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Abstract— This paper focuses on assessing the behavior of 

the Unmanned Aerial Vehicle (UAV) through its previous 

flights as a response to an incident.  The technique proposed 

in this paper helps in determining the abnormal flights, and 

the contribution of the variables in potential faults, in order 

to ensure the UAV safety. We statistically represent the 

behavior of the UAV through a flight by using the values of 

three features: The values of the Pearson Correlation 

Coefficient, the Y-Intercept, and the slope of the linear 

regression for each pair of the UAV variables; then, 

(Principal Components Analysis) PCA-based anomaly 

detector is used to extract the abnormal flights and the 

contributed variables in the potential faults. To test the 

algorithm’s efficiency, we used the MKAD synthetic dataset 

(Multiple Kernel based Anomaly Detection). This dataset is 

published for public use and includes discrete and 

continuous variables, which are previously injected by 

different types of faults. The conducted experiments showed 

similar results as the results of the well-known MKAD 

algorithm, where our approach detected 100% of the 

abnormal flights, with no false alarms. The advantage of our 

algorithm is that it is an unsupervised algorithm, so it did 

not require the massive training dataset as the MKAD 

method did.   

 

Index Terms—UAV, pearson correlation, linear regression, 

anomaly detection, principal components analysis, potential 

faults 

 

I. INTRODUCTION 

Unmanned Aerial Vehicle (UAV) is an aircraft piloted 

by remote control or onboard computers. Its applications 

have been increasing in recent years, including 

surveillance, reconnaissance, military missions, aerial 

photography, and disaster monitoring [1]. It is a very 

complex system operated by Control, Aerodynamics, 

Communications, and Informatics. The complexity of the 

UAV system raises the chances of its failure. Anomaly 

detection algorithms predict system failure by finding 

patterns in data that do not conform to expected behavior 

[2]. These algorithms operate in three modes [2][3]: 

Supervised, semi-supervised, and unsupervised. The 

supervised anomaly detection algorithms assume the 

availability of training data with given labels for the 
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normal class as well as for the anomalous class. The 

semi-supervised anomaly detectors assume the training 

data has labeled instances for the normal class only. The 

unsupervised anomaly detectors do not require any 

labeled training data. They make the implicit assumption 

that normal instances are far more frequent than 

anomalies in the test data.  

The history of the UAV flight missions is stored in 

multiple files. Each file contains the values of many input 

variables (Commands), and sensor readings (UAV State). 

Suppose that the UAV is in a critical state on a low 

altitude, and the pilot decides to increase the altitude to 

save the UAV from crashing. If he sends the proper 

altitude command to the UAV, but the response is 

unusually not effective, then the UAV will undoubtedly 

crash, which raises an issue about the variables pair: (the 

altitude command and the altitude). The linear 

relationship between these two variables would help in 

predicting the potential crash. Our contribution is a new 

technique to detect irregularities in the UAV behavior by 

monitoring the features that characterize the changes in 

the linear relationship between each pair of variables. 

This technique helps to assess the chances of system 

failure based on data from previous missions. The 

proposed algorithm builds the variable pairs; then, for 

each pair, it constructs a list of linear relationship features 

(Pearson Correlation Coefficient, Slope, and the Y-

intercept). Finally, it detects the behavior irregularities in 

each flight by using a PCA-based anomaly detector. The 

rest of the paper is organized as follows. Section II 

provides a brief background and a review of related 

works. Problem description and the tools used in it, such 

as (The Pearson Correlation, the linear regression is 

explained in Section III. Section IV explains our 

algorithm and the PCA-based anomaly detection 

approach. The used dataset, the results of the experiments, 

and a comparison with the well-known MKAD method 

(Multiple Kernel based Anomaly Detection) are 

explained in Section V. Finally; Section VI describes the 

conclusion and future suggestions. 

II. RELATED WORK 

Anomaly detection applications include intrusion, 

fraud detection, medical applications, and robot behavior. 

