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Abstract— In this paper, we propose a new impedance 

control method for flexible joint robot manipulators. An 

ideal nonlinear impedance dynamic model is formulated in 

the workspace. Three control strategies that meet the 

requirement of desired impedance dynamics and stability of 

the whole system are derived by using backstepping control 

approach. The control system has a cascade structure with 

the designed three control strategies serially connecting to 

each other. Stability of the closed-loop system is analyzed 

using Lyapunov stability theory. Impedance control 

experiments are carried out on a 2-link flexible joint robot 

manipulator with a force sensor equipped at the end-

effector. The results demonstrate the effectiveness of the 

proposed impedance control method.   

 

Index Terms— impedance control, workspace, flexible joint 

robot, backstepping approach, stability analysis 

 

I. INTRODUCTION 

Impedance control of robot systems has a significant 

advantage: it can change dynamic behavior of the robot 

just like a mass-spring-dashpot system when the robot 

responses to the interactive force acting at its end-effector. 

The impedance control concept was introduced by N. 

Hogan [1]. Since then, this issue has attracted many 

attentions.   

Recently, impedance control has been adopted for the 

development of rehabilitation robotic systems, since it 

can improve safety of the system, and furthermore 

regulate the interaction force between the robot and 

human body. Implementation of an impedance controller 

in a robotic platform for ankle rehabilitation based on a 

Markovian approach was presented [2]. An 

asymptotically stable stiffness and impedance controller 

was designed based on the Lyapunov approach for   

robot-aided rehabilitation [3]. A variable impedance 

control method for a lower-limb rehabilitation robotic 

system using fuzzy logic and voltage control strategy was 

presented [4]. On impedance control of robots with 

structural flexibility, however, only a few research results 

have been reported. An adaptive impedance control 
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method for multi-joint flexible link robot manipulator 

was proposed. This method is based on the tracking of a 

targeted trajectory generated by designed impedance 

dynamics in the presence of contact force [5]. An 

impedance controller for flexible joint robots was 

proposed with inner loop torque feedback and outer loop 

impedance control. The target impedance was designed 

with desired stiffness and damping [6]. 

On control design techniques for the flexible joint 

robot, recent years, backstepping control method interests 

many researchers. A backstepping method for tracking 

control of multi-joint variable stiffness robots was 

presented [7]. An output feedback control based on the 

backstepping approach was proposed. The control 

method guarantees asymptotic stability of the flexible 

joint robot system [8]. A workspace trajectory control 

method using an ideal manifold for multi-link flexible 

joint robots was proposed based on backstepping 

approach [9].  

In this paper, a new impedance control method based 

on backstepping approach is proposed for multi-link 

flexible joint robots. Based on this method, the control 

design can be broken down into two stages stated as 

follows. First, a target nonlinear impedance model is 

designed in the workspace to prescribe ideal impedance 

performance of the robot. Second, three control schemes 

are designed using the backstepping control approach for 

impedance control in the workspace and vibration 

suppressing in the joint space. Stability of the system is 

analyzed based on Lyapunov stability theory. Impedance 

control experiments with external force acting at the end-

effector are carried on a two-link flexible robot made by 

Quanser Corporation with a six axes force sensor made 

by Nitta Corporation equipped at the distal end of the 

robot. The results demonstrate the effectiveness of the 

proposed impedance control method. 

This paper is organized as follows. Dynamic models of 

the robot in joint space and workspace are given in 

Section 2. Section 3 describes the design of the ideal 

nonlinear impedance model in the workspace.  Section 4 

presents the details of control system design. Stability 

analysis is given in Section 5. Section 6 demonstrates the 
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impedance control experimental results. Finally, 

conclusions are stated in Section 7. 

II. DYNAMICS MODELING 

Consider an n-link flexible joint robot manipulator, 

each joint being modeled as a liner rotation spring 

between the actuator and the link driven by the joint. The 

mass and moment of inertia of the transmission are 

equivalently added to both sides of the actuator and link. 

In this section, dynamics of n-link flexible joint robot 

manipulators is presented in the joint space. In order for 

us to design the control system in the workspace easier 

the dynamics is then transformed to the workspace.  

A. Joint Space Dynamics 

Dynamics of the robot system is derived based on 

Lagrange’s formulation. When an external force acts at 

the end-effector, motion equations of the robot can be 

given as follow. 

