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Abstract—The trajectory planning of robot manipulator can 

be calculated by using the mathematical approach when the 

type of trajectories is known. However, the conventional 

mathematical method becomes prohibitive because of the 

complicated mathematical equation and derivation. This 

research introduces the use of artificial neural networks 

(ANN) to overcome these limitations by solving nonlinear 

functions and adapting the characteristics of trajectory 

planning. A virtual three-degree-of-freedom (DOF) robot 

manipulator is exploited in this research. The analysis and 

selection of hyper-parameter for ANN will go through in 

order to get the optimum performance for ANN. Finally, 

sample data will be used to evaluate the robustness of the 

developed ANN topology by comparing the actual results 

(mathematical approach) with ANN results.
 
 

 

Index Terms—artificial neural networks, forward 

kinematics, trajectory planning, robotic manipulator 

 

I. INTRODUCTION 

In recent years, robot manipulators are playing 

increasingly significant roles in the engineering research 

field due to its wide-range applications. However, the 

robot manipulator is hardly autonomous because they 

need preliminary configuration such as path planning and 

trajectory planning to accomplish particular tasks [1]. A 

key concept in the research of robotic manipulators is 

trajectory planning. The trajectory planning is defined as 

the motion in term of joint angle, velocity, acceleration 

and jerk with the time interval for each robot joint [2]. Its 

advantage is the possibility to reach a coordinate with the 

smoothest sequence of movements for accurate tracking 

and reduces the stresses to the arm structure and actuators 

[3].  

Robot manipulator possess high complexity and 

nonlinearity characteristics. The nonlinearity 

characteristics increase the difficulty of the mathematical 

derivation. When the motion of the end-effector needs to 

be determined, the mathematical expression for trajectory 

planning and forward kinematics is required to be derived 

and computed [4]. However, the conventional 
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mathematical method becomes prohibitive because of the 

complicated mathematical equation and derivation.     

Previous researchers have investigated a lot of 

primitive trajectories, such as third-order polynomial 

trajectory, fifth-order polynomial trajectory and seventh-

order polynomial trajectory which possess different 

characteristics. Polynomials are a common method for 

defining robot trajectory. Using polynomials in real time 

control applications can change the trajectory in real-time 

by redefining the polynomials. The Third-order 

polynomial can be applied when the position and the 

velocity at the initial and final point are known, but it will 

produce linear acceleration profile that leads to spikes 

jerk at the initial and final movement of the robot 

manipulator [5]. The fifth-order polynomial is preferable 

than third-order polynomial because it solves the linearity 

of the acceleration and generates a smooth acceleration 

profile [6]. Jerk is the general desired criteria for smooth 

motion trajectory planning of robotic manipulators in the 

industry [7]. Seventh-order polynomial interpolation can 

generate a minimum-time smooth motion trajectory with 

zero jerk at the beginning and end points of the trajectory 

[7]. In conclusion, a higher order of polynomial equation 

will provide higher accuracy in trajectory generation but 

required more complexity in designing the trajectory [6].  

The main focus of this paper is to model an Artificial 

neural network (ANN) to predict the characteristics of 

trajectory planning and motion of a virtual three-DOF 

robot manipulator without deriving any trajectory and 

forward kinematics equations. Scarselli and Tsoi had 

proved that feedforward neural network is a type of ANN 

that able to approximate generic classes of functions, 

including polynomial that is dense in the continuous 

functions with a fixed number of hidden layer neurons 

with nonlinear transfer functions enable the neural 

network to adapt nonlinear relationships within input and 

output data [8].  

One of the major challenges in the design of a neural 

network is the selection of hyper-parameter with minimal 

error and highest accuracy [9]. The training set and error 

are likely to be high before learning begins. During 

training, the network adapts to decrease the error on the 

training patterns. The accuracy of training is determined 
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by the hyper-parameters under consideration. The hyper-

parameters include NN architecture, number of hidden 

neurons in the hidden layer and activation function [9]. In 

2010, Doukim et al. proposed a technique to find the 

number of hidden neurons in MLP network using coarse-

to-fine search technique which is applied in skin 

detection. This technique includes binary search and 

sequential search. This implementation is trained by 30 

networks and searched for the lowest MSE [10]. Another 

approach to fix hidden neuron is the sequential 

orthogonal approach (SOA) proposed by Sun. J. This 

approach is about adding hidden neurons one by one 

increasingly sequentially until the error is sufficiently 

small [11]. 

