f

4
f

3
f

2
ff

t210t120t60t246000

00006000

t42t30t20t12t6200

00000200

t7t6t5t4t3t210

00000010

ttttttt1

00000001































h

g
f

e

d

c

b

a

=

















































f

i

f

i

f

i

f

i












(25) 

𝑎 = 𝜃𝑖 𝑏 = 𝜃𝑖̇  𝑐 = 𝜃̈𝑖/2    𝑑 = 𝜃𝑖/6⃛                (26) 
 

𝑒 = 35
(𝜃𝑓−𝜃𝑖)

𝑡𝑓
4 −

5

𝑡𝑓
3 (3𝜃𝑓̇ + 4𝜃̇𝑖)+5

(0.5𝜃̈𝑓−𝜃̈𝑖)

𝑡𝑓
2  - 

𝜃⃛𝑖

6𝑡𝑓
                                      (27) 
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𝑓 = 84
(𝜃𝑖−𝜃𝑓)

𝑡𝑓
5 +

1

𝑡𝑓
4 (39𝜃𝑓̇ + 45𝜃̇𝑖)+

(10𝜃̈𝑖−7𝜃̈𝑓)

𝑡𝑓
3 + 

𝜃⃛𝑖+0.5𝜃̈𝑓

2𝑡𝑓
2                           (28) 

 

𝑔 = 70
(𝜃𝑓−𝜃𝑖)

𝑡𝑓
6 −

1

𝑡𝑓
5 (34𝜃𝑓̇ + 36𝜃̇𝑖)+

(13𝜃̈𝑓−15𝜃̈𝑖)

2𝑡𝑓
4  – 

2𝜃⃛𝑖

3𝑡𝑓
3 −

𝜃⃛𝑓

2𝑡𝑓
3                        (29)

 

 

ℎ = 20
(𝜃𝑖−𝜃𝑓)

𝑡𝑓
7 +

10

𝑡𝑓
6 (𝜃𝑓̇ + 𝜃̇𝑖)+2

(𝜃̈𝑖−𝜃̈𝑓)

𝑡𝑓
5  + 

(𝜃⃛𝑖+𝜃⃛𝑓)

6𝑡𝑓
4              (30) 

 

𝜃(𝑡) = 𝜃𝑖 + 35
(𝜃𝑓−𝜃𝑖)

𝑡𝑓
4 𝑡4 + 84

(𝜃𝑖−𝜃𝑓)

𝑡𝑓
5 𝑡5 + 70

(𝜃𝑓−𝜃𝑖)

𝑡𝑓
6 𝑡6  + 20

(𝜃𝑖−𝜃𝑓)

𝑡𝑓
7 𝑡7   

 
(31) 

 

𝜃(𝑡)

=

{
 
 

 
 
−12.5 − 0.33𝑡4 + 0.13𝑡5 − 0.018𝑡6 + 0.0009𝑡7,   𝐹𝑜𝑟 𝑗𝑜𝑖𝑛𝑡 1

120 − 0.03𝑡4 + 0.47𝑡5 − 0.066𝑡6 + 0.003𝑡7,        𝐹𝑜𝑟 𝑗𝑜𝑖𝑛𝑡 2

−1.86𝑡4 + 0.74𝑡5 − 0.10𝑡6 + 0.005𝑡7,                   𝐹𝑜𝑟 𝑗𝑜𝑖𝑛𝑡 3

−0.16𝑡4 + 0.06𝑡5 − 0.009𝑡6 + 0.0004𝑡7,              𝐹𝑜𝑟 𝑗𝑜𝑖𝑛𝑡 4

−101 + 2.72𝑡4 − 1.09𝑡5 + 0.15𝑡6 − 0.0072𝑡7,   𝐹𝑜𝑟 𝑗𝑜𝑖𝑛𝑡 5

 

(32) 

TABLE
 
IV.

 
COEFFICIENTS VALUES FOR SEPTIC FUNCTION

 

Coefficients 

and Initial 

Conditions  
 Joint 1

 
Joint 2

 
Joint 3

 
Joint 4

 
Joint 5

 

a
 

-12.5
 

120
 

0.5
 

0.5
 

-101
 

b
 

0
 

0
 

0
 

0
 

0
 

c
 

0
 

0
 

0
 

0
 

0
 

d
 

0
 

0
 

0
 

0
 

0
 

e
 

-0.33
 

-0.03
 

-1.86
 

-0.16
 

2.72
 

f
 

0.13
 

0.47
 

0.74
 

0.06
 

-1.09
 

g
 

-0.018
 

-0.066
 

-0.1
 

-0.009
 

0.15
 

h
 0.0000

9
 0.003

 
0.005

 
0.0004

 
-0.0072

 

i

 
-12.5

 
120

 
0.5

 
0.5

 
-101

 

f 0.5
 

76
 

-69
 

-6
 

0.5
 

 

 
TABLE

 

V.

