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Abstract—Ride quality and road holding capacity of a 

vehicle is significantly influenced by its suspension system. 

In the design process, a number of criteria related to 

comfort and road holding capacity is taken into 

consideration in order for achieving the optimum vibration 

performance. Therefore, multiple design objectives have to 

be optimized. In this paper, a five-degree-of-freedom system 

of vehicle vibration model with passive suspension is 

investigated. This paper formulates the model into multi-

objective optimization problem consists two design 

objectives. The improved compressed objective genetic 

algorithm (COGA-II), a Pareto-based multi-objective 

optimizer, is used as the search algorithm. The vehicle 

model is excited by the bump that the model passes on. 

Since there might be some differences on optimized 

solutions on regular and random road profiles, the study on 

the differences should be consequently investigated. There 

are 4 cases – 0%, 10%, 20%, and 30% randomization on the 

bump profile to be studied. Simulation results reveal that 

there is some significant difference on optimized solutions.  

 

Index Terms— vehicle vibration, multi-objective 

optimization, genetic algorithm, random road profile 

 

I. INTRODUCTION 

Suspension system, road surface roughness, and speed 

of the vehicle considerably influence to quality of ride of 

a vehicle [1]. The road surface roughness and speed of 

the vehicle are beyond vehicle design process. Therefore, 

the suspension system must be designed with optimum 

vibration performance. The primary performance 

measure of a suspension system is traditionally measured 

in terms of ride quality. The two principal variables for 

design and evaluation of the suspension system are 

sprung mass which determines ride comfort, and 

suspension deflection which indicates the limit of the 

vehicle body motion [2].  

Gündoǧdu [3] used GAs for optimization of a four-

degrees-of-freedom quarter car seat and suspension 

system to achieve the best performance of a driver. There 

are four design objectives to be optimized, namely, head 

acceleration, crest factor, suspension deflection, and tire 

deflection. The design objectives were transformed to 

only one mixed objective function. Therefore, single-
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objective GAs were used in the optimization process. 

Nariman-Zadeh et al. [4] and Boonlong [5] formulated 

five-degree-of-freedom vehicle vibration model as multi-

objective optimization problems. The design objectives 

were optimized simultaneously without the combination 

of design objectives as [3], [6]. 

In optimization process, there are two main 

optimization approaches, derivative-based and derivative-

free methods. Compared to the derivative-based schemes, 

the derivative-free methods do not need functional 

derivative of a given objective function. They, instead, 

rely on repeated evaluation of the objective function and 

obtain the search direction under nature-inspired heuristic 

guidelines. Although the derivative-free schemes are 

generally slower than the derivative-based methods, they 

are much more effective for complicated objective 

functions and combinatorial problems as the methods do 

not require differentiable objective functions. GA is a 

derivative-free population-based optimization method of 

which search mechanisms are based on the Darwinian 

concept of survival of the fittest. Originally, the GA is 

established to solve single-objective optimization 

problems (SOOPs) [7]; subsequently it is adapted to solve 

multi-objective optimization problems (MOOPs) which 

have a number of objective functions to be minimized or 

maximized.  

In general, it is almost improbable that only one 

solution can optimize all objectives for a given MOOP. 

Based on the Pareto approach, the multiple optimum 

solutions of the MOOP – the Pareto optimal solutions – 

are used in decision making process. Solutions of 

MOOPs are compared by the Pareto domination [8], 

which is originally defined by Vilfredo Pareto. If a given 

solution dominates other solutions, it is better than the 

rest. Thus, for a given solution set, the non-dominated 

solutions are the best solutions of the set. A Pareto-based 

MOGA embeds the Pareto domination concept into a 

genetic algorithm (GA). In a single-objective GA, an 

objective of a solution i is directly used to evaluate the 

fitness of the solution. On the other hand, the Pareto-

based MOGA employs Pareto domination concept to 

assign fitness or rank of a solution from objectives of the 

solution. Previous researches such as [4], [5], [9] employ 

road profile represented by certain explicit function, 

harmonic function. This paper studies the effects of 
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random road profile on the multi-objective optimization 

of vehicle vibration model, in which a Pareto-based 

MOGA, the improved compressed objective genetic 

algorithm (COGA-II) [5], [10] as the search algorithm for 

multi-objective optimization of a five-degree of freedom 

vehicle vibration model. 

II. TEST PROBLEM 

A five-degree of freedom system of vehicle model 

with passive suspension is used for performance 

investigations as shown in Fig. 1. There are 5 independent 

coordinates of the system – vertical displacement of seat 

mass (zc), vertical displacement of sprung mass (zs), 

rotation angle of sprung mass ( ), vertical displacement 

of front tire (ztf) and vertical displacement of rear tire (ztr). 

Nine fixed parameters – seat mass (mc = 75 kg), sprung 

mass (ms = 730 kg), moment of inertia of sprung mass (Is 

= 130 kg-m
2
), forward tire mass (mtf = 40 kg), rear tire 

mass (mtr = 35.5 kg), equivalent spring constant of 

forward tire (ktf = 175,500 N/m), equivalent spring 

constant of rear tire (ktr = 175,500 N/m), relative position 

of front tire to the center of sprung mass (lf = 1.011 m), 

and relative position of rear tire to the center of sprung 

mass (lr = 1.803 m), are used. Seven design variables 

which are equivalent spring constant of seat (kss), 

equivalent damping constant of seat (css), equivalent 

spring constant of suspension at forward tire (ksf) 

equivalent spring constant of suspension at rear tire (ksr), 

equivalent damping constants of suspension at forward 

tire (csf) equivalent damping constants of suspension at 

rear tire (csr) and relative position of seat to the center of 

sprung mass (r), have to be optimized. The range values 

for the decision variables are shown in Table I. 

