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Abstract—This paper proposes an optimization method of 

turning process parameters based on nondominated sorting 

genetic algorithm II (NSGA-II) and artificial neural 

networks (ANNs). In the period of computer-aided process 

planning (CAPP), each machining operation with its process 

parameters should be given in sequence for the final output 

of workshop documentation and machining program. 

NSGA-II algorithm is used in the optimization of process 

parameters, including spindle speed, feed rate, depth of cut, 

etc. ANNs are used to predict the performance 

parameters, including cut force and surface roughness as 

constraints or objective of the optimization process. This 

process is a self-learning process because in the period of 

machining, data and signal from CNC is collected as 

training sample to iterate the artificial neural networks.  

 

Index Terms—CAM, CAPP, optimization, machine learning 

 

I. INTRODUCTION 

Machining is one among the four popular 

manufacturing processes, the other three being forming, 

casting, and joining [1]. As the performance and 

environmental requirements of the product increase, the 

requirements for machining are also increased. These 

requirements include higher machining efficiency, 

machining accuracy and surface quality, lower economic 

and ecological cost. The process parameters are important 

factors affecting machining efficiency, machining 

accuracy and surface quality.  

Process parameters is traditionally determined by cut 

manuals, production practice data, or cut tests. The data 

in the cut manual is widely sourced and organized, but it 

is less targeted and accurate. The production practice data 

is highly targeted to the enterprise, but the data is too 

scattered and lacks regularity. The data obtained through 

the cut test is the most targeted, but the data is extremely 

limited due to various limitations of the test conditions. In 

addition, test conditions and production site conditions 

often differ greatly. 

The general process of turning involves rotating a part 

while a single-point cut tool is moved parallel to the axis 

of rotation [2]. Turning can be done on the external 

surface of the part as well as the internal surface (the 

process known as boring). The peripheral speed of the 

work piece called cut speed, movement of the tool  along 

the axis of job for one revolution of job called feed, and 

radial depth of cut of the tool are the process 
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parameters[1]. Different from traditional ways of 

parameters determination, These parameters can be 

optimized to obtain the minimum cost of machining and 

minimum production time. However, for optimization, 

the effect of process parameters on machining 

performance has to be studied to predict the machining 

performance. 

Surface finish is defined as the degree of smoothness 

of a part’s surface after it has been manufactured. Surface 

finish is the result of the surface roughness, waviness, and 

flaws remaining on the part [1]. Researchers studied the 

effect of factors such as feed rate, cut speed, depth of cut, 

on surface finish. Artificial neural networks (ANNs)are 

widely used in the prediction of surface finish. Pal and 

Chakraborty [3] predicted surface roughness by taking 

main cut force ,feed force, cut speed, feed, and depth of 

cut as input parameters of the network. Ozel and Karpat 

[4] predicted surface roughness by developing two 

different network models. One model was offline with 

process parameters, tool and job information as input, 

while the other was an online model with cut forces as an 

additional input. It was found that the model with cut 

forces as input yielded better results. 

Cut force is an important characteristic variable to be 

monitored and predicted. To predict and monitor cutting 

forces, various models were proposed. Ezugwu et al. [5] 

used an ANN approach to model the correlation between 

five process parameters, viz., speed, feed rate, depth of 

cut, cutting time, and coolant pressure, with seven 

performance parameters, viz., tangential force, feed force, 

spindle motor power consumption, surface roughness, 

average flank wear, maximum flank wear, and nose wear. 

The developed model agrees well with experimental data 

and can be used to analyze and predict the relationship 

between process and performance parameters. Li et al. [6] 

used neurofuzzy techniques to estimate feed cutting force 

by measuring motor current using current sensor in CNC 

turning center. Motor current and feed rate were used as 

input parameters. The authors found that the estimated 

force was within an error of 5%. 

Normally, a turning process involves a number of 

rough turnings and a finish turning. In rough turnings, 

highest possible metal removal is of most concern. 

Surface roughness is not an important consideration. In 

finish turning, surface finish is the most important 

consideration. In rough turnings and finish turning, cut 

force should be taken into consideration to avoid tool 

breakage and reduce tool wear. 
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In multipass turning optimization, the distribution of 

total depth of cut among different rough turns and finish 

turn is an important task. In single turning optimization, 

the determination of spindle speed and feed rate is the 

main task. 

This paper developed an process optimization model 

for turning process. The effect of process parameters on 

machining performance was predicted by ANNs 

prediction model. Different prediction models were 

developed for different turning operations. Cut force 

prediction models are developed for outer diameter 

turning, inner diameter turning, facing and grooving 

operation. Surface roughness prediction models were 

developed for finish turning operation, including outer 

diameter finishing, inner diameter finishing, and facing. 