 

INITIAL CODITIONS FOR ALL THE JOINTS

 

 

Joint 1

 

Joint 2

 

Joint 3

 

Joint 4

 

Joint 5

 𝜽̇(𝒕)

 

0

 

0

 

0

 

0

 

0

 𝜽(𝒕)̈

 

0

 

0

 

0

 

0

 

0

 𝜽(𝒕)⃛

 

0

 

0

 

0

 

0

 

0

 
𝒅

𝒅𝒕
𝜽(𝒕)⃛

 

0

 

0

 

0

 

0

 

0

 

 
B. Trajectory Planning Using

 

9
th

 

Order Polynomial  

 

Angular displacement with respect to time with the 

order of seven is shown in (33). It’s first, to fourth time 

derivatives are

 

given in (34) to (37) respectively.

 

Here the 

first derivative represents angular velocity, second time 

derivative represents acceleration, whereas third and fourth 

derivative represents jerk and jounce respectively. All the 

initial and final conditions at time t=0 seconds and t=tf 

(final time) are shown in (38) to (42) respectively. All eight 

unknowns are found using AX=B (shown in 43). All the 

initial conditions, initial angles, final angles and all 

coefficients are shown in Table V.  In (27), the 

displacement function with respect to time is shown for all 

the joints. Eq. 44 to 49 represents all unknown coefficients. 

Eq. (50) represents generalized equation for displacement 

with all initial and final conditions. Coefficient values are 

shown in Table VI for nonic function for all the joints. 

 
𝜃(𝑡) = 𝑎 + 𝑏𝑡 + 𝑐𝑡2 + 𝑑𝑡3 + 𝑒𝑡4 + 𝑓𝑡5 + 𝑔𝑡6 + ℎ𝑡7 + 𝑖𝑡8  +𝑗𝑡9             (33)

 
 

   

𝜃(𝑡) =̇  𝑏 + 2𝑐𝑡 + 3𝑑𝑡2 + 4𝑒𝑡3 + 5𝑓𝑡4 + 6𝑔𝑡5 + 7ℎ𝑡6 + 8𝑖𝑡7 + 9𝑗𝑡8       
                                                            

 (34) 
  

𝜃(𝑡) =̈ 2𝑐 + 6𝑑𝑡 + 12𝑒𝑡2 + 20𝑓𝑡3 + 30𝑔𝑡4 + 42ℎ𝑡5 + 56𝑖𝑡6 +
72𝑗𝑡7  

(35) 
 

𝜃(𝑡)⃛ =  6𝑑 + 24𝑒𝑡 + 60𝑓𝑡2 + 120𝑔𝑡3 + 210ℎ𝑡4 + 336𝑖𝑡5 + 504𝑗𝑡6 

(36)
 

 

𝑑

𝑑𝑡
𝜃(𝑡)⃛ =  24𝑒 + 120𝑓𝑡 + 360𝑔𝑡2 + 840ℎ𝑡3 + 1680𝑖𝑡4 + 3024𝑗𝑡5     

(37)
 

 

𝜃(𝑡) =
 

{

𝜃𝑖 = 𝑎,  𝑡 = 0 𝑠𝑒𝑐
                                                            𝜃𝑓 =

𝑎 + 𝑏𝑡𝑓 + 𝑐𝑡𝑓
2 + 𝑑𝑡𝑓

3 + 𝑒𝑡𝑓
4 + 𝑓𝑡𝑓

5 + 𝑔𝑡𝑓
6 + ℎ𝑡𝑓

7 + 𝑖𝑡𝑓
8 + 𝑗𝑡𝑓

9     𝑡 = 𝑡𝑓 

 

   

(38)
 

 

𝜃̇(𝑡) =
 

{

                                                                              𝜃̇𝑖 = 𝑏,          𝑡 = 0 𝑠𝑒𝑐

                                    𝜃̇𝑓 =

𝑏 + 2𝑐𝑡𝑓 + 3𝑑𝑡𝑓
2 + 4𝑒𝑡𝑓

3 + 5𝑓𝑡𝑓
4 + 6𝑔𝑡𝑓

5 + 7ℎ𝑡𝑓
6 + 8𝑖𝑡𝑓

7 + 9𝑗𝑡𝑓
8, 𝑡𝑓 𝑠𝑒𝑐

 