ML(θ)θ̈ + DL(θ, θ̇)θ̇ − K(θM − θ) + gL(θ) = JT(θ)F  
(1) 

IMθ̈M + K(θM − θ) = u .            (2) 

(1) and (2) are joint motion equations on the link side 

and the motor side, respectively. θM ∈ Rn  is the motor 

side joint variable, and θ ∈ Rn is its link side counterpart. 

ML(θ) ∈ Rn×n  and DL(θ, θ̇)θ̇ ∈ Rn  denote the inertia 

matrix, and Coriolis and centrifugal forces; K∈ Rn×n and 

gL(θ) ∈ Rn  are the matrix of stiffness and gravity. 

IM ∈ Rn×n is moment of inertia of the joint shaft,  u ∈ Rn 

is the joint control torque.  JT(θ) ∈ Rn×N  and  F ∈ RN 

denote the transpose of Jacobian and external force acting 

at the end-effector, respectively. 

Remarks:  

It should be noticed that the flexible joint robot has 

following important properties. 

(i) ML(θ) is a positive definite symmetric matrix; 

(ii)  
1

2
ṀL(θ) − DL(θ, θ̇) is a skew symmetric matrix.  

B. Dynamics Described in the Workspace 

Since we are dealing with workspace impedance 

control, first of all we need to transform the dynamic 

model given in section 2.1 into the workspace. To do so, 

we analyze kinematics of the robot. As end-effector 

motion of the robot is only determined by link side joint 

variableθ, kinematic relations can be given as follows. 

P = f(θ)                                      (3) 

Ṗ = J(θ)θ̇                                    (4) 

P̈ = J(θ)θ̈ + J̇(θ)θ̇              (5) 

where P ∈ R𝑁 is the end-effector position vector, Ṗ and P̈ 

are the velocity and acceleration, respectively. f(θ) is a 

nonlinear function vctor. 

We transform motion equation (1) to the workspace 

while leaving motion equation (2) unchanged in the joints 

pace. As the result, equation (1) becomes. 

Mp(θ)P̈ + Dp(θ, θ̇)Ṗ + hp(θ, θ̇) 

= J−T(θ)K(θM − θ) + F .                  
  (6) 

Here  

 MP(θ) ≡ J−T(θ)ML(θ)J−1(θ)                (6a) 

is the generalized matrix of inertia. 

 DP(θ, θ̇)θ̇ ≡ J−T(θ)DL(θ, θ̇)J−1(θ)θ̇              (6b) 

and 

hp(θ, θ̇) ≡ J−T(θ){gL(θ)  − ML(θ)J−1(θ)J̇(θ)θ̇}  (6c) 

are Coriolis and centrifugal forces in the workspace, and 

gravity together with the nonlinear forces cause by the 

coordinate transformation. 

Remarks:  

(iii) Since ML(θ)  is positive-definite symmetric, 

MP(θ) is also positive-definite symmetric. 

(iv) Since 
1

2
ṀL(θ) − DL(θ, θ̇) is skew symmetric, it is 

easy to prove that 
1

2
ṀP(θ) − DP(θ, θ̇) is also skew 

symmetric. 

Property (iv) is especially important for the control 

design and stability analysis.  

C. The Ideal Impedance Dynamics 

The impedance control issue addressed in this paper is 

formulated as an end-effector trajectory tracking problem 

with reaction force from the environment acting at the 

end-effector. The ideal impedance model is designed as an 

N dimensional nonlinear impedance dynamic equation 

described as follows. 

MP(θ)∆P̈ + (DP(θ) + Dd)∆Ṗ + Kd∆P = F           (7) 

where ∆P ϵ R𝑁  is end-effector trajectory tracking error 

defined as  ∆P = P − P𝑑 .   P and P𝑑  are end-effector 

position vector and planned end-effector trajectory; ∆Ṗ 

and ∆P̈ are velocity and acceleration errors accordingly. 

D𝑑 , and K𝑑  are damping, stiffness matrices, they are 

designed as positive-definite constant diagonal matrices. 

Each diagonal element of the matrices relates to the 

direction of a specific axis of the workspace coordinate 

system. Therefore, the elements of   D𝑑 , and K𝑑  can be 

designed separately and independently in each direction of 

the workspace. Here, we adopt the generalized matrix of 

inertia Mp(θ) as the ideal mass matrix, and  DP(θ) + Dd 

as the total damping matrix. 