Due to the space limitation of groove, surface roughness 

prediction model was not developed because surface 

roughness detection could not be executed. 

Generally, each optimization model is a NSGA-II 

optimization model based on artificial neural networks 

prediction model to optimize turning  process parameters, 

obtaining the minimum cost of machining or minimum 

production time. The optimization model is called self-

learning optimization because the neural networks 

prediction model iterates itself by training on the data 

collected from CNC and NX CAM. The optimization 

models and prediction  models are deployed in Siemens 

NX CAM software. A scheme to collect data from plant 

devices CNC and to generate training samples is also 

designed and discussed. 

II. CONCEPT 

              

(a) Optimization scheme when creating operations                      (b) Optimization scheme after creating operations 

Figure 1.  Workflows of cut parameters optimization module 

For key industries such as machinery, aerospace, 

automotive, and other industrial product suppliers, it is 

common to use CAM software such to help with turned 

parts manufacture. 

Taking NX CAM as an example, the turning module 

utilizes the Operation Navigator to manage operations 

and parameters. They enable programmer s to create 

roughing, finishing, centerline drilling, and threading 

operations. Parameters such as spindle definition, 

workpiece geometry, machining methods, and tools are 

specified as groups with parameters shared among 

operations. Other parameters are defined within the 

842

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 6, June 2020

© 2020 Int. J. Mech. Eng. Rob. Res



individual operations.  when creating a CAM program, a 

programmer usually follow the following workflow. 

Some details are omitted to make the workflow brief and 

clear. 

To setup, assemble the solid models that represent the 

part and workpiece (blank) to be machined. Set the 

program zero(s) - The Machine Coordinate System. 

Identify PART and BLANK geometry to the CAM 

system. To create a machining program, a programmer 

needs to create a series of turning operation in sequence, 

such as creating a Facing opertion, a Centerline Drilling 

Operation, a Roughing Operation, a Finishing Operation, 

a Teach Mode Operation, a Grooving Operation, a 

Threading Operation etc. 

To create a functional operation, the programmer 

needs to define or select a tool to be used, select the 

proper cut strategy which defines the cut pattern such as 

parallel cuts, and determine the cut region. Then, the 

programmer needs to set the path settings, which include 

feeds, speeds and cut depths setting. And this is point 

where Self-learning Optimization of turning process 

parameters strike in to make the process easier and better. 

Basically, the Self-learning Optimization module detects 

the defined cut region, cut strategy and obtains the 

geometry features of cut region and determines the feeds, 

speeds and cut depths based on its prediction and 

optimization result. The Self-learning Optimization 

module calls different prediction networks corresponding 

to different devices. Thus, when calling the Self-learning 

Optimization module, the device ID should be selected 

from the device lists. 

The workpiece progresses through the program, In 

process workpiece tracking computes and graphically 

displays the total remaining material to be removed. The 

turning module graphically display the in process 

workpiece after each operation generated. The in process 

workpiece is defined by the total material removed for all 

operations in sequence up to the currently selected 

operation.  

When programming is finished and checked, post 

processing needs to be executed, which creates Shop 

documentation and machining program. 

With the Self-learning Optimization module embedded 

in NX CAM, programmers can optimize the cut 

parameters when they create a new operation. Also, thay 

can optimize the parameters after they create the 

operations. A rough turning process and the following 

finish turning process can be optimized together by using 

joint optimization. The  workflows can be shown as Fig. 

1. 

III. OPTIMIZATION METHOD 

A. Determination of Optimization Algorithm  

Commonly used multi-objective optimization 

algorithms mainly include non-dominated sorting genetic 

algorithm (NSGA-II), multi-objective particle swarm 

optimization (MOPSO), and multi-objective evolutionary 

algorithm based on decomposition (MOEA/D). The 

NSGA-II algorithm was proposed by Kalyanmoy Deb et 

al. in 2002. The algorithm firstly performs an 

evolutionary operation on the individuals in the parent 

population P through genetic operators, and then 

generates the progeny population Q. The parent and child 

populations are then merged to create a new population R. 

The individuals in the population R are then subjected to 

fast non-dominated sorting to calculate their Pareto rank. 

Among them, the individual with a Pareto rank of 1 is the 

Pareto optimal solution. To ensure the uniformity of the 

population, the NSGA-II algorithm proposes the concept 

of congestion and ranks the individual in each Pareto rank. 

In order to preserve the elite individuals in the population, 

the NSGA-II algorithm adopts the elite retention strategy, 

and selects the individuals with lower Pareto rank and 

greater congestion from the population R as the new 

generation population P', and repeats the above 

operations until the number of algorithm iterations 

reaches The maximum number of iterations. 

