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Abstract—Before performing a surface finishing process, 

human operators analyze the workpiece-conditions and 

react accordingly, i.e. they adapt the contact-situation of the 

tool with respect to the surface. This first step is ignored in 

most suggested automation concepts. Although their 

performance is satisfactory for the general process thanks to 

adaptive position- and force-/torque-control algorithms, 

they are unable to address specific problematic cases as 

often encountered in practice because of variations in 

workpiece-dimensions or –positioning. In this work, a 

human mimicking element is developed to overcome this 

limitation of current control concepts and to translate 

human expertise to the robotic manipulator. A rule-based 

system is designed where human knowledge is encoded as if-

then rules. This system is integrated with a previously 

suggested control strategy in a hierarchical manner. The 

developed concept is experimentally validated on a KUKA 

LWR 4+-robotic manipulator.  

 

Index Terms—programming by demonstration, rule-based 

system, human mimicry, biomimetics, supervisory system, 

hierarchical control  

 

I. INTRODUCTION 

Automation or partial automation of surface finishing 

processes of complex freeform workpieces is of high 

interest to the industrial community as these processes are 

time- and cost-intensive. Different studies suggest shares 

of up to 30-50% of the entire manufacturing time and up 

to 40% of the total cost [1-9].  
The execution of a surface finishing process is twofold. 

It requires 1) the following of the to be treated surface to 

ensure the constant contact between robot end-effector or 

tool and workpiece and 2) the application of an adequate 

manufacturing force to remove the excessive material. 

For these surface finishing processes, manual work is 

current state-of-the-art. Not only the fact that these 

processes were designed by and for humans but also 

humans’ capabilities make them the most appropriate 

performers for these complex tasks. The challenge in 

automating a surface finishing process is to mimic the 

human’s approach to perform the considered task by 

translating his capabilities into robot skills and by 

including the worker’s expertise in the control algorithm. 

Programming by Demonstration, PbD and kinesthetic 

teaching which teach a robot by showing the desired 
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behaviour rather than by writing commands in a 

programming language is a promising approach in 

automation research [10-17]. This supervised method 

enables robots to be programmed intuitively by non-

experts. Programming by demonstration aims to leverage 

human expertise to teach robots via guided examples. 

Demonstrations are an opportune form of information for 

the unambiguous communication of a task. They do not 

require knowledge of a language and they are applicable 

also for tasks which are difficult to express in other forms 

like speech or programming language [18].  
A control algorithm promises robustness and stability 

in the case of uncertainties and disturbances when 

playing back the desired signals recorded through 

kinesthetic teaching. Conventional controllers, e.g. 

sliding mode control in combination with bio-inspired 

extensions showed promising results [19-21]. 
Its capability to react to different situations with 

specific control rules, makes the human operator highly 

valuable for processes with varying parameters [22]. This 

adaptability and adjustability of the human behaviour in 

specific or problematic cases is not included in the 

previously described combination of PbD and robust 

controller. 

In a first phase, humans apply rules of thumb in the 

form of ‘if a then do b’. From previous experience, they 

deduce a rule base containing generalized guidelines 

about what actions to take in what circumstances, i.e. if-

then statements [23-25]. The desire to mimic this human 

behaviour culminated in rule-based systems, one of the 

most straightforward forms of artificial intelligence. 

Knowledge is encoded into these systems as a set of rules 

that specify how to act in different situations. These rules 

are declared as an array of if-then rules: ‘if a then b’ or ‘a 

=> b’. They can be described as the linguistic formulation 

of the human’s approach to achieve a goal. A rule-based 

system is designed to mimic the behaviour of a human 

expert when facing a specific challenge. The performance 

of a rule-based system is therefore expected to be similar 

to that of a human expert in the considered area and when 

exposed to the same data [26, 27]. 
A priori programmed relational condition-action 

statements have been implemented i.a. in behaviour-

based robotics [28] and probabilistic contexts [29]. Fuzzy 

logic is a prominent method to express quantitative 

aspects of a human expert’s knowledge and reasoning 

process with a set of linguistic rules [30]. Fuzzy rules 
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have been applied for acquiring knowledge bases [31, 32], 
approximating unknown plant models in combination 

with Artificial Neural Networks [33], online task 

sequencing in robotic assembly in combination with Petri 

nets [34], extending a sliding mode control algorithm [35-

38], clustering in combination with particle swarm 

algorithms [39], modelling trajectories [40] or machining 

processes [41]. 
Interaction and behavioural rules in social animals and 

insects have inspired algorithms for multi agent 

behaviour and clustering [25]. Reference [42] addressed a 

clustering problem with an algorithm inspired on ant 

colonies. The elements evolve according to a limited 

number of behavioural rules in the form of if-then 

statements. Other algorithms were inspired on the 

behavioural rules of fish swarms [43], bird flocks [44-47] 
and ant colonies [48, 49]. 