II. METHODOLOGY 

A. Forward Kinematics 

To derive the forward kinematics three-degrees-of-

freedom (DOF) robot manipulator, the frame must be 

assigned to each link by starting from the base frame to 

the end-effector frame. Fig. 1 shows the robot arm links, 

joints and assignment of frame according to the Denavit 

& Hartenberg (D-H) notations. 

 

 

Figure 1. Frame assignment according to the (D-H) notations. 

TABLE I. D-H PARAMETER OBTAIN BASE ON FRAME ASSIGNMENT 

Frame Link length 

(m) ,(  ) 

Link offset 

(m) ,     
Joint angle 

(°), (  ) 

Link twist 

(°), (  ) 

0-1 0.05 0.1 Θ1 90 

1-2 0.2 0 Θ2 0 

2-3 0.1 0 Θ3 0 

 

Table I shows the D-H parameter obtain based on the 

frame assignment and configuration of the 3 DOF robot 

manipulator. The parameter values of          and    

obtained are substituted in the homogeneous 

transformation matrix Ai shown in (1). Forward 

kinematics equations can be obtained by multiplying A1, 

A2, A3 as shown in (2). 
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B. Trajectory Planning 

Trajectory planning for point to point motion indicate 

the joint angle as a function of time between specified 

points. Velocity, acceleration and jerk along the trajectory 

can be calculated by differentiating the polynomial 

equation with respect to time. In this paper, the trajectory 

planning is derived by considering acceleration, velocity 

and jerk as zero at the initial and final position at the time 

interval of 10 seconds. The initial joint angle (   ) 

represent value on the starting time   =0. The final joint 

angle (  ) represent value on the final time    as shown in 

(3). 
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The overall Third-order polynomial equation is shown 

in (4). The coefficient of third-order polynomial 

trajectory is shown as (5) by using the assumption of (3). 
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The overall fifth-order polynomial equation is shown 

in (6). The coefficient of fifth-order polynomial trajectory 

is shown as (7) by using the assumption of (3). The 

acceleration of fifth-order polynomial trajectories will be 

considered as zero at the starting point and the final point. 

The overall seventh-order polynomial equation is 

shown in (8). The coefficient of seventh-order 

polynomial trajectory is shown as (9) by using the 

assumption of (3). The acceleration and jerk of seventh-

order polynomial trajectories will be considered as zero at 

the starting point and the final point. 
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C. Data Collection 

After deriving the mathematical trajectory equation. 

The data collection process takes place using 

mathematical approach for polynomial trajectory 

equation and forward kinematics. The data set contains 

the input variable and output variable. For third-order 

polynomial trajectories, fifth-order polynomial 

trajectories and seventh-order polynomial trajectory 

equation, the input variable of initial joint angle(  ), final 

joint angle(  ) and time interval(t) are substitutes into the 

coefficient equation to obtain the coefficient value. Next, 

coefficient value and time interval     are substituted into 

trajectory equation to obtain the output variable of joint 

angle     , velocity       and acceleration       of the 

joint at each second. For seventh-order polynomial 

trajectory, the additional value of jerk will be collected. 

The forward kinematics can be calculated to obtain the X, 

Y and Z Cartesian coordinate of the robot end effector at 

time interval by using each joint angle position. The data 

need to be normalized into the interval [-1, 1], to achieve 

a better training result. Equation 10 is adopted in this 

work to perform the normalization, where x is original 

data and X normalization is normalized data. 

 

 
                

 

   

  (10) 

D. Topology of Neural Network 

Although feedforward neural network is able to solve 

the nonlinear functions, it is still difficult for a single 

feedforward neural network to solve the different 

trajectory planning simultaneously. Therefore, the 

topology of multiple NNs proposed here can be used to 

predict joint angle, velocity, acceleration of each joint for 

different trajectory planning and the motion of the robot 

end effector at the time interval for a three-DOF robot 

manipulator shown in Fig. 1. The topology of multi-NNs 

proposed shown in Fig. 2. The architecture consists of 

four feedforward neural network NN1, NN2, NN3, NN4. 

This research will fix the type of trajectory planning for 

the first robot joint is third-order polynomials, second 

robot joint is fifth-order polynomials and third robot joint 

is seventh-order polynomial. Each NN can only predict 

one type of trajectory planning. NN1 will predict third-

order polynomials, NN2 will predict fifth-order 

polynomials and NN3 will predict seventh-order 

polynomial trajectory planning characteristics without 

deriving trajectory equations. 