      

(39)
 

 

𝜃(𝑡)̈ =
 

{
 
 

 
 

                                                                                                 
                                                           𝜃𝑖̈ = 2𝑐                              𝑡 = 0𝑠𝑒𝑐

𝜃𝑓̈ =

2𝑐+ 6𝑑𝑡𝑓 +12𝑒𝑡𝑓
2 +20𝑓𝑡𝑓

3 +30𝑔𝑡𝑓
4+42ℎ𝑡𝑓

4 +56𝑖𝑡𝑓
6 +72𝑗𝑡𝑓

7 
𝑎𝑡 𝑡 = 𝑡𝑓 𝑠𝑒𝑐

 

          

(40)
 

 
 

𝜃(𝑡)⃛ =
 

{
 
 

 
                                                     𝜃⃛𝑖 = 6𝑑                        𝑡 = 0𝑠𝑒𝑐

𝜃⃛𝑓 = 

6𝑑+ 24𝑒𝑡𝑓 +60𝑓𝑡𝑓
2 + 120𝑔𝑡𝑓

3+ 210ℎ𝑡𝑓
4+ 336𝑖𝑡𝑓

5+ 504𝑗𝑡𝑓
6,

𝑎𝑡 𝑡 = 𝑡𝑓 

 

       

(41)
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𝑑

𝑑𝑡
𝜃(𝑡)⃛ = 

{
  
 

  
                                             

𝑑

𝑑𝑡
𝜃⃛𝑖 = 24𝑒, 𝑎𝑡  𝑡 = 0 𝑠𝑒𝑐   

 
𝑑

𝑑𝑡
𝜃⃛𝑓 =

6𝑑+ 24𝑒𝑡𝑓 + 60𝑓𝑡𝑓
2 + 120𝑔𝑡𝑓

3 +210ℎ𝑡𝑓
4 + 336𝑖𝑡𝑓

5 +504𝑗𝑡𝑓
6

𝑎𝑡 𝑡 = 𝑡𝑓 𝑠𝑒𝑐 

 

     (42) 







































5
f

4
f

3
f

2
ff

6
f

5
f

4
f

3
f

2
ff

7
f

6
f

5
f

4
f

3
f

2
ff

8
f

7
f

6
f

5
f

4
f

3
f

2
ff

9
f

8
f

7
f

6
f

5
f

4
f

3
f

2
ff

t3024t1680t840t360t120240000

00000240000

t504t336t210t120t60t240000

0000006000

t72t56t42t30t20t12t6200

0000000200

t9t8t7t6t5t4t3t210

0000000010

ttttttttt1

0000000001





































j

i

h

g
f

e

d

c

b

a

=































































f

i

f

i

f

i

f

i

f

i

dt

d

dt

d
















(43)
 

𝑎 = 𝜃𝑖

 

𝑏 = 𝜃𝑖̇  𝑐 =
𝜃̈𝑖

2
      𝑑 =

𝜃𝑖⃛

6
   𝑒 =

𝑑

𝑑𝑡
(
𝜃𝑖⃛

24
)    

      

     
 

(44)
 

 

𝑓 = 126
(𝜃𝑓−𝜃𝑖)

𝑡𝑓
5 −

(56𝜃𝑓̇+70𝜃̇𝑖)

𝑡𝑓
4 +

(21𝜃̈𝑖−35𝜃̈𝑓)

2𝑡𝑓
3 -

 

(𝜃⃛𝑓+2.5𝜃̈𝑖)

𝑡𝑓
2 +

𝑑

𝑑𝑡
(
𝜃𝑓⃛

𝑡𝑓
)                   (45) 

 

𝑔 = 420
(𝜃𝑖−𝜃𝑓)

𝑡𝑓
6 + 4

(49𝜃𝑓̇+61𝜃̇𝑖)

𝑡𝑓
5 +

(105𝜃̈𝑖−77𝜃̈𝑓)

2𝑡𝑓
4

 

+ 
(20𝜃⃛𝑖+11.5𝜃⃛𝑓)

3𝑡𝑓
3 +

2.5
𝑑

𝑑𝑡
𝜃⃛𝑖−

𝑑

𝑑𝑡
𝜃⃛𝑓

6𝑡𝑓
2

 

