
Performance Comparison Robot Path Finding

Uses Flood Fill - Wall Follower Algorithm and

Flood Fill - Pledge Algorithm

Semuil Tjiharjadi
Maranatha Christian University, Bandung, Indonesia

Email: semuiltj@gmail.com

Abstract—As a path-finding robot in the maze, the robot

must have the ability to decide the direction taken at the

intersection inside the maze. Robot will map route and try

to reach the destination in the fastest time and shortest

distance. Robot will use two algorithms for the pathfinding

process, the Wall Follower algorithm, and the Pledge

algorithm. Both algorithms can determine the direction in

the process of achieving the expected target location. After

the robot reach the destination, the robot will return to its

starting position. Robot can easily reach its goal by using the

Flood Fill method to decide the fastest and shortest route to

reach that position now. This research is an analysis of the

combination of the Flood Fill method with the Wall

Follower algorithm compared to the Flood Fill method with

the Pledge algorithm, based on a series of experiments

conducted on various maze patterns in the maze. The

experimental results show that robots can explore the maze

and map it using the Wall Follower algorithm, Pledge

algorithm, and a combination of both with the Flood Fill

algorithm. Based on the analysis, it was found that the use of

the Flood Fill algorithm that works in synergy with the Wall

Follower algorithm and the Pledge algorithm, can

dramatically increase the effectiveness of target point

searches.1

Index Terms—pathfinding, flood fill, wall follower, pledge

I. INTRODUCTION

Robot Maze is a robot that is a search robot that can

find directions in the maze. Its ability to determine

direction independently is the advantage of this robot.

The way the robot automatically determines the direction,

performs a route mapping, and finally finds the shortest

and fastest distance is the goal of applying the search

algorithm to the maze robot [1]. Several algorithms have

been developed for this purpose, and each algorithm has

its advantages and disadvantages [2].

As part of its autonomous ability, the Path Finding

Robot uses structured algorithms to control the

autonomous navigation it has [3]. In this study, two

combinations of algorithms were used to achieve the

shortest and fastest target. The two combination

algorithms are the Flood Fill algorithm - Wall Follower

algorithm as the first combination, while the second

Manuscript received May 22, 2019; revised May 14, 2020.

corresponding author: Semuil Tjiharjadi, semuiltj@gmail.com

combination is the Flood Fill algorithm - Pledge

algorithm. Both combinations of algorithms are compared

to get the best method and are expected to find new

proposals for the development of better search

techniques. It is hoped that this comparison will get the

best method for autonomous robots to explore the maze.

The main task is to find a path to complete the maze in

the shortest possible time and use the shortest way. The

robot must start navigation from the corner of the maze to

the target as quickly as possible [4].

The information that the robot has is the location of the

search and target. The initial task is to collect all

information about obstacles to reach the target location.

In this study, the maze was designed consisting of 25

square cells, with the size of each cell about 18 cm x 18

cm. The cells are designed to form a maze of 5 rows x 5

columns. The initial search position is set in one cell from

its angle, and the target location is in the middle of the

maze. The search terms are only one cell that is opened to

pass. The design of the maze wall size and supporting

platforms use the IEEE standard.

II. LITERATURE REVIEW

A. Breadth-First Search

Breadth-First Search is a search algorithm that tries all

the possibilities available. Starting from the root node,

Breadth-First Search explores all neighboring nodes to

find the target node. Breadth-First Search tests all

available nodes, so it requires large memory space to

store node information and routes that have been made.

This algorithm can find a few solutions for the route so

that the shortest route can be found. This algorithm is

using First In First Out queue, and it will work poorly and

consume a lot of memory when finding a target that has a

long path.

Although Zhou has shown Breadth-First Search

modifications when using the divide-and-conquer

solution reconstruction, it can reduce search memory

needs. The result is Breadth-First Search to be more

efficient than Best-First Search because it requires less

memory to prevent regeneration of closed nodes [5].