III. DESIGN OF CONTROL SCHEMES 

The main difference between the flexible joint robot 

and its ordinary counterpart is that links of the former is 

not directly driven by the actuators but through the joint 

flexible behavior. Hence, the control design should focus 

on two issues: one is how to cause such the joint flexible 

behavior that it meets the requirements of desired 

impedance dynamics, another one is how to dampen 
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vibration of the flexible link to ensure stability of the 

system.  

In this section, we derive the control strategy based on 

backstepping control approach. 

A. The First Control Scheme 

In (6), we define the elastic torque as a nominal control 

input of the subsystem and rewritten (6) as follows. 

Mp(θ)P̈ + Dp(θ, θ̇)Ṗ + hp(θ, θ̇) = J−T(θ)τ + F      (8) 

where 

τ = K(θM − θ)                                (9) 

is the nominal control input. 

The design of the first control scheme is concentrated 

on changing dynamics of subsystem (8) such that it meets 

impedance dynamics (7). In detail, the control scheme is 

given as below. 

τd = JT(θ){v + DP(θ, θ̇)Ṗ + hp(θ, θ̇)}         (10) 

where  

v = MP(θ)P̈d − Dd ∆Ṗ − Kd∆P     .           (11) 

Under this control scheme, subsystem (6) becomes 

MP(θ)∆P̈ + (DP(θ) + Dd)∆Ṗ + Kd∆P 

= F + J−T(θ)eτ                              (12) 

where eτ ≡ τ − τd  denotes the error between the real 

elastic torque and the designed nominal control input 

given by (10). 

B. The Second Control Scheme 

The objective of the second control scheme design is to 

ensure that the error of the first control input eτ 
converges to zero. To do so, we take time derivative of 

(9) to have  

θ̇M = K−1τ̇ + θ̇                          (13) 

The second control scheme is designed to prescribe the 

desired joint motion on the motor side so that the 

abovementioned objective can be realized. The details are 

given as follows. 

θ̇Md = K−1(τ̇d − Kτ(τ − τd) − J−1(θ)∆Ṗ) + θ̇    (14) 

where Kτ ∈ Rn×n is a gain matrix that must be chosen as 

a positive-definite matrix.  

Under control law (14) equation (13) becomes 

ėτ + Kτeτ = Keθ − J−1(θ)∆Ṗ .               (15) 

In (15), eθ ≡ θ̇M − θ̇Md denotes the error between the 

real joint motion and desired joint motion. 

C. The Third Control Scheme 

The third control scheme is to guarantee that the real 

joint motion converges to the ideal joint motion. In detail, 

the control scheme is designed as 

  
u = IMθ̈Md − Kθėθ + τd                      

(16) 

where Kτ ∈ Rn×n

 
is positive-definite feedback gain 

matrix. Under this control scheme, subsystem (2) becomes 

   
IMėθ + Kθeθ + eτ = 0  .

                     
(17) 

In above equation Kθ ∈ Rn×n is a positive-definite gain 

matrix. It should be pointed out that the control input 

given by the third control law is the actual control input to 

the robot, and it combined the former two control schemes 

together.  

In the control implementation, the first control scheme 

given by expressions (10) and (11) need to be firstly 

calculated based on the sensor signals and dynamic model 

described in (8). The second control law given by (14) is, 

then, calculated based on the first control scheme and its 

numerical differentiation. Finally the third control scheme, 

i.e., the actual control input given by (17) is computed 

using the first control scheme, and second control scheme 

together with its numerical differentiation. With these 

control schemes described above, it is seen that the 

impedance control system has a cascade structure. 

IV. STABILITY ANALYSIS 

Stability analysis of the robot system takes place using 

Lyapunov stability theory. We consider Lyapunov 

function candidate without taking external forces into 

consideration as follows. 

V =
1

2
∆ṖTMp(θ)∆Ṗ +

1

2
∆PTKd∆P 

+
1

2
eτ

Teτ +
1

2
eθ

TKIMeθ > 0                 (18) 

Taking derivative with respect to time we obtain, 

V̇ = ∆ṖTMp(θ)∆P̈ +
1

2
∆ṖTṀp(θ)∆Ṗ  

+∆PTKd∆Ṗ + eτ
Tėτ + eθ

Tėθ                (19) 

Substituting solution trajectories of (12), (15) and (17) 

into (19) yields, 

        V̇ = ∆ṖT(J−T(θ)eτ − DP(θ)∆Ṗ − Dd∆Ṗ − Kd∆P) 

+
1

2
∆ṖTṀp(θ)∆Ṗ + ∆PTKd∆Ṗ 

+eτ
T(Keθ − J−1(θ)∆Ṗ − Kτeτ) 

+eθ
TK(−Kθeθ − eτ)                     (20) 

Since  
1

2
ṀP(θ) − DP(θ, θ̇) is a skew symmetric matrix, 

we obtain 

V̇ = −∆ṖTDd∆Ṗ − eτ
TKτeτ − eθ

TKKθeθ < 0     (21) 

This completes the proof of stability of the impedance 

control system. 