Next to the dependence on expert systems and the 

restriction to if-then statements, the main drawback of 

rule-based systems is the limitation of the number of rules 

for computational and complexity reasons [22, 26, 32, 38, 

50] . 
A combined implementation of a rule-based system 

and a PbD-control algorithm should fuse the 

advantageous aspects of all involved concepts as well as 

overcome their drawbacks. A PbD-set up with a control 

concept combining a robust sliding mode control- and 

bio-inspired adaptive element has been validated through 

simulation and experiment. Although the efficiency has 

been proven, this is only valid for the general case. For 

specific, problematic cases, additional elements are 

necessary in practice [51]. A rule-based system allows the 

encoding of expert knowledge in a narrow area of the 

specified problem and can also be implemented in a 

hierarchical way to survey a previously developed control 

system [25]. 
The rest of the paper is structured as follows: Section 2 

is dedicated to the detailed description of the addressed 

problem: The challenge (A), requirements for the solution 

(B) and applied methodology (C) are presented. Section 3 

develops the suggested solution. Following the analysis 

of the situation (A), a hypothesis (B) is emitted and a 

control concept (C) designed. In section 4, the results of 

the experimental validation on the KUKA LWR 4+-

robotic manipulator of the proposed control concept are 

presented. The paper ends with a discussion and some 

concluding remarks in section 5. 

II. PROBLEM DESCRIPTION 

A. Challenge 

The general aim is the transfer of human knowledge to 

the robot, i.e. human mimicry in the context of 

automating manufacturing processes. The first step of 

combining Programming by Demonstration with robust 

bio-inspired control algorithms, does not address 

problematic cases like variations in workpieces or in their 

clamping positions. Human operators tackle these 

specific cases by observing the situation (if a) and 

reacting appropriately (then b). This step is performed 

before the rest of the control approach, as an outer 

supervising loop. The challenge consists in adding this 

lacking element into the control concept of the automated 

process. Fig. 1 shows the setup for this automated process. 

¨  

Figure 1 Setup for the automated process. 

B. Requirements 

The overall goal is to design an automated system with 

a similar performance to the human operator. The specific 

goal of this work is to add a control element able to deal 

with particular problematic situations, e.g. uncertainties 

in workpiece position and dimension. The requirement 

for the considered manufacturing task is 1) to keep 

contact between workpiece and tool, i.e. not to lift off and 

apply the manufacturing force only once contact was 

established 2) not to damage the workpiece through 

penetration of the tool, i.e. to back up once a force 

threshold was surpassed. The addition of the supervisory 

control loop should not deteriorate the results of the 

control algorithm qua robustness and tracking 

performance. An additional requirement is the human 

mimicry of the concept, i.e. the system should apply the 

same reasoning as a human operator, thereby allowing the 

latter to retrace the robot’s behaviour and to take over at 

all times. 

C. Methodology 

The observation of the manufacturing process 

performed by a human operator, noting the most 

important elements is the first step. In a second step, the 

circumstances not tackled by the control concept [52] are 

identified. Based on these results, a hypothesis for 

addressing the problematic cases is emitted and a suited 

rule-based supervisory control loop designed. In a final 

step, the developed hierarchical control concept is 

validated.  

III. CONTROL CONCEPT 

A. Analysis 

The recurrent theme identified during the observation 

of the human operator is the following approach: first 

observe then react. Before performing any action, humans 

analyse and categorise the situation at hand and take a 

decision about the optimal approach or reaction based on 

their experience. This behaviour can be represented as if-
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then-rules: if situation a is identified then action b is 

chosen as optimal reaction. This becomes particularly 

valuable in problematic cases which deviate from the 

general or pre-planned case. For surface finishing 

manufacturing processes, these cases involve mainly 

workpiece-variations. Fig. 2 illustrates the effects of 

variations in clamping positions and presence of 

unexpected, intruding material. 

 

Figure 2 Normal clamping position (left); Altered clamping position 
(middle); Disturbance through intruding material (right). 

The suggested control concept [52] shows satisfactory 

performance for trajectory- and force-tracking, i.e. for 

position- and force-/torque-control. For a serial robot 

with n links, the control input is defined as  (1), a 

combination of inputs of a conventional PID-controller 

and a controller extension (3). The latter is based on a 

combination of feedback-signals according to (4)-(8). 

Both controller-parts are based on the error-signal, i.e. the 

difference between current and desired system-output (2). 

    u=u PID-u extension                 (1) 

 error=current-desired                (2) 

( )( )
T

extension
o

u error a b t dt          (3) 

    aa error                        (4) 

               bb error                        (5) 

.max (0, )a error c                      (6) 

 . ( )b error a b c            (7) 

( ) . ( ( ))Tc sign error error error a b    (8) 

with   and    constant gain-factors. 

The suggested controller can deal with uncertainties 

and disturbances as it adapts online, i.e. while proceeding. 

This online adaptation however, is not able to deal with 

the specific problematic situations related to workpiece-

variations considered in this work and as illustrated in Fig. 