B. Depth First Search

The Depth First Search is an algorithm for searching

857

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 6, June 2020

© 2020 Int. J. Mech. Eng. Rob. Res
doi: 10.18178/ijmerr.9.6.857-864

based on tree data structures that use the Last In First Out

queue method. This algorithm is easy to implement. It

starts from the root node and tries each path to the end,

and then backtracks until it finds an unexplored path, and

then re-explores the new path until it finds a target. The

search principle that uses this depth requires high

computing power. A small increase in a path can result in

a runtime increasing exponentially [6].

C. Heuristic Function

Heuristic Function plays a vital role in the optimization

problem. It is a function that uses all mapping

information to help the search process in the right

direction to achieve goals effectively [5].

D. Genetic Algorithm

Genetic algorithm is a machine-learning technique

loosely based on the principles of genetic variation and

inspired by natural evolution to find approximate optimal

solution. Advantages of Genetic algorithm are it solves

problem with multiple solutions. But it needs huge input

and data. Problems of Genetic algorithm are certain

optimization cases cannot be solved due to poorly known

fitness function. It is not able to assure constant

optimization response times because the entire population

is improving [7].

E. A* algorithm

A* is one of the most popular methods for finding the

shortest path in the maze area. It develops a combination

heuristic approach. This approach is also used by the

Best-First-Search (BFS) algorithm and the Dijkstra

algorithm. Algorithm A* calculates the costs associated

with each used node. Such as the application of BFS, A*

will follow its path with the lowest heuristic cost. Both of

them require large memory to store information, because

all nodes that have been tested must be stored [8].

The A* algorithms can, during searching, judge the

movement of the target point by referring heuristic

information, it does not need to thumb through the map,

so that the calculating complexity is relative simple and

effective fast searching can be achieved [9].

F. Flood Fill Algorithm

Flood Fill algorithm that also known as the seed fill

algorithm, is an algorithm that determines the area

connected to a given node in a multi-dimensional array.

This algorithm needs all information of maze and proper

planning. It is used widely for robot maze problem [10].

The Flood Fill algorithm offers values to every node

that represents the distance of the node from the center. It

floods the maze when it reaches a new cell or node. This

algorithm requires continue update [11].

G. Wall Follower Algorithm

Wall Follower algorithm is one of the best known and

one of the simplest mazes solving algorithms. It starts

following passages, and whenever it reaches a junction,

always uses the righthand rule or the left-hand rule. It will

turn right or left at every junction base on the right- or

left-hand rule. Wall Follower is a fast algorithm and uses

no extra memory. But this method will not necessarily

find the shortest solution, and this algorithm has

weakness when the maze is not connected, it can back at

the start point of the maze [12].

H. Pledge Algorithm

The Pledge algorithm is designed to solve Wall

Follower weakness. It can avoid obstacles and requires an

arbitrarily chosen direction to go forward. At the

beginning of the algorithm, the Pledge algorithm sets up

direction and follows this direction [13]. When an

obstacle is met, one hand rule is kept along the obstacle

while the angles turned are counted. When the object is

facing the original direction again, the solver leaves the

obstacle and continues moving in its first direction [14].

III. HARDWARE DESIGN

This research is tested using a mobile robot. It has

robot base construction by miniQ 2WD robot chassis. It

is shown in Fig. 1. It has a 122 mm diameter robot

chassis, two wheels, a ball caster, and two Direct Current

(DC) motors which have gearbox and DC motor bracket.

Fig. 2 is shown a couple of pieces of rotary encoder

attached to the DC motor to calculate the rotation of the

wheels.

Figure 1. 12WD miniQ robot chassis.

Figure 2. Mobile Robot from side view.

The robot has three infrared sensors to detect the front,

right, and left positions of the maze wall. It uses the

L293D driver to control the speed and rotation of a DC

motor, a rotary encoder that has the task of calculating the

rotation of both wheels, and a button to start the robot.

858

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 6, June 2020

© 2020 Int. J. Mech. Eng. Rob. Res

The robotic system will drive a DC motor to drive the

wheel. It will control the robot to move forward, turn left

or right, and turn backward. AT Mega 324

microcontroller is used to respond to input signals and

run actuators based on processing algorithms. All statuses

and information are displayed on Liquid Crystal Display

(LCD) 16 x 2 in Fig. 3.