The performance of the optimization algorithm is 

evaluated by the convergence and uniformity of the 

Pareto optimal solution set obtained by the multi-

objective optimization algorithm. The convergence of the 

solution set refers to the distance between the Pareto 

optimal solution set calculated by the multi-objective 

optimization algorithm and the real Pareto optimal 

solution set. The smaller the convergence is, the closer 

the Pareto optimal solution set of the multi-objective 

optimization algorithm is to the real Pareto solution set, 

and the better the convergence of the algorithm is. 

This paper selects the convergence metric, the inverse 

generation distance (IGD) and the Spacing indicator to 

evaluate the performance of each algorithm.  

The convergence metric is the distance from each point 

in the Pareto optimal solution set P to the standard Pareto 

solution set Q. The convergence metric can evaluate the 

convergence of the solution set. The smaller the value is, 

the better the convergence is. Its definition is as follow: 

                     (1) 

Where |P| is the number of solutions in the solution set P, 

and distance(x, Q) is the minimum distance of the 

solution x of set P to set Q, which is defined as follow: 

       (2) 

The IGD indicator is the distance from each point in 

the standard Pareto solution set Q to the Pareto optimal 

solution set P. The definition of IGD is as follow: 

                        (3) 

Where |Q| is the number of solutions in the solution set P. 

The smaller the indicator is, the better the convergence is.  

The spacing indicator is defined as follow:  

          (4) 

Where di represents the shortest distance from the ith 

solution to the other solutions. The smaller the indicator 

is ,the better the uniformity is. 
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Zitzler E, Deb K, Thiele L et al. proposed a standard 

ZDT test function. The ZDT test function is mainly used 

to test multi-objective optimization algorithms with a 

small number of optimization variables. The performance 

of NSGA-II, MOPSO and MOEA/D algorithms is tested 

by ZDT1, ZDT2, ZDT4 and ZDT6 test functions. The 

standard Pareto reference of each function is used.  In this 

paper, the cut parameters are optimized, and the number 

of optimization variables is three. Therefore, the variable 

dimensions of the ZDT function  is three. Comparison 

results are shown in TABLE I-IV. 

TABLE I.  PERFORMANCE COMPARISON ON ZDT1  

Algorithms Υ(*10^-4) IGD(*10^-3) Spacing(*10^-3) 

NSGA-II 9.308 2.402 2.769 

MOPSO 24.11 15.59 21.87 

MOEA/D 9.117 3.672 4.941 

TABLE II.  PERFORMANCE COMPARISON ON ZDT2  

Algorithms Υ(*10^-4) IGD(*10^-3) Spacing(*10^-3) 

NSGA-II 8.146 2.641 2.672 

MOPSO 21.20 12.33 13.99 

MOEA/D 8.138 3.816 3.551 

TABLE III.  PERFORMANCE COMPARISON ON ZDT4 

Algorithms Υ(*10^-3) IGD(*10^-3) Spacing(*10^-3) 

NSGA-II 2.434 2.206 2.533 

MOPSO 1494 186.0 216.7 

MOEA/D 131.2 128.7 10.11 

TABLE IV.  PERFORMANCE COMPARISON ON ZDT6 

Algorithms Υ(*10^-4) IGD(*10^-3) Spacing(*10^-3) 

NSGA-II 8.301 1.556 1.978 

MOPSO 1.358 7.076 42.13 

MOEA/D 3.242 1.565 4.919 

 

From the comparison results, we can clearly see the 

advantage of NSGA-II algorithms on three dimensional 

multi-objective optimization problems. Thus, we select 

NSGA-II algorithm in the multi-objective optimization of 

cut parameters. 

B. Objective and Constrains 

Commonly, the cut parameters optimization model 

takes machining time and machining cost as objective. In 

some cases, surface roughness and cut force can also be 

the optimization objective. This paper establishes a multi-

objective optimization model taking machining time, 

machining cost, cut force and surface roughness as the 

optimization objective, taking spindle speed, feed rate, 

cut speed and surface roughness as constraints. 

Programmers can set the objective and constrains of the 

optimization model, as they need.  

In single pass turning or finish turning operation, the 

machining time can be calculated as follow: 

                                       (5) 

Where L is the cut length, S is the spindle speed, and f is 

the feed rate. 

For multi-pass machining, the distribution of cut depth 

should be optimized. To deal with multi-pass machining 

optimization, the optimization model first optimizes the 

finish pass to fulfill the surface roughness requirement. 

The rough turnings are optimized by equally dividing the 

remaining cut depth. Assuming that the remaining cut 

depth is H, cut depth of each pass is ap, the number of 

passes is H/ap. Then the machining time of multi-pass 

machining is as follow: 

                          (6) 

In the turning process, the machining cost mainly 

comes from time cost and tool cost. Among them, the 

time cost includes the cost of the machine, the wages of 

the workers, etc. The tool cost is the cost of replacing the 

tool after the tool wears or breakage. The objective 

function of the machining cost is as follow: 

                          (7) 

Where Cm is the time cost of each hour, CT is the cost of 

the tool, T is the service life of the tool. 