These live applications motivated many researchers to 

work in this area over recent years. System faults can be 

predicted by discovering anomalies in the system data. 
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There are three types of fault detection algorithms [4]: 

Model-based, Knowledge-based, and Data-driven-based 

algorithms. Cork et al. [5] used a model-based fault 

detection algorithm, where they estimated the state of the 

UAV using a nonlinear aircraft dynamic model and used 

the divergence of the estimated state from its actual value 

to detect system faults. The knowledge-based algorithms 

depend on predefined rules (if-then) sentences. Bu et al. 

[6]developed a method for detecting the UAV sensor’s 

faults using a fuzzy logic model. The data-driven 

algorithms depend on the statistical information to detect 

outliers and label them as faults. Lin et al. [7] designed an 

online algorithm to detect UAV sensor faults based on a 

statistical analysis of sensor readings and navigation data. 

Sun et al. [8] were interested in data-driven algorithms 

because model-based and knowledge-based algorithms 

have high model and rule dependencies; therefore, 

knowledge-based algorithms are unable to detect 

unknown or non-modeled faults, while data-driven 

algorithms showed flexibility due to the model-free 

analysis. Lin. [7], Khalastchi. [9], and Pokrajac [10] used 

statistical methods that produced an anomaly score for 

each given point of time. Each anomaly score depends on 

a sliding window of monitored readings. Their methods 

considered the point density using Mahalanobis Distance, 

or K-Nearest Neighbor (KNN). Principal Components 

Analysis (PCA) was widely used in many anomaly-

detection algorithms. PCA is a fast technique used for 

dimensionality reduction. It reduces the dimensionality of 

a multivariate data set into two or three attributes. 

Paffenroth et al. [11] developed a PCA-based anomaly 

detector to predict cyber-network attacks. Yong et al. [12] 

used PCA to detect anomalies in large-sized samples and 

complicated relationships of UAV sensor data.  

III. METHODS 

A. Definitions 

Let a flight mission denoted by  𝐹𝑛: 𝑛 ∈ {1, 2, … , 𝑁} , 

where 𝑁 is the total number of the flights performed by 

the UAV. The variables of a flight are either commands 

or measured readings. The commands could be an 

Altitude command, Rudder Command, Aileron 

Command, Throttle..., and the measured readings could 

be pitch, roll, yaw, longitude, latitude, altitude, and so on. 

The UAV system collects the values of these variables at 

each step of time (𝑡). Suppose that 𝑒𝑝 denotes the end 

period of the mission flight, where it is assumed that each 

row of data will always be fully recorded, with no empty 

values [7]. Let 𝐼 = {𝑗: 0 ≤ 𝑗 < |𝐼|} denotes the set of all 

variables, and |𝐼| is the total number of variables. Thus, 

in a flight 𝐹𝑛, the values of the variable 𝑗 ∈  𝐼 are stored 

in the vector 

 𝑉𝑗
𝑛 = {𝑣𝑗,0, … , 𝑣𝑗,𝑡 , … , 𝑣𝑗,𝑒𝑝}. (1) 

To analyze the UAV behavior in a flight, we evaluate 

the features that describe the linear relationship between 

each two variables 𝑗, 𝑘 ∈ 𝐼. These features are: (1) The 

absolute value of the Pearson Correlation Coefficient, (2) 

The slope, (3) The Y-intercept of the linear regression.  

B. Pearson Correlation and Linear Regression 

Pearson correlation coefficient is the most widely used 

statistical analysis to measure the degree of linear 

relationships between two variables, because it is based 

on the method of covariance, and it gives information 

about the magnitude of the association [13]. The linear 

regression statistical method helps to characterize the 

relationship between two continuous variables. It finds 

the best-fitting line through the points of the two 

variables [14].  

In complex systems such as a UAV, the relationships 

between variables change during parts of the flight. Thus, 

the correlation coefficient and the linear regression slope 

and intercept would change too. Also, in many cases, 

there will be phase lags and latencies between inputs and 

outputs (The reader is referred to a brief example of this 

issue in Khalstchi et al. [4]:). However, the proposed 

approach is not meant for parts of the flight, but it is 

meant for the whole flight. In each of multiple normal 

flights (without known faults), the correlation and the 

linear regression features tend to be stable. The correlated 

variables stay correlated, and the unrelated variables stay 

unrelated. In case of a fault, the values of some of the 

features will change relentlessly (either increasing or 

decreasing), as we will see later in the experiments 

section. The algorithm does not look for similarities, but 

it searches for flights that exhibit severe changes in the 

values of these features in order to label them as 

abnormal flights. 