The vehicle is moved directly with constant velocity (v) 

of 20 m/s and excited by a double road bump. It is assumed 

that the rear tire follows the same route of the front view 

with a delay time t = (lf + lr)/v = 0.1407 seconds. Due to 

the excitation of double road bump, the vertical 

displacements of a point at bottom of forward tire (zbf) are 

displayed in Fig. 2. There are 4 amounts of randomized 

factor – 0%, 10%, 20%, and 30% as shown. In case of the 

0% randomization, the vertical displacements of a point at 

bottom of forward tire (zbf) are given by (1). In the figure, 

the length of road bump is actually equal to 20×2.5 = 50 m. 

In randomization process, the length is divided into a 

number of elements so that each of them has length of 0.2 

m. The bump profile without randomized factor is used as 

the basis in order to create the bump profile in the 

randomization.  
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There are two objective functions – seat acceleration 

(x1), and forward tire acceleration (x2) to be optimized. 

The numerical indicators, f1 and f2, of these objective 

functions, x1 and x2, are given by the equation (2). 
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where x1= cz  and x2 = tfz . 

III. SIMULATION RESULTS AND DISCUSSIONS 

The parameter settings for COGA-II are illustrated in 

Table II. There are two objective functions – seat 

acceleration (x1), and forward tire acceleration (x2) to be 

optimized. The numerical indicators, f1 and f2, of these 

objective functions, x1 and x2, are given by the following 

equation. After the search, in each case solutions of all 

runs are merged; Pareto optimal solutions of each case 

can be obtained.  

TABLE I.  DECISION VARIABLES 

Parameters Values 

kss 50,000 – 100,000 N/m 

css 1,000 – 4,000 Nm/s 

ksf and ksr 10,000 – 20,000 N/m 

csf and csr 500 – 2,000 Nm/s 

r 0 – 0.5 m 
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Figure 1.  Five-degree of freedom vehicle vibration model. 
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Figure 2.  Five-degree of freedom vehicle vibration model. 
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The values of decision variables of the Pareto optimal 

solutions are plotted in Fig. 3. There is some significant 

difference on the optimized solutions. For instance, ksf 

and csf, value of these variables is high for the bump 

profile without randomization, but value of these 

variables is lower with the increase of randomized factor. 

Table III shows the values of the decision variables of 

solutions with the best values of each design objective. In 

the table, B100 is a solution with the best value of the 

first design objective of the case with 0% randomized, 

B110, B120, and B130, have the best value of the first 

design objective of the cases with 10%, 20%, 30%, 

respectively. Solutions B200, B210, B220, B230, have 

the best value of the second design objective of the cases 

with 0%, 10%, 20%, 30%, respectively. 

TABLE II.  COGA-II PARAMETER SETTINGS 

Parameters Settings and values 

Chromosome coding Real-value chromosome 

Crossover method 
SBX crossover [8] with probability = 

0.9 

Mutation method 
Variable-wise polynomial mutation 

[8] with probability = 0.1 

Population size  80 

Archive size 80 

Number of generations 240 

Number of repeated runs 10 
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Figure 3.  Decision variables of the Pareto optimal solutions. 

TABLE III.  SOLUTIONS WITH THE BEST VALUES OF EACH DESIGN OBJECTIVE 

Solutions kss css ksf ksr csf csr r 

B100 64,806 4,000 10,000 2,000 10,000 1,077 0.500 

B110 96,011 2,827 10,000 2,000 10,000 1,733 0.131 

B120 50,000 1,019 10,000 1,760 10,000 1,826 0.048 

B130 50,000 1,000 10,000 1,521 10,000 1,671 0.021 

B200 149,999 4,000 19,759 2,000 10,000 500 0.500 

B210 50,027 1,000 10,000 2,000 10,000 500 0.000 

B220 50,003 1,000 10,000 2,000 10,000 500 0.000 

B230 50,000 1,000 10,000 2,000 10,000 500 0.000 
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Figure 4.  Seat accelerations of B100 on 0% randomized bump profile. 
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Figure 5. 
 

Comparison of seat accelerations of B100 and B110 on 10% 
randomized bump profile. 

Figs. 4-7 show seat accelerations, first objective 

functions, of the optimized solutions with the best values 

of the objective. It is found that the performance of B100, 

the solution with the best value of the first design 

objective, is worse with the increase of randomized 

factors. 

IV.
 

CONCLUSION
 

This paper proposes the study of effect of random road 

profile on multi-objective optimization of the five-

degree-of-freedom vehicle model. The bump profile of 

road, that is activated the vehicle to vibrated, is 

considered in this study. Without randomization, the 

bump profile is represented by harmonic function. There 

are 3 nonzero randomized factors, 10%, 20%, and 30%, 

are included in the harmonic bump profile. Simulation 

results reveal that the values of decision variables of 

optimized solutions in the cases of non-zero randomized 

factors are quite different those in the case of the zero 

randomized factor, as also presented in the previous study 

[5].  
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Figure 6.  Comparison of seat accelerations of B100 and B120 on 20% 
randomized bump profile. 
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Figure 7.  Comparison of seat accelerations of B100 and B130 on 30% 
randomizzed bump profile. 

The optimized solution in the case without 

randomization is poor in the cases of randomization. In 

general road profile is in random condition, so that the 

homogeneous response displayed in the entire of time. It 

is probable that some natural frequencies probably are 

higher than frequencies due to the road. The high 

vibration frequencies probably make more ride 

uncomfortable than the lower ones. Random road profile, 

that supplies high vibration frequencies due to 

homogeneous response, should be therefore taken into 

account in multi-objective optimization of vehicle 

vibration. 
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