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Abstract— This article illustrates a systematic approach for 

predicting tool wear in machining process through Cyber-

Physical System (CPS) architecture using simple electronic 

components such as personal computers and low-cost 

sensors. The proposed Cyber-Physical structure consists of 5 

steps; smart connection, data to information, feature 

extraction, awareness of issues and self-adjustment. We 

tried to install a big data analysis technology into CPS 

architecture to catch the usual/unusual state of the cutting 

tool from the spindle power consumption changes. The 

excessive repetitions of grooving would bring the trend 

changing of power consumption. To facilitate the statistical 

analysis, the correlation coefficient R was calculated from 

the single regression analysis between two different cycles of 

time-series power consumption. The correlation coefficient 

R also had a strong relation with the condition changes of 

tool wear and would become a powerful tool to catch the 

usual/unusual state of the cutting tool in the proposed CPS 

architecture. The health information obtained from the 

system can be used for higher level of management of 

cutting tool based on the condition monitoring free from the 

schedule-based maintenance.  

 

Index Terms—cyber-physical system, industry 4.0, Society 

5.0, big data analytics, tool wear, predictive maintenance 

 

I. INTRODUCTION 

Due to the increased digital networking of machines 

and systems in the production area, large datasets are 

generated. In addition, it is possible that more external 

sensors are installed at production systems to acquire data 

for production and maintenance optimization purposes. 

Therefore, data analytics and interpretation is one of the 

challenges in Society 5.0 in Japan [1] and Industry 4.0 in 

Germany [2] applications.  

According to a study by McKinsey [3], predictive 

maintenance is one of the main application fields of the 

IoT (Internet of Things). The development of new sensor 

technologies such as sensor – IoT system Pi offer great 
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potential to enable production machine for condition-

based monitoring using low-cost sensors [4,5,6].  

Integrating advanced analytic with communication 

technologies in close conjunction with the physical 

machinery has been named Cyber-Physical Systems (CPS) 

by American government since 2007 as a new 

developments strategy [7, 8]. Currently, the CPS concept 

is still under development. The implementation of 

predictive analytics as part of the CPS flamework enables 

the assets to continuously track their own performance 

and health status and predict potential failures. By 

implementing the predictive analytics along with a 

decision support system, proper services could be 

requested and actions taken to maximize the uptime, 

productivity and efficiency of the industrial systems. CPS 

facilitates the systematic transformation of massive data 

into information, which makes the invisible patterns of 

degradations and inefficiencies visible and yields to 

optimal decision-making. This paper briefly discusses a 

systematic architecture for applying CPS in 

manufacturing. Then, a case study for predicting tool 

wear in machining process through CPS architecture is 

presented. 

II. CONCEPT 

A. Society 5.0 or Industry 4.0 Factory 

Table   I represents the difference between a today’s 

factory and Society 5.0 (Industry 4.0) factory. In current 

industry environment, providing high-end quality service 

or product with the least cost is the key to success and 

industrial factories are trying to achieve as much 

performance as possible to increase their profit as well as 

their reputation. In contrast, in the Society 5.0 industry, in 

addition to condition monitoring and fault diagnosis, 

components and systems are able to gain self-awareness 

and self-predictiveness, which will provide management 

with more insight on the status of the factory. The peer-

to-peer comparison and fusion of health information from 

various components also provides a precise health 

prediction in component and system levels.  
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TABLE I.  COMPARISON OF TODAY’S FACTORY AND SOCIETY 5.0 FACTORY 

 
 

 

Figure 1. Overall cyber-physical system setup for predicting tool wear in machining 

B. Outline of Communication Architecture  

“Fig. 1” shows the overall CPS setup for predicting 

tool wear in grooving. The structure consists of 5 steps; 

smart connection, data to information, feature extraction, 

awareness of issues and self-adjustment. 

1) Smart-connection 

In the connection level, a time-series data is acquired 

from machines through the timer signals and the electric 

power meter in spindle motor. The electric power 

monitoring is a popular fault detection method for 

monitoring health condition of cutting tool [9, 10,11]. 