Suppose that 𝑋 = {𝑥1, … , 𝑥𝑛}, 𝑌 = {𝑦1, … , 𝑦𝑛}  are two 

datasets. Let �̅�, �̅� be the mean values of 𝑋, 𝑌, respectively. 

Pearson Correlation Coefficient can be calculated using 

the following formula 

 

𝑐𝑋,𝑌 = |
∑ (𝑥𝑖−�̅�)(𝑦𝑖−�̅�)𝑛

𝑖=1

√∑ (𝑥𝑖−�̅�)2𝑛
𝑖=1 ∑ (𝑦𝑖−�̅�)2𝑛

𝑖=1
2

|, (2) 

 

𝑐𝑋,𝑌 has a real value in the range [0,1]. On the other hand, 

the formulas for calculating the regression line are 

 

�́� = 𝑏𝑋 + 𝑎, 

 

(3) 

 

𝑏 =
∑ (𝑥𝑖−�̅�)(𝑦𝑖−�̅�)𝑛

𝑖=1

√∑ (𝑥𝑖−�̅�)2𝑛
𝑖=1

2
, 

 

(4) 

 

𝑎 = �̅� −
∑ (𝑥𝑖−�̅�)(𝑦𝑖−�̅�)𝑛

𝑖=1

√∑ (𝑥𝑖−�̅�)2𝑛
𝑖=1

2
�̅�, 

 

(5) 

 

�́�  is the regression prediction, 𝑏 is the slope, and 𝑎 is the 

y-intercept of the regression line, therefore, using 

formulas (1), and formula (2), we calculate the Pearson 

correlation coefficient for a specified flight 𝐹𝑛, and a pair 

of two variables 𝑗, 𝑘 ∈ 𝐼 by 

𝐶𝑗,𝑘
𝑛 = |

∑ (𝑣𝑗,𝑡−𝑣𝑗̅̅ ̅)(𝑣𝑘,𝑡−𝑣𝑘̅̅̅̅ )
𝑒𝑝
𝑡=1

√∑ (𝑣𝑗,𝑡−𝑣𝑗̅̅ ̅)2𝑒𝑝
𝑡=1 ∑ (𝑣𝑘,𝑡−𝑣𝑘̅̅̅̅ )2𝑛

𝑖=1
2

|. 

 

(6) 
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We calculate the slope and the y-intercept of the linear 

regression by manipulating formulas (1), (4) and (5) as 

follows 

𝑏𝑗,𝑘
𝑛 =

∑ (𝑣𝑗,𝑡−𝑣𝑗̅̅ ̅)(𝑣𝑘,𝑡−𝑣𝑘̅̅̅̅ )
𝑒𝑝
𝑡=1

√∑ (𝑣𝑗,𝑡−𝑣𝑗̅̅ ̅)2𝑒𝑝
𝑡=1

2
. 

 

(7) 

 

 

𝑎𝑗,𝑘
𝑛 = 𝑣𝑘̅̅ ̅ −

∑ (𝑣𝑗,𝑡−𝑣𝑗̅̅ ̅)(𝑣𝑘,𝑡−𝑣𝑘̅̅̅̅ )
𝑒𝑝
𝑡=1

√∑ (𝑣𝑗,𝑡−𝑣𝑗̅̅ ̅)2𝑒𝑝
𝑡=1

2
𝑣�̅�. 

 

(8) 

 

 

IV. ALGORITHM 

A. Construct Feature Datasets 

The goal of the proposed technique is to detect the 

abnormal flight missions, predict potential failure, and the 

contribution of the different variables in detecting the 

faults.  The algorithm starts by extracting the values of 

the features that describe the relationship between every 

two non-identical variables. Algorithm 1 constructs the 

features datasets. 