Figure 3. Display of Mobile Robot from the above.

The block diagram of the design of the whole hardware

system and the flowchart of the main program can be

seen in Fig. 4 and Fig. 5 [15].

The maze designed to be solved by robots is 5 × 5

cells, as shown in Fig. 6. The actual maze that was built,

as shown in Fig. 7, has a physical size of about 1.32 m2.

The maze is designed so that it will have two paths to

complete. A path can be longer than the other, and the

robot must decide which path is shorter and complete the

maze through that path [16].

Figure 4. Maze robot’s block diagram.

IV. ALGORITHM

Three types of algorithms were used in this paper.

Wall Follower algorithm, Pledge algorithm, and Flood

Fill algorithm. The results obtained from the Wall

Follower algorithm, Pledge algorithm, Wall Follower

combination method - Flood Fill, and Pledge - Flood Fill

will then be compared.

Figure 5. Flowchart of the main program.

Figure 6. The layout of the maze.

Figure 7. The maze arena.

859

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 6, June 2020

© 2020 Int. J. Mech. Eng. Rob. Res

Together with the Flood Fill algorithm, they are used

to find the fastest way to achieve the objectives. Results

of Wall Follower algorithm and Pledge algorithm were

compared when determining the priority of directions

taken when the robot finds the same value of priority

based on the Flood Fill algorithm [11]. The Wall

Follower algorithm will use the right- or left-hand

method in determining the direction to be taken at each

intersection. While the Pledge algorithm will assign +1

value to the 'Play' variable every time the robot turns right

and the value -1 every time the robot turns left, the goal is

to achieve the target by prioritizing the smallest possible

'Turn' variable value. When the Pledge algorithm finds an

intersection, the turn decision taken is to reduce the value

of the 'Play' variable from rotation. The Wall Follower

algorithm and the Pledge algorithm are used to help the

Flood Fill algorithm so that collaboration will produce

smarter decisions [17].

The Artificial Intelligence program has a two-

dimensional array of memory to map the 5x5 maze arena.

Memory arrays are used to store information on each

maze cell wall and every cell value information. The

position of the robot in the program is expressed by

coordinates (rows, columns). The robot moves in the

array to the location of the robot, as shown in Fig. 8.

The line coordinates will increase 1 when the robot

moves one cell to the South. On the other hand, it will

decrease by 1 when the robot moves north. The column

will reduce by 1 when the robot moves to the West, and it

will increase by 1 when the robot moves to the East.

Robots already have information about the initial

orientation, initial position, maze size, and location of the

outer wall of the maze [18].

There are four main steps in Flood Fill algorithm: the

first is updating wall data, the second is updating cell

values, the third is calculating the smallest neighbor cell,

and the last is moving to the smallest neighbor cell.

Figure 8. Robot’s Array Movement

A. Updating Wall Data

Robot will test its environment, any partitions in its

three directions: right, left, and forward instructions. The

robot will additionally observe the distance of any

obstacles of its three courses. Anything exceed 20 cm is

updated as “wall” on its respective side. Flowchart in Fig.

9 describes the wall data update mechanism.

The robot will check the environment, each wall in

three directions: right, left, and front. Any obstacles

detected exceeding 20 cm will be updated as "walls" on

each side. The flow chart in Fig. 9 explains the

mechanism for updating wall data.

The maze robot always needs to know the way its

faces, so it knows where to go. Table I details the

relationship between robot orientation and detection of

wall sensors. When it begins at the start, the robot has an

initial orientation and will continue to track changes in

direction. The robot orientation also determines the left,

front, and right positions of the robot, as described in

Table I.

TABLE I. ROBOT ORIENTATION AND WALL DETECTION

Robot

Orientation

Wall Sensor Detection

Right Front Left

South West wall South wall East wall

West North wall West wall South wall

North East wall North wall West wall

East South wall East wall North wall

B. Cell Value Update

The update value of cell wall is stored in a 2-

dimensional array of 5x5 memory cells. Renewing cell

values is done using a Flood Filling algorithm. At the

current level array, the cell will be updated. In the next

level array, the neighboring cells will be calculated.