There are two main parts in the structure. Firstly, NN1, 

NN2 and NN3 are used to predict the joint angle, velocity 

and acceleration of each joint. For NN3, additional output 

variable of jerk (J(t)) will be predicted. The inputs for the 

NN1, NN2, NN3 are the initial joint angle (θ(t0)), final 

joint angle (θ(tf)) and time interval (t) of each joint. Then, 

NN4 is used to solve forward kinematics. The inputs for 

NN4 are the angle value of joint 1 θ1(t), angle value of 

joint 2 θ2(t) and angle value of joint 3 θ3(t) which 

predicted by NN1, NN2 and NN3. The NN4 is able to 

determine the end effector coordinate in Cartesian Space 

X, Y, Z at the time interval (t). 

 

 

Figure 2. Multi-NNs topology. 

E. Method for Selecting Transfer Function 

For the hidden layers, a nonlinear transfer function 

should be used because the trajectory planning possess 

nonlinearity characteristics. The tan-sigmoid transfer 

function generates outputs between -1 and 1. The log-

sigmoid transfer function generates outputs between 0 

and 1. The transfer function will be limiting the 

amplitude of the output, by referring the range of the 

normalized dataset which is from -1 and 1. So, the 

suitable transfer function use in hidden layers is tan-

sigmoid transfer function to constrain the outputs of a 

network between -1 and 1. For the output layers, the 

transfer function can be nonlinear or linear but need to 

generate outputs between -1 and 1. In this case, tan-

sigmoid transfer function or purelin can be selected. Each 

neural network was trained and tested using the two 

different combinations of the transfer functions for 

hidden layer and output layer. First combination is tan-

sigmoid for hidden layer and purelin for the output layer. 

Second combination is tan-sigmoid for hidden layer and  

 tan-sigmoid for the output layer. 

F. Method for Selecting Number of Neurons in Hidden 

Layers 

Trial and error method is proposed by using the 

sequential approach. This approach begins by selecting a 

small number of hidden neurons that begin with five 

hidden neurons. After that train and test the neural 

network, the value of mean square error (MSE) and 

correlation coefficient(R) is recorded. Then increased the 
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number of hidden neurons and compared the mean square 

error(MSE) and correlation coefficient(R) with previous 

results. Repeat the above procedure until training and 

testing improved. When the mean square error (MSE) is 

considered very low, the hidden neurons numbers is 

adding one by one until the mean square error (MSE) is 

sufficiently small. 

III. RESULTS AND DISCUSSION 

A. Analysis and Selection of Transfer Function 

Two combinations of transfer function for hidden layer 

and output layers have been implemented and compared 

by using performance analysis for NN1, NN2, NN3 and 

NN4. The parameter for all NN and division of data for 

training and validation were same in order to make a 

comparison between each combination of transfer 

functions for hidden layer and output layer. Table II 

shows the results that tan-sigmoid for hidden layer and 

purelin for the output layer produce lower mean squared 

error (MSE) and higher correlation coefficient(R) value 

for NN1, NN2, NN3 and NN4. So, tan-sigmoid for hidden 

layer and purelin for the output layer would be chosen as 

the configuration of all neural network. Tansig-tansig 

combination for hidden and output layers also provided 

acceptable results for function approximation problem. 

TABLE II. COMPARISON OF DIFFERENT TRANSFER FUNCTION 

Neural 
network 

 (Hidden-Output) MSE Correlation 
coefficient(R) 

NN1 Tansig- Tansig 1.65×10-6 0.99998 

NN1 Tansig-Purelin 4.15×10-7 0.99999 

NN2 Tansig- Tansig 6.74×10-6 0.99996 

NN2 Tansig-Purelin 2.29×10-6 0.99988 

NN3 Tansig-Tansig 1.45×10-6 0.99998 

NN3 Tansig-Purelin 4.84×10-7 0.99999 

NN4 Tansig- Tansig 8.09×10-6 0.99993 

NN4 Tansig-Purelin 2.48×10-6 0.99997 

 

B. Analysis and Selection of Neurons Number 

The proposed method described in methodology was 

implemented and trained using NN1, NN2, NN3 and NN4 

and searched for lowest mean squared error(MSE) and 

highest correlation coefficient (R) based on validation 

data to find the near to optimal number of neurons hidden 

layers after training the neural network with different 

number of neurons. The parameters for all neural network 

and division of data for training and validation were same 

in order to make comparison between different neurons 

number in hidden layers.  

The best neurons number in hidden layer for NN1, NN2, 

NN3, and NN4 were 18, 20, 22 and 22 respectively. 

However, the same fixed neurons number should be 

selected for all neural networks. An average value of 

neuron number was calculated as shown in Table III. 

Finally, all the neural network was decided to consist of 

20 neuron number in the hidden layers. The network with 

20 neurons in the hidden layers would be considered 

satisfactory since it results low mean square error (MSE) 

and high Correlation coefficient(R). 