The data is now processed in the desk-top computer 

connected to a CNC machine.  

2) Data-to information conversion 

In the 2nd level, data to information level, the 

worthwhile information is extracted from the pool of 

collected time-series data and normalizes it for further 

analysis [9, 10, 11]. 

3) Feature extraction 

 After the data conversion, the computer further 

performs feature extraction. The feature extraction 

consists of identification of cutting time domain to be 

managed, where the changing pattern of time-series data 

shows a difference according to the health condition of 

cutting tool, and measuring the similarity of time-series 

data between the usual and reference health conditions. 

4) Awareness of issues 

In the 4th level, awareness of issues, the computer 

performs an adaptive clustering method to segment the 

health condition of cutting tool into soundness, need to be 

exchanged and damaged based on the relative change of 

time-series data. the adaptive clustering method compares 

current features with the usual features. In addition to the 

condition data, the cyber-physical model obtains the 

information on shape and abrasion loss of cutting edge 

from production line. These configuration parameters 

help the core of model to standardize and adaptively 

cluster the operation data for more accurate processing.  

5) Self-adjustment 

The health stages can be further utilized in the 5th level, 

self-adjustment, for optimization purposes. For example, 

after a certain amount of tool wear has been detected, a 

more moderate cutting should be applied to ensure 

quality including the exchange of cutting tool. To help 

such decision making process, ideally Web and iOS-

based user interface should be developed so that the 

health information of each connected machine tool can be 

accessed in real time. 

III. CASE STUDY 

A.    Experimental Setup 

The experimental setup for measuring the power 

consumption is shown in “Fig. 2”. Only electric power 

consumed by the spindle motor Pmeasure was measured at 
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0.2 seconds interval by using a power tester. Then the net 

power consumption in the cutting Pcut was estimated by 

subtract the power consumption at idle running Pidle from 

the measured spindle power. The evolution of Pcut is 

evolution of cutting force and a fairly accurate measure of 

the deterioration of tool condition. 

           / (60 1000 )cut cP F V                   (1)                                                                                

where, P [kW] is net effective power, Fc [N] is principal 

cutting force, V [m/min] is cutting speed and η is 

mechanical efficiency. A grooving of 0.1mm depth was 

conducted on a vertical CNC with an AC spindle motor 

by using a Φ2mm of two-flute end mill under the 

conditions in “Fig. 3”. The workpiece was a commercial 

brass plate (JIS C3604) and the shape of groove consisted 

on a straight section and two curved sections with 

curvature radius of 10mm and 40mm. 

 

Figure2. Experimental setup for material cutting 

 

Figure 3. Summary of cutting conditions 

B.    Statistical Analysis  

To acquire a large volume sensor data, input power 

consumption supplied to the spindle were measured at 

0.2s interval by using a power meter. The grooving with 

0.1mm of cutting depth had been repeated 1000 times and 

the tool wear was measured every 100 times grooving by 

using a digital microscope. 

To analyze the time-series data, the concepts called 

cycle is set. The one “cycle” corresponds to one round of 

grooving from the straight section to the curved sections 

with curvature radius of 40mm via the curved sections 

with curvature radius of 10mm. To facilitate the statistical 

analysis, the time-series data obtained from the one cycle 

of grooving were divided at a second interval. Then the 

average power consumption, zone average power 

consumption, were calculated every one second as shown 

in “Fig. 4”. Finally, the correlation coefficient R was 

calculated from the single regression analysis between 

two different cycles of time-series zone average power 

consumption. As the correlation coefficient R is closer to 

1.0, the time-series sensing data in the two different 

cycles have a more similar power consumption changes 

over times with each other. 

  

Figure 4. Calculation model of zone average value 

C.    Predicting Tool Wear through CPS Architecture  

1) Smart connection and Data to information 

 “Fig. 5” shows the time-series data obtained from the 

30, 91, 249, 498, 616, 752, 851, 985 and 1000th cycles of 

grooving. The absolute value of power consumption 

tended to increase with the number of cutting cycles, but 

the changing trends of power consumption are similar 

with each other. “Fig. 6” shows the detailed comparison 

of power consumption trends among the 91, 249 and 

752th cycles of grooving. Although the changing trends 

of the 91 and 249th cycles are quite similar over the 

entire of grooving, the changing trend of the 752th cycle 

showed the opposite trend of 91 and 249th cycles at the 

first parts of curved section with curvature radius of 

10mm and 40mm. This means that the excessive 

repetitions of grooving would bring the trend changing of 

power consumption as well as the increasing of its 

absolute value. 