When the value filling process is complete, the cells in

the next level array will be copied to the current level

array to do the future value. The update process will be

completed if the next level array cell is empty.

C. The Smallest Neighbor Cell Calculation

Searching for the smallest neighbor cell is done by

priority, so if there are two or more neighboring cell that

has the smallest value, then that cell is chosen based on

priority.

Figure 9. Wall location update flowchart.

860

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 6, June 2020

© 2020 Int. J. Mech. Eng. Rob. Res

Priority is set based on the movement of robots that

move forward one cell has the highest priority, move one

cell to the right is the second, while move one cell to the

left is the third priority, and the fourth or final priority is

to move one cell back. For example, if the robot faces the

East, then the East cell has priority, the two South have

priority cells, the cell has the third priority North, and the

fourth priority is at the west, as in Fig. 10. When the

robot faces the East, the East cell has priority, the South

cell has priority second, North has the third priority cell,

and the West cell has a fourth priority.

Figure 10. Priority of Neighbour cell

D. Moving to the Smallest Neighbour Cell.

Robot move to the smallest neighboring cells, and then

the robot will move to the cell by observing orientation.

When the smallest cell in the south cell and the robot is

facing west, then it will move to the position of the cell,

the robot must turn left, then move forward, as in Fig. 11.

Figure 11. Moving to the smallest neighbor cell.

V. RESULTS AND DISCUSSION

In this experiment, the Robot will learn to find the

shortest path from the first cell (row 4, column 0) to the

destination cell (row 2, column 2) and then return to the

first cell. The robot's initial orientation faces North. The

robot will learn to find the shortest path from the first cell

at (row 4, column 0) to the destination cell at (row 2,

column 2) and then return to the first cell [1].

The maze program aims to facilitate observations

about how the Flood Filling algorithm is. Fig. 12 is a

maze display simulator program. The maze blue wall is a

wall whose position is known by robots, whereas the wall

of the maze is colored in an orange wall where the robot

is unknown.

A. First Experiment

In the first experiment, the Robot will look for the first

cell line (4.0) to the destination cell (2, 2). The results of

the Wall Follower algorithm and Pledge algorithm are

shown in Tables Ii and III. The results of the combination

method of Wall Follower - Flood Fill algorithm when cell

line search (4, 0) to cell (2, 2) is shown in table 4, and the

simulation results of the Pledge - Flood Fill algorithm is

shown in Table V.

Figure 12. Simulation search route to cell (2,2), Turn = 0

TABLE II. FIRST EXPERIMENT RESULT USING WALL FOLLOWER

 Routes Steps

First
run

(4,0) (3,0) (2,0) (1,0) (0,0)
(0,1) (0,2) (1,2) (1,1) (2,1)

(1,1) (1,2) (1,3) (1,4) (2,4)

(3,4) (4,4) (4,3) (4,2) (4,1)
(3,1) (3,2) (3,3) (2,3) (2,2)

24

Return

home

(2,2) (2,3) (3,3) (3,2) (3,1)

(3,0) (4,0)

6

Second
run

(4,0) (3,0) (2,0) (1,0) (0,0)
(0,1) (0,2) (1,2) (1,1) (2,1)

(1,1) (1,2) (1,3) (1,4) (2,4)

(3,4) (4,4) (4,3) (4,2) (4,1)
(3,1) (3,2) (3,3) (2,3) (2,2)

24

TABLE III. FIRST EXPERIMENT RESULT USING PLEDGE

 Routes Steps

First

run

(4,0) (3,0) (2,0) (1,0) (0,0)

(0,1) (0,2) (1,2) (1,3) (0,3)

(0,4) (0,3) (1,3) (2,3) (2,2)

14

Return

home

(2,2) (2,3) (3,3) (3,2) (3,1)

(3,0) (4,0)