 
Algorithm 1 Construct_Feature_Datasets() 

for each variable 𝑗 ∈  𝐼 

     for each variable 𝑘 < 𝑗 

            𝑅(𝑗,𝑘) ← ∅  

            for each  𝐹𝑛 do 

                   calculate  𝐶𝑗,𝑘
𝑛  

                   calculate 𝑏𝑗,𝑘
𝑛 , 𝑎𝑗,𝑘

𝑛  

                   add [𝐶𝑗,𝑘
𝑛 , 𝑏𝑗,𝑘

𝑛 , 𝑎𝑗,𝑘
𝑛 ] to 𝑅(𝑗,𝑘) 

             add 𝑅(𝑗,𝑘) to 𝑅 

return 𝑅 

 

This algorithm iterates through the pairs of variables 

{ (𝑗, 𝑘): 𝑗, 𝑘 ∈  𝐼, 𝑘 < 𝑗, }  and the flights { 𝐹𝑛: 𝑛 ≤ 𝑁} . 

During iterations, it calculates the Pearson Correlation 

coefficient 𝐶𝑗,𝑘
𝑛  using formula (6), the slope 𝑏𝑗,𝑘

𝑛 , and the 

y-intercept 𝑎𝑗,𝑘
𝑛  of the linear regression using formula (7), 

and formula (8), then it adds the three values 

[𝐶𝑗,𝑘
𝑛 , 𝑏𝑗,𝑘

𝑛 , 𝑎𝑗,𝑘
𝑛 ]  as a row to the dataset  𝑅(𝑗,𝑘) . The 

algorithm composes the set  𝑅 = {𝑅(𝑗,𝑘)} , where each 

dataset 𝑅(𝑗,𝑘) is of size 𝑁  instances. To classify the 

instances of each 𝑅(𝑗,𝑘)  we use Principal Component 

Analysis (PCA-based) anomaly detector. The PCA-based 

anomaly detector is composed of two steps: 

Dimensionality Reduction, and Threshold Classification 

(see Algorithm 2). 

B. PCA Dimensionality Reduction 

Principal Component Analysis is a well-established 

technique for dimensionality reduction [15]. It is a 

projection method that maps a given set of data points 

onto a set of uncorrelated variables. These variables are 

called Principal axis or Principal Components (PC), 

which are ordered by the amount of data variance in 

descending order [16]. The principal components are 

linear combinations of the original variables [17]. 

Generally, applying PCA to the normalized data matrix 𝑌 

in ℝ𝑛 generates {𝑣𝑖}𝑖=1
𝑝

 which is a set of 𝑝  principal 

components. The first principal component 𝑣1 is the 

vector that corresponds to the direction of maximum 

variance [18], and it is denoted by  

𝑣1 = 𝑎𝑟𝑔 𝑚𝑎𝑥 ‖𝑥‖=1‖𝑌𝑥‖, 

 

(9) 

 

‖𝑥‖ is the 2-norm of x, and ‖𝑌𝑥‖ is proportional to the 

variance of the data distributed along 𝑥 . The second 

principal component is the linear combination of the 

original variables with the second-largest variance and 

orthogonal to the first principal component [15]. 

Proceeding iteratively, if the previous 𝑖 − 1 principal axes 

have been selected, the residual is the difference between 

the original samples and the samples corresponding to 

these 𝑖 − 1 principal axes. Therefore, the 𝑖 − 𝑡ℎ principal 

component [18] is defined as 

𝑣𝑖 = 𝑎𝑟𝑔 𝑚𝑎𝑥‖𝑥‖=1‖(𝑌 − ∑ 𝑌𝑣𝑗𝑣𝑗
𝑇𝑖−1

𝑗=1 )𝑥‖. 

 

(10) 

 

The data matrix 𝑌 is of order (𝑚 × 𝑛), 𝑚 is its length, 

and 𝑛  is the count of the original variables. 𝑣𝑖   is the 

𝑖 − 𝑡ℎ eigenvector of the estimated covariance matrix 

𝐴 =
1

𝑚
𝑌𝑇𝑌 . 