TABLE III. SELECTION OF BEST NEURONS NUMBER FOR ALL NNS 

Neural 

network 

Best Neurons number 

in hidden layer 

NN1 18 

NN2 20 

NN3 22 

NN4 20 

 Average:20 

 

C. Performance Analysis of Neural Network Using 

Sample Data 

After determining the best hyper-parameters for all 

neural network. NN1, NN2, NN3 and NN4 were trained 

using tan-sigmoid for hidden layer and purelin for the 

output layer. The neurons number in hidden layer set as 

20 for all neural networks. The Levenberg-Marquardt 

(trainlm) based on quasi-Newton algorithms was used as 

the training algorithm in the neural network. The training 

and simulations were performed using MATLAB 

(R2016a). The mean square error (MSE) of the trained 

results was close to 0 (approximately 1.45x10
-6

). To test 

the reliability of the developed multiple neural network 

topology, five samples which consisted of total 15 set 

data were used for evaluating the performance of the 

neural network. Each sample had three set of data. First 

set of data was used for predicting the movement of first 

robot joint which possessed third-order polynomial 

trajectory planning. Second set of data was used for 

predicting the movement of second robot joint which 

possessed fifth-order polynomial trajectory planning and 

the third set of data was used for predicting the third 

robot joint which possessed seventh-order polynomial 

trajectory planning. The time interval was between 0 

seconds until 10 seconds. The inputs for NN4 were the 

inputs variable from joint 1 angle value, joint 2 angle 

value and joint 3 angle value which predicted by NN1, 

NN2 and NN3 respectively. The output variable of NN4 

was the robot end effector coordinate X, Y, Z in 

Cartesian space at the time interval (t). 

 

Figure 3. Motion of virtual robot manipulator for sample 1. 
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Figure 4. Comparison between NN1 results and Actual results of 
sample 1. 

 

Figure 5. Comparison between NN2 results and Actual results of 
sample 1. 

For sample 1, the first joint moved from initial angle of 

0° until 80°, second joint moved from initial angle of 0° 

until 76° and third joint move from initial angle of 0° 

until 88°. The virtual robot manipulator for sample 1 took 

10 seconds to complete its motion as shown in Fig. 3. The 

characteristics of trajectory planning and the motion of 

the end effector robot manipulator was predicted. The 

generated trajectory profile and robot hand motion had 

been plotted for the comparison of NN results and actual 

results as shown in Fig. 4, Fig. 5, Fig. 6 and Fig. 7. The 

solid line refers to actual results and dotted line refer to 

neural network results. The four graphs show that dotted 

lines are fitted very close to the solid line. In other words, 

the neural network able to predict the results precisely.  

 

Figure 6. Comparison between NN3 results and Actual results of 
sample 1. 

 

Figure 7. Comparison between NN4 results and Actual results of 
sample 1. 

Fig. 8 shows the graph of all sample performance 

analysis using RMSE and Fig. 9 shows the graph of all 

sample performance analysis using R
2
. The results 

showed that the developed multi-NN topology produced a 

maximum of 0.04 RMSE and a minimum of 0.3 RMSE. 

The maximum coefficient of determination (R
2
) obtained 

was 0.9998. The developed ANN topology was able to 

adapt the characteristics of trajectory planning and predict 

the motion of end effector for a virtual three-DOF robot 

manipulator. 

 

 
Figure 8. Performance analysis using RMSE. 

 

Figure 9. Performance analysis using R2. 
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IV. CONCLUSION 

A multi-NNs topology that made up of NN1, NN2, NN3 

and NN4 had been proposed in this research. After 

validating the neural network with a different 

combination of the transfer function, tan-sigmoid for 

hidden layer and purelin for the output layer has been 

chosen as the transfer function of all neural network in 

this research. The network with 20 neurons in the hidden 

layers would be considered satisfactory since it results 

low mean square error (MSE) and high Correlation 

coefficient (R). Finally, the sample data were used to test 

the robustness of the multiple neural network topology 

which produced a maximum of 0.04 RMSE and 

minimum of 0.3 RMSE. The maximum coefficient of 

determination (R
2
) obtained was 0.9998. The results show 

that the proposed multi-NNs topology able to adapt and 

predict the nonlinear characteristics of third-order 

polynomial, fifth-order polynomial, seventh-order 

polynomial as well as the motion of the end effector for a 

virtual three-degrees-of-freedom(DOF) robot manipulator 

with high accuracy without having to solve the complex 

mathematical equation. 
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