Cut force and surface roughness are also used as 

constrains or objective in the optimization model. The cut 

force and surface roughness prediction model are 

established by using BP-ANNs, which are described in 

chapter IV. 

IV.        PREDICTION MODEL 

This paper established main cut force and surface 

roughness prediction model based on BP-ANNs. Since 

BP neural network can approximate arbitrary functions, it 

is common to use BP neural network to fit various 

nonlinear models. In addition, factors such as tool wear 

will change with time during the machining process, 

which will affect the main cut force and surface 

roughness. The neural network can be iterated 

continuously to reflect the actual situation. Main cut force 

is an important characteristic variable to be monitored 

and predicted. To monitor and predict and cutting forces, 

this paper collected the torque current signal from the 

spindle motor controller. The controller of the 

experimental machine tool uses the vector control 

algorithm to control the spindle motor. For a three-phase 

AC asynchronous motor, the spindle torque output Te is 

as follow: 

                              (8) 

Where np is the pole pair number of the motor, Lm is 

the magnetizing inductance, which is the mutual 

inductance between the stator and the rotor, Lr is the rotor 

self-inductance, ist is the torque current; Ψr is the flux 

linkage of the rotor. np, Lm, Lr are constants. The flux 

linkage Ψr usually changes when the spindle speed 

changes, and is stable when the speed is stable. The 

cutting process usually takes place at a stable speed. So 

we can approximate that the spindle torque Te is 
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proportional to the torque current ist in the cutting process. 

That is: 

                                   (9) 

Transmission system of the machine tool is subjected 

to cutting force and friction. The equation of motion for 

the system is: 

             (10) 

Where Tfs is the friction torque, Js is the rotational inertia 

of the machine drive system, ωs is the angular velocity of 

the spindle, and Bs is the viscous damping coefficient. 

The friction torque Tfs is composed of the idling friction 

torque Tfs0, the coulomb friction torque    δTfs and the 

viscous friction torque δ Tbs. The equation can be 

expressed as: 

                    (11) 

When the machine tool is working in a pass, Spindle 

speed can be considered constant, thus, 

          (12) 

Where Fc is the main cut force, Iw is the torque current 

when machine tool is working in a pass. 

We ignore the influence of cut force on friction torque. 

Thus, when the machine tool is idling, 

                  (13) 

Where Ii is the torque current when machine tool is idling. 

Taking , we have: 

                       (14) 

Considering above equation, we can estimate the main 

cut force using the difference between the machining and 

the idle current of the motor. 

 So, we use the spindle rate, feed rate, cut depth and 

turning diameter as input  parameters of the ANNs, to 

predict the torque current of the motor, which indicates 

the main cut force. The prediction model of main cut 

force or torque current is used as objective or constrains 

of the optimization model. The model can be expressed 

as follow: 

                    (15) 

 

                       (16) 

As for the prediction model of surface roughness, This 

paper takes tool nose arc radius, main cut force, cut speed, 

feed rate, and depth of cut as input parameters of the 

network. The model can be expressed as follow: 

               (17) 

If the accurate numeric relationship between Fc andΔI 

is not clear, ΔI can be used as input parameters of sur

face roughness prediction model. The errors show no 

significant difference. It is also reasonable and 

appropriate to useΔI as the objective or constrains of the 

optimization model in light of the proportional 

relationship between Fc andΔI. 

This paper uses the output of BPNI as one of the input 

parameters of BPNRa. The input/output dataset of the 

model is illustrated schematically in Fig. 2. 

 

Figure 2.  The input/output dataset of the model 

The performance capability of each network was 

examined based on the correlation coefficient between 

the network predictions and the experimental values. The 

experiment was carried standalone and its data was not 

used in the training of prediction model. 

Correlation between the predicted outputs of the 

neural network model and the experimental data for main 

cut force prediction model is shown in Fig. 3. 

 

Figure 3.  Correlation between the predicted outputs and the 
experimental data of main cut force 

Correlation between the predicted outputs of the 

neural network model and the experimental data for 

surface roughness prediction model is shown in Fig. 4. 

 

Figure 4.  Correlation between the predicted outputs and the 

experimental data of surface roughness 

  

845

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 6, June 2020

© 2020 Int. J. Mech. Eng. Rob. Res



This paper developed a self-learning turning 

optimization module and deployed it in the NX CAM 

software. The turning optimization module can optimize 

the machining time, machining cost etc. with the 

constraints of  main cut force and surface roughness. 

 

The experiments on certain

 

aluminum alloy

 

workpieces show improvement on optimization 

objectives and roughness and

 

cutting force requirements 

are met.
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