6

Second

run

(4,0) (3,0) (2,0) (1,0) (0,0)

(0,1) (0,2) (1,2) (1,3) (0,3)
(0,4) (0,3) (1,3) (2,3) (2,2)

14

TABLE IV. FIRST EXPERIMENT RESULT USING WALL

FOLLOWER – FLOOD FILL ALGORITHM

 Routes Steps

First
run

(4,0) (3,0) (2,0) (1,0) (2,0)
(3,0) (3,1) (3,2) (3,3) (2,3)

(2,2)

10

Return
home

(2,2) (2,3) (3,3) (3,2) (3,1)
(3,0) (4,0)

6

Second

run

(4,0) (3,0) (3,1) (3,2) (3,3)

(2,3) (2,2)

6

TABLE V. FIRST EXPERIMENT RESULT USING PLEDGE –

FLOOD FILL ALGORITHM

 Routes Steps

First

run

(4,0) (3,0) (2,0) (1,0) (2,0)

(3,0) (3,1) (3,2) (3,3) (2,3)

 (2,2)

10

Return

home

(2,2) (2,3) (3,3) (3,2) (3,1)

 (3,0) (4,0)

6

Second
run

(4,0) (3,0) (3,1) (3,2) (3,3)
(2,3) (2,2)

6

The first run in the first experiment shows us that

Pledge algorithm has better steps than the Wall Follower

861

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 6, June 2020

© 2020 Int. J. Mech. Eng. Rob. Res

algorithm to achieve the target point. But it also indicates

that the synergistic Wall Follower – Flood Fill algorithm

or Pledge – Flood Fill algorithm has better results than

search applied only by using a Wall Follower algorithm

or just a Pledge algorithm.

This experiment also shows that in the second run, the

method that uses a combination of Wall Follower - Flood

Fill Algorithm or a combination of Pledge - Flood Fill

Algorithm has fewer steps than their first run. While the

second run of the Wall Follower algorithm or second run

of the Pledge algorithm still has the same steps as the first

run because they do not record their experience in the

first run.

In the first experiment, the robot updates the wall data

while searching on the first run and go back home in the

second run, the robot that using combination algorithm,

has enough data to choose the fastest path to the

destination in the cell (2,2). That's the reason why the trip

back to the starting point and the second run has the same

number of steps for both combination algorithm.

B. Second Experiment

The second experiment was carried out using a new

maze, which can be seen in Figs. 13 and 14. The results

of this second experiment can be seen in tables 6 to 9.

Figure 13. Simulation search path to cell (2,2) for the second
experiment

Figure 14. The maze for the second experiment.

TABLE VI. SECOND EXPERIMENT RESULT USING WALL

FOLLOWER ALGORITHM

 Routes Steps

First

run

(4,0) (3,0) (2,0) (1,0) (2,0)

(3,0) (3,1) (3,2) (3,3) (2,3)
(2,2)

10

Return

home

(2,2) (2,3) (3,3) (3,2) (3,1)

(3,0) (4,0)

6

Second
run

(4,0) (3,0) (2,0) (1,0) (2,0)
(3,0) (3,1) (3,2) (3,3) (2,3)

(2,2)

10

TABLE

VII.

SECOND

EXPERIMENT

RESULT

USING

PLEDGE

ALGORITHM

Routes

Steps

First

run

(4,0) (3,0)

(2,0)

(1,0)

(2,0)

(3,0)

(3,1)

(3,2)

(3,3)

(2,3)

(2,2)

 10

Return

home

(2,2)

(2,3)

(3,3)

(3,2)

(3,1)

(4,1)

(3,1)

(3,0)

(4,0)

8

Second

run

(4,0) (3,0)

(2,0)

(1,0)

(2,0)

(3,0)

(3,1)

(3,2)

(3,3)

(2,3)

(2,2)

 10

TABLE

VIII.