2) Feature extraction and Awareness of issues 

 “Fig. 7” shows the correlation coefficient R calculated 

from the single regression analysis between 91th and 

249th cycles and 91th and 752th cycles of time-series 

zone average power consumption. Where the time-series 

zone average power consumption in the 91th cycle is 

considered as the usual (soundness) data set which 

represents the typical power consumption changing trend 

in the usual cutting condition because there is no apparent 

tool wear after 91th cycle of grooving as shown in “Fig. 

8”. The correlation coefficient between 91th and 249th 

and 91th and 752th are 0.88 and 0.75 respectively. As 

mentioned above, the power consumption changing 

trends in the 91th and 249th cycles are quite similar while 

the changing trend at the 752th cycle showed the opposite 

trend of 91th cycles at the first parts of curved section. 

This means that as the changing trends of power 

consumption in sample cycle (249th, 752th) are more 

similar to that of usual state (91th), the correlation 

coefficient R is closer to 1.0 as supposed. 

3) Self-adjustment 
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Figure 5. Time-series power consumption data 

"Fig. 9” shows the correlation coefficient R of 30, 249, 

498, 616, 752, 851, 985 and 1000th cycles of grooving 

when the changing trend of 91th cycle is set as the 

reference data set. A sharp drop and increase of 

correlation coefficient R are seen near the 700~800th and 

1000th cycles respectively. These changes in correlation 

coefficient had a relation with the condition changes of 

tool wear. The tool abrasion loss rapidly increased 

between 700th and 800th cycles and the cutting tool was 

worn out near the 1000th cycle as shown in “Fig.9”.  

These facts indicate that the correlation coefficient R 

would become an influential tool for catching the 

usual/unusual state of the cutting tool from the spindle 

power consumption changes. 

The proposed architecture covers all necessary steps 

from acquiring data, processing the information, 

presenting users and supporting decision making. 

Furthermore, the health information obtained from the 

system can be used for higher level of management of 

cutting tool based on the condition monitoring free from 

the schedule-based maintenance. 

 

Figure 6. Detailed comparison of power consumption trends 

 

Figure 7. Correlation coefficient obtained from single regression 
analysis 

 

Figure 8. Progress of tool wear with grooving cycles 

 

Figure 9. Relation between correlation coefficient and grooving cycle 

IV. CONCLUSIONS 

We tried to install a big data analysis technology into 

Cyber-Physical System (CPS) architecture to catch the 

usual/unusual state of the cutting tool from the spindle 

power consumption changes. The proposed Cyber-

Physical structure consists of 5 steps; smart connection, 

data to information, feature extraction, awareness of 

issues and self-adjustment. The spindle power change 

strongly reflects the cutting force change because the 

spindle provides the mechanical force necessary to 

remove material from the part. To acquire a large volume 

sensor data, input power consumption supplied to the 

spindle were measured at 0.2s interval by using a power 

meter. The excessive repetitions of grooving would bring 

the trend changing of power consumption as well as the 

increasing of its absolute value. To facilitate the statistical 

analysis, the correlation coefficient R was calculated 

from the single regression analysis between two different 

cycles of time-series power consumption. The correlation 

coefficient R is closer to 1.0 if the changing trends of 

power consumption is similar between the usual and 

reference cycles. The correlation coefficient R also had a 

strong relation with the condition changes of tool wear. 

This means that the correlation coefficient R would 

become a powerful tool to catch the usual/unusual state of 

the cutting tool in the proposed CPS architecture and the 

health information obtained from the system can be used 

for higher level of management of cutting tool based on 
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the condition monitoring free from the schedule-based 

maintenance. 
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