 

(11) 

 

PCA in the feature space calculates the eigenvalues 

and eigenvectors according to the following equation [12]: 

𝜆𝑣𝑖 = 𝐴𝑣𝑖 , 

 
(12) 

 

and the projection of the data onto each principal 

component is given by  

𝑢𝑖 = 𝑣𝑖
𝑇 , 𝑖 = 1,2, … , 𝑝, 

 

(13) 

 

C. Threshold Classification 

Hawkins. [19] proved that if the projections of instance 

𝑥  on the principal components are 𝑢1, 𝑢2, … , 𝑢𝑛  where 

the corresponding Eigen-values are 𝜆1, 𝜆2, … , 𝜆𝑛  then 

∑
𝑢𝑖

2

𝜆𝑖

𝑘
𝑖=1 , 𝑘 ≤ 𝑛 has a chi-square distribution. Therefore 

for a given significance level 𝛼, the observation x is an 

anomaly if 

∑
𝑢𝑖

2

𝜆𝑖

𝑘
𝑖=1 > 𝑋𝑘

2(𝛼). 

 

(14) 

 

If 𝑢𝑘+1 passes a defined threshold, the first 𝑘 principal 

components are regarded as normal, and the rest will be 

abnormal [2]
 

[16]. We use PCA to reduce the 

dimensionality of each feature dataset  𝑅(𝑗,𝑘)  (refer to 

algorithm 1). The result of dimensionality reduction is a 

new dataset 𝐷(𝑗,𝑘) of 𝑁 scores and one dimension, where 

𝑁  is the total number of the flights. Choosing one 

dimension for the results is necessary to apply a fixed 

threshold, which classifies the new instances in 𝐷(𝑗,𝑘) into 

either normal or abnormal. Considering that the scores for 

each dataset 𝐷(𝑗,𝑘) have different scales, we can apply the 

min-max normalization to normalize the scores of each 

dataset as follows 

(𝑠𝑐𝑜𝑟𝑒𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑠𝑐𝑜𝑟𝑒𝑖−𝑠𝑐𝑜𝑟𝑒𝑚𝑖𝑛

𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑥−𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑥
). 

(15) 
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The resulted normalized scores are stored in 

𝑁𝐷(𝑗,𝑘)(see Algorithm 2), which its values range between 

zero and One. Defining a suitable threshold for each 

dataset 𝑁𝐷(𝑗,𝑘) can be done with the help of domain 

expertise, visualization, and the previous knowledge of 

the percent of the abnormal flights. The scores that 

exceed the defined threshold are considered abnormal 

flights. Algorithm 2 summarizes the PCA-based anomaly 

detection for each generated features dataset 𝑅(𝑗,𝑘). 

Algorithm 2 PCA_Based_Anomaly_Detector(𝑅(𝑗,𝑘)) 

𝐷(𝑗,𝑘) ←Reduce the dimensionality of 𝑅(𝑗,𝑘) 

𝑁𝐷(𝑗,𝑘) ←Normalize(𝐷(𝑗,𝑘)) 

ThresholdClassification(𝑁𝐷(𝑗,𝑘)) 

return (abnormal flights) 

To test the approach proposed in this paper, we used 

the MKAD synthetic dataset [20], which includes various 

types of seeded faults.  

V. EXPERIMENTAL RESULTS 

To conduct experiments, we implemented a tool to test 

our approach using C# language and Accord.net libraries. 

We used the MKAD synthetic dataset, which is published 

for public use. This dataset was used to test the MKAD 

(Multiple Kernel based Anomaly Detection) method 

robustness [20], which helped us to compare the results 

of our approach with the results of the MKAD method. 

The MKAD method is a state of the art algorithm that 

builds different multiple kernel functions for both discrete 

and continuous values. It uses the One-class Support 

Vector Machine (SVM) to separate the abnormal flights 

from the normal ones. The One-Class SVM model is 

learned from a large training dataset. The MKAD 

synthetic dataset includes 150 testing flights. The flights 

are labeled sequentially from Flight00201, Flight00202 to 

Flight00350. Each flight includes 1000 rows and consists 

of 15 variables. The variables do not have labels, so we 

labeled them sequentially (A1, A2…, A15). The first ten 

variables are of discrete values, and the last five are of 

continuous values. The MKAD dataset is injected with 

four types of faults. (1) Fault type I: include missing 

expected values in discrete data (see Fig.1). (2) Fault type 

II: involves extra unexpected values in discrete data (see 

Fig.2). (3) Fault type III: involves out of order sequences 

of values in the discrete data (see Fig.3). (4) Fault type IV: 

includes abnormal patterns in continuous data (see Fig.2). 