(46)

 

 

ℎ = 540
(𝜃𝑓−𝜃𝑖)

𝑡𝑓
7 − 20

(13𝜃𝑓̇+14𝜃̇𝑖)

𝑡𝑓
6 +

(53𝜃̈ 𝑓−63𝜃
̈

𝑖)

𝑡𝑓
5

 

- 
(15𝜃⃛ 𝑖+11𝜃⃛𝑓)

2𝑡𝑓
4 +

𝑑

𝑑𝑡
𝜃⃛𝑓−

5

3

𝑑

𝑑𝑡
𝜃⃛𝑖

4𝑡𝑓
3        

(47)

 

 

𝑖 = 315
(𝜃𝑖−𝜃𝑓)

𝑡𝑓
8 + 5

(𝜃𝑓̇−40𝜃̇𝑖)

𝑡𝑓
7 +5

(7𝜃̈𝑖−7.5𝜃̈𝑓)

𝑡𝑓
6

 

+ 
(2𝜃⃛𝑖+7𝜃⃛𝑓)

2𝑡𝑓
5 −

𝑑

𝑑𝑡
𝜃⃛𝑓−

5

4

𝑑

𝑑𝑡
𝜃⃛𝑖

6𝑡𝑓
4               

(48)

 

 

𝑗 = 70
(𝜃𝑓−𝜃𝑖)

𝑡𝑓
9 − 35

(𝜃𝑓̇+𝜃̇𝑖)

𝑡𝑓
8 +7.5

(𝜃̈𝑓−𝜃̈𝑖)

𝑡𝑓
7

 

-5 
(𝜃⃛𝑖+𝜃⃛𝑓)

6𝑡𝑓
6 −

𝑑

𝑑𝑡
𝜃⃛𝑓−

𝑑

𝑑𝑡
𝜃⃛𝑖

24𝑡𝑓
4   

   

 

(49)

 

 

𝜃(𝑡) = 𝜃𝑖 + 126
(𝜃𝑓−𝜃𝑖)

𝑡𝑓
5 𝑡5 + 420

(𝜃𝑖−𝜃𝑓)

𝑡𝑓
6 𝑡6 + 540

(𝜃𝑓−𝜃𝑖)

𝑡𝑓
7 𝑡7 +

315
(𝜃𝑖−𝜃𝑓)

𝑡𝑓
8 𝑡8 + 70

(𝜃𝑓−𝜃𝑖)

𝑡𝑓
9 𝑡9   

             

      

(50)

 

𝜃(𝑡)

=

{
 
 

 
 
−12.5 + 0.20𝑡5 − 0.11𝑡6 + 0.024𝑡7 − 0.0023𝑡8 + 0.00008𝑡9,   𝐹𝑜𝑟 𝐽1

120 − 0.71𝑡5 + 0.39𝑡6 − 0.084𝑡7 + 0.0082𝑡8 + 0.00008𝑡9,        𝐹𝑜𝑟 𝐽2

0.20𝑡5 − 0.11𝑡6 + 0.024𝑡7 − 0.0023𝑡8 − 0.0005𝑡9,                     𝐹𝑜𝑟 𝐽3

−0.1𝑡5 + 0.054𝑡6 − 0.011𝑡7 + 0.0011𝑡8 − 0.00004𝑡9,               𝐹𝑜𝑟  𝐽4

−101 + 1.63𝑡5 − 0.91𝑡6 + 0.19𝑡7 − 0.019𝑡8 + 0.0007𝑡9,        𝐹𝑜𝑟 𝐽5

 

 

(51)

 
 

 

 

 

 

 