SECOND

EXPERIMENT

RESULT

USING

WALL

FOLLOWER

–

FLOOD

FILL

ALGORITHM

Routes

Steps

First
run

(4,0) (3,0)

(2,0)

(1,0)

(2,0)

(3,0)

(3,1)

(3,2)

(3,3)

(2,3)

(2,2)

10

Return
home

(2,2)

(2,3)

(3,3)

(3,2)

(3,1)

(3,0)

(4,0)

6

Second

run

(4,0) (3,0)

(3,1)

(3,2)

(3,3)

(2,3)

(2,2)

6

TABLE

IX.

SECOND

EXPERIMENT

RESULT

USING

PLEDGE

–

FLOOD

FILL

ALGORITHM

Routes

Steps

First

run

 (4,0) (3,0)

(2,0)

(1,0)

(2,0)

(3,0)

(3,1)

(3,2)

(3,3)

(2,3)

(2,2)

10

Return

home

 (2,2)

(2,3)

(3,3)

(3,2)

(3,1)

(4,1)

(3,1)

(3,0)

(4,0)

 8

Second
run

 (4,0) (3,0)

(3,1)

(3,2)

(3,3)

(2,3)

(2,2)

 6

The results of the second experiment for all tests have

the same results. But for the second run, all tests of the

combination methods still have better results than the

Wall Follower algorithm or the Pledge algorithm.

C.

Third Experiment

The third experiment was carried out using a new maze,

which can be seen in Figs. 15 and 16. The results of this

second experiment can be seen in tables 10 to 13.

Figure 15.

Simulation search path to cell (2,2) for the third experiment

Figure 16.

The maze for the third experiment.

862

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 6, June 2020

© 2020 Int. J. Mech. Eng. Rob. Res

TABLE X. THIRD EXPERIMENT RESULT USING WALL

FOLLOWER ALGORITHM

 Routes Steps

First

run

(4,0) (3,0) (2,0) (1,0) (1,1)

(1,2) (1,3) (1,4) (2,4) (3,4)

(4,4) (4,3) (3,3) (3,2) (2,2)

14

Return

home

(2,2) (3,2) (4,2) (4,1) (3,1)

(3,0) (4,0)

6

Second

run

(4,0) (3,0) (2,0) (1,0) (1,1)

(1,2) (1,3) (1,4) (2,4) (3,4)
(4,4) (4,3) (3,3) (3,2) (2,2)

14

TABLE XI. THIRD EXPERIMENT RESULT USING PLEDGE

ALGORITHM

 Routes Steps

First

run

(4,0) (3,0) (2,0) (1,0) (1,1)

(1,2) (0,2) (0,1) (0,0) (0,1)

(0,2) (1,2) (1,3) (2,3) (2,2)

14

Return
home

(2,2) (3,2) (4,2) (4,1) (3,1)
(3,0) (4,0)

6

Second

run

(4,0) (3,0) (2,0) (1,0) (1,1)

(1,2) (0,2) (0,1) (0,0) (0,1)
(0,2) (1,2) (1,3) (2,3) (2,2)

14

TABLE XII. THIRD EXPERIMENT RESULT USING WALL

FOLLOWER – FLOOD FILL ALGORITHM

 Routes Steps

First
run

(4,0) (3,0) (2,0) (1,0) (1,1)
(1,2) (1,3) (2,3) (2,2)

8

Return

home

(2,2) (3,2) (4,2) (4,1) (3,1)

(3,0) (4,0)

6

Second

run

(4,0) (3,0) (3,1) (4,1) (4,2)

(3,2) (2,2)

6

TABLE XIII. THIRD EXPERIMENT RESULT USING PLEDGE –

FLOOD FILL ALGORITHM

 Routes Steps

First

run

(4,0) (3,0) (2,0) (1,0) (2,0)

(3,0) (3,1) (3,2) (3,3) (2,3)

(2,2)

10

Return
home

(2,2) (3,2) (4,2) (4,1) (3,1)
(3,0) (4,0)

6

Second

run

(4,0) (3,0) (3,1) (4,1) (4,2)

(3,2) (2,2)

6

In the first run of the third experiment, it was found

that the Wall Follower - Flood Fill algorithm turned out

to have better results than the Pledge - Flood Fill

algorithm, with a difference of 2 steps faster while the

return trip and second run have the same results.