Three examples of each fault were injected into the 

flights. 

By implementing the Algorithm, 105 Features 

dataset  𝑅(𝑗,𝑘)  were generated, where every dataset 

included the values that describe the changes of the linear 

relationship between every two variables through all the 

150 MKAD flights.  

 

Figure 1.  Fault type I (missing expected values). 

 

Figure 2.  Fault type II (extra unexpected values). 

 

Figure 3.  Fault type III: (out of order sequences of values). 

 

Figure 4.  Fault type IV (abnormal patterns). 

Applying PCA dimensionality reduction and threshold 

classification produced 105 score datasets. For each score 

dataset, the algorithm detected several abnormal flights. 

By inspecting the results, we could extract the percent of 

the contributed variable pairs for each abnormal flight. 

Table 1 shows the result of the experiment. The proposed 

approach detected 100% of the abnormal flights, with no 

false alarms. The threshold was defined using the score 

visualization, and the previous knowledge of the percent 

of the abnormal flights, which is 4-8% of the total 

number of flights. This percent value can be extracted 

from the meta-data of the MKAD synthetic dataset. Our 

approach had similar results with the MKAD method 

(The reader is referred to [20] to see the results of the 

MKAD method). However, our approach did not need the 

training dataset since it is an unsupervised algorithm. 

Conversely, the MKAD method requested a large training 

dataset for building the kernel functions and the SVM 

model, which is considered time-consuming and memory 

demanding [21]. 

TABLE I.  ABNORMAL FLIGHTS AND PERCENT OF CONTRIBUTED 

VARIABLES 

Fault Type Flights 
Percent of contributed 

Variable Pairs 

I 

Flight00230 24% 

Flight00298 32% 

Flight00314 26% 

II 

Flight00237 48% 

Flight00260 45% 

Flight00336 48% 

724

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 5, May 2020

© 2020 Int. J. Mech. Eng. Rob. Res



Fault Type Flights 
Percent of contributed 

Variable Pairs 

III 

 

Flight00214 9% 

Flight00238 9% 

Flight00325 9% 

IV 

Flight00233 40% 

Flight00269 40% 

Flight00295 38% 

 

An example of applying the proposed algorithm for the 

two variables (A2, A7) of the MKAD dataset is shown in 

Fig.5 and Fig.6.  

 

Figure 5.  The values of the features of the relationship between the 
two variables (A2, A7). 

 

Figure 6.  The detected abnormal flights using the features of the 
relationship between the two variables (A2, A7). 

Fig.5 shows the values of the features (Correlation, 

Slope, and the Y-intercept) of the variables (A2, A7) 

linear relationship, while Fig.6 shows the scores of the 

PCA and the detected abnormal flights. It is visually 

apparent that the used threshold is 0.4. Note that the Four 

detected abnormal flights in Fig.6 are of either Fault Type 

I or Fault Type II (see Table I), which means that the pair 

(A2, A7) contributed to detect the abnormal Flight00237, 

Flight00298, Flight00314, and Flight00336. 

VI. CONCLUSION 

We propose an effective algorithm to assess UAV 

behavior as a method to ensure UAV safety. The 

algorithm extracts the values of the features that 

characterize the relationship between each pair of UAV 

variables. The used features are the Pearson Correlation 

Coefficient, the Y-intercept, and the slope of the linear 

regression. Then, the algorithm uses a PCA-based 

anomaly detector to extract the abnormal flights and the 

contributed variables in the potential faults. The proposed 

algorithm showed similar results as the results of the 

MKAD method, but on the other hand, it did not need the 

vast training set as the MKAD method did. Future 

enhancements could be applied to decrease the number of 

the used variable pairs in order to make the algorithm 

faster. In addition, an enhanced method could be applied 

to find the best threshold to extract abnormal flights.  
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