TABLE VI. COEFFICIENTS VALUES FOR NONIC FUNCTION 

Coefficients 

and Initial 

Conditions   

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 

a -12.5 120 0.5 0.5 -101 

b 0 0 0 0 0 

c 0 0 0 0 0 

d 0 0 0 0 0 

e 0 0 0 0 0 

f 0.2 -0.71 0.20 -0.1 1.63 

g -0.11 0.39 -0.11 0.054 -0.91 

h 0.024 -0.084 0.024 -0.011 0.19 

i -0.0023 0.0082 -0.0023 0.0011 -0.019 

j 0.00008 0.00008 -0.0005 -0.00004 0.0007 

i -12.5 120 0.5 0.5 -101 

f 0.5 76 -69 -6 0.5 

IV. RESULTS AND DISCUSSION  

TABLE VII. VALUES OF VELOCITY AND ACCELERATION AT THE INITIAL, 
MIDDLE AND FINAL POINT OF THE TRAJECTORY 

Order of Function  0 sec 3 sec 6 sec 

Parabolic 

Velocity 
In 

 deg/sec 

0 17 33 

Acc 

In 

Deg/sec^2 

5.5 5.5 5.5 

Cubic 
Velocity 0 25 0 

Acc 18 0 -17 

Septic 
Velocity 0 37 0 

Acc 0 0 0 

Nonic 
Velocity 0 41 0 

Acc 0 0 0 

 
Table VI shows the values of velocity and acceleration 

at the beginning, middle and end of the trajectory.
 
Angular 

displacement, velocity
 
and acceleration are compared and 

plotted in fig
 
5 to 7 respectively.

 
However methodology for 

parabolic function and cubic function are
 
not shown

 
in this 

paper. 
 

Based on these plots, values of velocity and 

acceleration are mentioned in Table VI. Trajectory design 

using second order or parabolic function provides zero 

velocity at the beginning, but fails to provide zero velocity 

at the end.
 
It also provides constant acceleration through 

the entire trajectory.
 
Cubic polynomial is able to satisfy 

zero velocity at the ends, but fails to give zero acceleration 

for the same.
 
Meanwhile higher order polynomials are able 

to satisfy zero velocity and acceleration at the ends.
 However higher order functions leave over shoot 

acceleration and velocity at the middle of the trajectory.     
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 Figure 5. 

 

Angular displacement comparision for Joint 5  

 

 Figure 6. 

 

Angular velocity comparision of Joint 5

 

 Figure 7. 

 

Angular acceleration comparision of Joint 5

 

      -

 Figure 8. 

 

Final Postion of

 

the Robot in XZ plane

 

after applying 7th

 

order 
polynomial method

 

(real time)

 

V.

 

CONCLUSIONS 

 

From the work presented in this paper, it is

 

concluded 

that the trajectory planning using septic and nonic 

functions is successfully deployed for maintaining the 

continuity of joint velocity and acceleration.

 

It also 

satisfies zero velocity and acceleration at the ends of the 

trajectory.

 

Septic and nonic functions give smoother 

trajectory compare to parabolic and cubic

 

polynomials, 

which helps robot in delivering the food without wasting it. 

It also increases the battery life and life of a servo actuator 

due to its continuous response of velocity and acceleration.

 

The limitation of the paper is that, higher order 

polynomials provide peaks of acceleration and velocity in 

the middle of the trajectory, which is not desired for 

multiple point

 

trajectory. 

 

In the future, trajectory planning 

can be done using optimization algorithms like PSO, GA 

and ANN.

 

Also fuzzy PID based dynamic control system 

can be designed to have a more control over joint angles, 

velocity and acceleration. 

  CONFLICT OF INTEREST

 
The authors declare no conflict of interest

 

in this 
research.

   AUTHOR CONTRIBUTIONS

 
Please

 

state each author's contribution to this work.

 

Priyam Parikh did the trajectory planning using lower and 
higher order polynomials.  He also developed the entire 
robotic arm along with programming in MATLAB and 
ARDUINO. Co-author Dr. Reena Trivedi did the motion 
planning, simulation and 3D modeling. Dr. Jatin Dave 
helped in calculating forward and inverse kinematics

 

of the 
serial manipulator.

 
REFERENCES

 [1]

 

A.

 

Valente, S.

 

Baraldo, and

 

E.

 

Carpanzano, “Smooth trajectory 

generation for industrial robots performing high precision assembly 

processes,”

 

CIRP Annals, vol. 66, no. 1,

 

pp.

 

17–20, 2017.

 [2]

 

A.

 

Gasparetto

 

and

 

V. Zanotto, “Optimal trajectory planning for 

industrial robots,”

 

Advances in Engineering Software,

 

vol.

 

41, no. 4,

 pp.

 

548–556, 2010.

 [3]

 

W. G.

 

Hao, Y. Y.

 

Leck, L. C. Hun, “

 

6-DOF PC-Based Robotic 

Arm (PC-ROBOARM) with efficient trajectory planning and speed 

control,”

 

in Proc.

 

2011 4th International Conference on 

Mechatronics (ICOM), 2011.

 [4]

 

F.

 

Basile,

 

F.

 

Caccavale, P.

 

Chiacchio, J.