The results of the Wall Follower combination method

test - Flood Fill algorithm and Pledge - Flood Fill

algorithm still have better results than the Wall Follower

algorithm or the Pledge algorithm only.

In all experiments, wall map data will be updated when

the robot enters a cell that has never been visited before.

The Flood Fill algorithm will update cell values based on

the position of the wall that the robot has mapped.

Robots always move to neighboring cells that have the

smallest value. When there is more than one neighboring

cell that has the smallest amount, then cell selection will

be based on priority. Go forward has the priority, turn

right has the second priority, turn left has the third

priority, and move backward has the fourth priority.

This value is changed according to the position of the

wall that has been mapped by the robot. The cell value

represents the distance of the cell to the destination cell.

VI. CONCLUSION

The testing of mobile robots is done with the ability to

learn how to navigate in unknown environments based on

their own decisions. Algorithm Flood Fill is an effective

algorithm as a combination of Wall Follower and Pledge

algorithms for the completion of a medium-sized maze.

This mobile robot has managed to map the maze at

first, return home, and run the second. In the second run,

it reaches the target cell through the shortest route that

was planned in the first run before and returns home.

Based on three experiments that have been conducted,

it was found that the use of the Flood Fill algorithm can

increase the effectiveness of the Wall Follower algorithm

or the Pledge algorithm only. The results of the Wall

Follower - Flood Fill combination algorithm and the

Pledge - Flood Fill combination algorithm get almost the

same results for these two algorithm combinations.

In order to develop a method of searching the maze

that is more effective and faster, it is necessary to

research various combinations of existing maze methods.

Future works might include developing 3D maze research

and also the robot’s ability to compete in a bigger and

more complex maze [19].

CONFLICT OF INTEREST

The author declare no conflict of interest.

AUTHOR CONTRIBUTIONS

This paper is a continuation of a series of studies on

mazes that have been conducted previously. The first

study using the Flood Fill algorithm and Wall Followers

was a joint study between Semuil Tjiharjadi and Erwin

Setiawan, where Semuil Tjiharjadi wrote the paper and

led of the research, while Erwin Setiawan made the

Robot and maze fields [11]. In the second study in 2017,

the investigation continued with trying to optimize using

A* and Flood Fill conducted by Semuil Tjiharjadi as a

paper writer, research leader, including experiment and

design; Marvin Chandra Wijaya compiled a research

proposal and presentation; while the robot still uses a

design made by Erwin Setiawan [15]. In the third study in

2019 [13], Semuil Tjiharjadi continued his research to

implement the Flood Fill and Pledge methods in the robot

maze, both of which have now been tested for their

performance by combining the Flood Fill-Wall Follower

algorithm with the Pledge-Wall Follower algorithm.

ACKNOWLEDGMENT

The author would like to thank the Computer

Engineering Department of Maranatha Christian

University for providing both financial assistance and the

opportunity to research so that the series of research in

the maze field can continue.

863

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 6, June 2020

© 2020 Int. J. Mech. Eng. Rob. Res

REFERENCES

[1] K. Collins and K. Borowski, "Experimental game interactions in a

cave automatic virtual environment," in 2018 IEEE Games,

Entertainment, Media Conference (GEM), 2018.

[2] G. Dudek, M. Jenkin, E. Milios, D. Wilkes, "Robotic exploration

as graph construction," IEEE Transactions on Robotics and

Automation, vol. 7, no. 6, pp. 859-865, December 1991.

[3] E. &. C. K. Kivelevitch, "Multi-agent maze exploration," Journal

of Aerospace Computing, Information, and Communication, vol. 7,

no. 12, pp. 391-405, 2010.

[4] S. Vignesh and et al., "Cave exploration of mobile robots using

soft computing algorithms," International Journal of Computer

Application, vol. 71, no. 22, pp. 14-18, 2013.

[5] R. &. H. E. Zhou, "Breadth-first heuristic search," Journal

Artificial Intelligence, vol. 170, no. 4-5, pp. 385-408, April 2006.