V.  IMPEDANCE CONTROL EXPEREMENTS 

In order to demonstrate the effectiveness of the 

proposed control method, impedance control experiments 

are carried out on a 2-link flexible joint robot arm made 

by Quanser Corporation shown in Fig. 1. The main size 

and parameters of the robot are given in Table I. The rest 

867

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 6, June 2020

© 2020 Int. J. Mech. Eng. Rob. Res



parts of the dynamic parameters have been identified 

based on identification experiments. A six axes force 

sensor made by Nitta Corporation is set at the end of the 

robot arm to measure external forces acting at the end-

effector. The force signals are transformed from the 

sensor coordinate system to the workspace using the 

homogenous transformation matrix. 

 

Figure 1. 2-Link flexible joint robot with force sensor equipped   at the 
end-effector 

TABLE I.  MAIN PARAMETERS OF THE ROBOT 

Link length (m) 

Link1 0.343 

Link2 0.267 

Flexible joint rotational stiffness  (N-m/rad) 

Joint1 9.0 

Joint2 4.0 

 

Three control schemes given in section 4 were used to 

establish the control system. In the design of impedance 

dynamics, we determined the damping and stiffness 

matrices as below 

Dd = diag[7.0, 7.0], 

Kd = diag[35.0, 35.0]. 

The feedback gain matrices were designed as follows. 

Kτ = diag[3.8, 3.8], 

Kθ = diag[4.5, 4.5]. 

The problem is prescribed as that contacting between 

the end-effector and environment takes place during end-

effector trajectory tracking control. The end-effector 

trajectories are planned as a straight line in the workspace 

with trajectories on X and Y directions being planned as 

trigonometric functions as follows. 

 Xd =
1

2
(Xf − Xo) + Xo −

1

2
(Xf − Xo) cos (

π

tf
t), 

 Yd =
1

2
(Yf − Yo) + Yo −

1

2
(Yf − Yo) cos (

π

tf
t) . 

The velocity and acceleration trajectories are planned 

accordingly. Zero initial value and zero final value of 

velocities in both directions are preset. Experiments are 

carried out. The sampling time set as 1ms, and control 

time set as 5s. 

Fig. 2 ~ Fig. 7 present the impedance control 

experimental result with external force acting at the end 

of the robot. The external force acts on the robot 

randomly by touching the sensor. Fig. 2 ~ Fig. 4 

demonstrate that while tracking the planned end-effector 

trajectory the robot reacts to external force compliantly 

when the force appears. From Fig. 6 it is seen that 

vibration of the joints is damped effectively and stability 

of the system is ensured. The experimental result 

demonstrates that under the proposed control method, 

desired impedance performance of the robot control 

system can be guaranteed.   

 

Figure 2. Planned trajectory and impedance control experimental result 
illustrated in the workspace with external force 

 
Figure 3. Workspace external force measured by the force sensor 

equipped at the end-effector. 

 
Figure 4. Time history of the planned end-effector trajectories and 

impedance control experimental results with external force 
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Figure 5. Time history of the joint responses during the impedance 

control process 

 
Figure 6. Time history of joint vibration 

 
Figure 7. Time history of joint control inputs 
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VI. CONCLUSIONS 

This paper proposed a novel impedance control 

method for robot manipulators with joint flexibility. 

Three control schemes were designed based on the 

backstepping control approach to meet the requirement of 

desirable nonlinear impedance characteristics and 

stability of the system. Under the control schemes 

stability of the robot was analyzed using Lyapunov 

stability theory. A two-link flexible joint robot and a six 

axes force sensor equipped at the distal end of the robot 

arm were used as facility for experimental studies. 

Impedance control experiments were carried out. The 

results confirmed the fact that when external force does 

not exist the robot trucks preplanned end-effector 

trajectory and its joint vibration is damped effectively; 

when there appears an external force at the end-effector, 

the robot responses to the force compliantly. It 

demonstrates the effectiveness of the proposed 

impedance control method.  
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