 

Coppola, C. 
Curatella, 

 

“Task-oriented motion planning for multi-arm robotic 

systems,”

 

Robotics and Computer-Integrated Manufacturing, vol. 

28, no. 5,

 

pp.

 

569–582, 2012.

 [5]

 

S.

 

Fang, X.

 

Ma,

 

J.

 

Qu, S.

 

Zhang, N.

 

Lu, X.

 

Zhao,

 

“Trajectory 

planning for seven-DOF robotic arm based on seventh degree

 polynomial,”

 

in: Jia Y., Du J., Zhang W. (eds) Proceedings of 2019 
Chinese Intelligent Systems Conference. CISC 2019. Lecture 

Notes in Electrical Engineering, vol.

 

593. Springer, Singapore, 

2020.

 [6]

 

J.

 

Zhang,

 

Q.

 

Meng, X.

 

Feng, H. Shen, “A 6-DOF robot-time 

optimal trajectory planning based on an improved genetic 

algorithm,”

 

Robotics and Biomimetics, vol. 5, no. 1, 2018

  [7]

 

Y.

 

Li, T.

 

Huang, D. G. Chetwynd, “An approach for smooth 

trajectory planning of high-speed pick-and-place parallel robots 

using quintic B-splines,”

 

Mechanism and Machine Theory, vol. 126, 
pp. 479–490.

  

 

 

 

1049

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 7, July 2020

© 2020 Int. J. Mech. Eng. Rob. Res



  

[8] X. J. Zhao, M. L. Wang, N. Liu, and Y. W. Tang, “Trajectory 
planning for 6-DOF robotic arm based on quintic polynomial,” in 

Proc. the 2017 2nd International Conference on Control, 

Automation and Artificial Intelligence (CAAI 2017), [Online]. 
Available:  https://doi.org/10.2991/caai-17.2017.23 

[9] J. Rosell, A. Perez, A. Aliakbar, Muhayyuddin, L. Palomo, and N. 

Garcia, “The Kautham project: A teaching and research tool for 
robot motion planning,” in Proc. the 2014 IEEE Emerging 

Technology and Factory Automation (ETFA), 2014. 
[10] J. M. Longval, C. Gosselin, “Dynamic trajectory planning and 

geometric design of a two-DOF translational cable-suspended 

planar parallel robot using a parallelogram cable loop,” vol. 5B, 

42nd Mechanisms and Robotics Conference, 2018. 
[11] X. Jiang, E. Barnett, and C. Gosselin, “Dynamic point-to-point 

trajectory planning beyond the static workspace for six-DOF 

cable-suspended parallel robots,” IEEE Transactions on Robotics, 
vol. 34, no. 3, pp. 781–793, 2018. 

[12] X. Wang, D. Zhang, C. Zhao, H. Zhang, and H. Yan, ”Singularity 

analysis and treatment for a 7R 6-DOF painting robot with 

non-spherical wrist,” Mechanism and Machine Theory, vol. 126, pp. 

92–107, 2018. 

[13] M. Vulliez, S. Zeghloul, and O. Khatib, “Kinematic analysis of the 
delthaptic, a new 6-DOF haptic device,” Springer Proceedings in 

Advanced Robotics, pp. 181–189, 2017. 

[14] S. Zhu, Wang, “Time-optimal and jerk-continuous trajectory 
planning algorithm for manipulators,” J Mech Eng., 

2010;46(3):456–62. [Online]. 

Available:  https://doi.org/10.3901/jme.20. 
 

Copyright © 2020

 

by the authors. This is an open access article 

distributed under the Creative Commons Attribution License (CC 
BY-NC-ND 4.0), which permits use, distribution and reproduction in any 

medium, provided that the article is properly cited, the use is 

non-commercial and no modifications or adaptations are made.

 
 
 

Priyam Parikh is currently pursuing his PhD 
in mechanical engineering from Nirma 

University, Gujarat, India.

 

He is also working 

as an Assistant Professor at Anant National 
University

 

in Industrial Design Department.

 

He 

has done his masters in Mechatronics 

  

Engineering from G.H. Patel College of 
Engineering and technology, VVnagar, India. 

His area of interest is Robotics, Automation,    

Mechatronics and Industrial Design.

  
 

1050

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 7, July 2020

© 2020 Int. J. Mech. Eng. Rob. Res

https://dx.doi.org/10.2991/caai-17.2017.23
https://doi.org/10.3901/jme.20
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/