[6] S. &. M. S. Khan, "Depth first search in the semi-streaming
model," The Computing Research Repository (CoRR), January

2019.

[7] S. &. M. M. Forrest, "What makes a problem hard for a genetic
algorithm? Some anomalous results and their explanation,"

Machine Learning, vol. 13, no. 2-3, pp. 285-319, November 1993.

[8] A. &. R. K. Kumaravel, "Algorithm for automaton specification
for exploring dynamic mazes," Indian Journal of Science and

Technology, vol. 6, no. 5, pp. 4554-4559, 2013.

[9] G. D. X. Liu, "A comparative study of a-star algorithms for search
and rescue in perfect maze," in International Conference on

Electric Information and Control Engineering, 2011.

[10] I. Elshamarka, A. B. S. Saman, "Design and Implementation of a

robot for maze-solving using flood-fill algorithm," International

Journal of Computer Application, vol. 56, no. 5, pp. 8-13, October
2012.

[11] S. Tjiharjadi, S. Setiawan, "Design and implementation of path

finding robot using flood fill algorithm," International Journal of
Mechanical Engineering and Robotic Research, vol. 5, no. 3, pp.

180-185, July 2016.

[12] J. R. B. D. Rosario and et al., "Modelling and characterization of a
maze-solving mobile robot using wall follower algorithm," Applied

Mechanics and Materials, vols. 446-447, pp. 1245-1249, 2014.

[13] S. Tjiharjadi, "Design and implementation of flood fill and pledge
algorithm for maze robot," International Journal of Mechanical

Engineering and Robotics Research, vol. 8, no. 4, pp. 632-638,

July 2019.

[14] M. Babula, "Simulated maze solving algorithms through unknown

mazes," in XVIIIth Concurrency, Specification and Programming

(CS&P) Workshop, Krakow-Przegorzaly, 2009.

[15] S. Tjiharjadi, M. C. Wijaya, and E. Wijaya, "Optimization maze
robot using A* and flood fill algorithm," International Journal of

Mechanical Engineering and Robotics Research, vol. 6, no. 5, pp.

366-372, September 2017.

[16] N. K. S. S. W. I. S. Rao, "Robot navigation in unknown terrains:

Introductory survey of non-heuristic algorithms," Oak Ridge

National Laboratory, Oak Ridge, 1993.

[17] A. B. S. Saman and I. Abdramane, "Solving a reconfigurable maze

using hybrid wall follower algorithm," International Journal of

Computer Application, vol. 82, no. 3, pp. 22-26, 2013.

[18] Z. Cai, L. Ye, and A. Yang, "FloodFill maze solving with expected

toll of penetrating unknown walls," in 2012 IEEE 14th
International Conference on High Performance Computing and

Communication, 2012.

[19] H. K. Wazir and F. Annaz, "Using unity for 3D object orientation
in a virtual environment," in 5th Brunei International Conference

on Engineering and Technology, 2014.

Copyright © 2020 by the authors. This is an open-access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution, and reproduction in any
medium, provided that the article is properly cited, the use is non-

commercial, and no modifications or adaptations are made.

Semuil Tjiharjadi currently serves as vice-

rector of capital human management, assets, and
development. He is also Lectures in Computer

Engineering Department. His primary research

on Robotics, Computer automation, control, and
security. He has written several books, To Be a

Great Effective Leader (Jogjakarta, Indonesia:

Andi Offset, 2012), Multimedia Programming
by SMIL (Jogjakarta, Indonesia: Andi Offset,

2008), Computer Business Application (Bandung, Indonesia:

Informatics, 2006) and so on. The various academic bodies on
which he contributed as Head of Computer Engineering Department,

Member: Senate of University, Member: APTIKOM, Member:

MSDN Connection, Member: AAJI, Member: Fischertechnik Fan
Club, Member: Asia Society of Researchers.

Author’s formal
photo

864

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 6, June 2020

© 2020 Int. J. Mech. Eng. Rob. Res

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