2. In the case of altered workpiece-position, this control 

concept would either apply manufacturing forces in free 

space or attempting to penetrate the workpiece and 

therefore does not fulfil the established requirements. 

B. Hypothesis 

A superposed rule-based control element should be 

able to address the identified problematic cases before the 

other controller-elements come into effect. This new 

control element supervises the process controlled by the 

algorithm ((1)-(8)) in a hierarchical manner. This outer 

control loop is derived from the observations of human 

reasoning and implements human experience and 

knowledge in the form of rules. 

C. Control Concept 

The adaptation of the end-effector-position in order to 

achieve contact with while avoiding penetration of the 

workpiece-surface before performing trajectory tracking 

is the aim of the presented extension. A rule-based 

system is well suited for this purpose. 

The rule-based system is developed in two steps: 1) 

transfer of human knowledge to the robot, i.e. 

development of the knowledge base and the constituting 

rules, 2) observations of the current situation. In general 

terms, the purpose of the presented extension is to avoid 

lifting off from or penetrating the workpiece. The 

knowledge which needs to be encoded includes in which 

conditions and how to adapt the position of the robotic 

manipulator in order to be able to start the general 

trajectory and force/torque tracking process. The analysis 

of the current situation is based on the online 

measurement of current force-signals with sensors.  

When the tool risks to penetrate and damage the 

workpiece, i.e. if the force measured in the direction 

perpendicular to the work plane is above a certain 

threshold, the end-effector has to be moved away from 

the workpiece-surface. 

Before a manufacturing force can be applied, contact 

has to be established. If there is no contact between tool 

and workpiece, i.e. if the force measured in the direction 

perpendicular to the work plane is below a certain 

threshold, the end-effector has to be moved into the 

direction of the workpiece. 

 

Figure 3 Hierarchical control concept. 
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Fig. 3 shows the integration of the rule-based control 

element with the previously validated control concept in a 

hierarchical manner. It is illustrated that the rule-based 

element precedes the general control algorithm and 

supervises the latter. The scheme includes the feedback 

loops (dotted arrows), the conditions, i.e. if-parts of the 

rule-based system (white blocks) as well as the reactions, 

i.e. then-parts of the rule-based system (light blue blocks).  

The pseudo-code (Fig. 4) details the rules introduced 

above and in Fig. 3. 

 

Figure 4  Pseudo-code of the suggested control concept with 
descriptions. 

In a final step of the extension, the desired input 

signals need to be adapted according to the increments 

added. 

IV. VALIDATION 

The suggested extended hierarchical control concept is 

validated on the KUKA Lightweight Robot (LWR), a 

7DOF- KUKA LWR4+ [53]. The research of the Institute 

of Robotics and Mechatronics of the German Aerospace 

Center focussed on torque-controlled lightweight robots. 

One of their designs is the by the human arm inspired 

KUKA LWR with a payload of 7 kg and its 7 axes, all 

equipped with internal position- as well as force-/torque-

sensors. The implementation and validation of the 

previously suggested control scheme requires a flexible 

and advanced programming environment. The LWR’s 

possibility to connect to and communicate with an 

external PC though the FRI (Fast Research Interface) is 

used. The latter is a software-option provided by KUKA 

for experimental work in research-laboratories. The 

software configures a UDP socket communication for a 

binary data transfer with a cyclic timeframe in the range 

of 1 to 100 ms. The use of UDP socket communication is 

well suited for this use case due to its speed. It allows 

data exchange to and from the external computer, e.g. 

reading and writing: measurements from the robot-

sensors are read by the PC and commands programmed in 

C++-language are sent by the PC to the robot [54, 55].  
As validation of the proposed strategy, the rule-based 

concept is implemented together with the general control 

algorithm. In the considered use case the robot arm is 

controlled to move to a goal position which would require 

penetration of the surface. The encoded rule indicates the 

robot to back up once the measured contact force exceeds 

a threshold value. Fig. 5 shows the behaviour on the 

example of the second joint: the joint moves towards a 

goal position when backing up once the measured force 

reached the given value.  

 

Figure 5 Position of joint 2. 

 

Figure 6  End-effector movement and behaviour. 

Fig. 6 depicts the behaviour of the robot arm: From 

free space (1
st
 row left) the robot arm is moved towards 

and into the surface (1
st
 row right). When the contact 

force surpasses the defined threshold, the manipulator 

lifts off the surface (2
nd

 row). 

V. DISCUSSION - CONCLUSION 

This work addresses the control problem of a contact-

based manufacturing operation by a robotic manipulator. 

A rule-based extension to a general controller for 

automated surface finishing processes is presented. This 

extension is valuable for cases that are not general and 

that require an adaptation step before the trajectory and 

force tracking. Humans are highly proficient in adapting 

to different circumstances based on prior experiences. 

Therefore human manual work is state-of-the-art for the 

considered manufacturing processes. This explains the 

choice for a human mimicking approach for the 

development of the control concept. The transfer of 

human expertise to the robot is a key element of the 

concept. Human knowledge is encoded as rules and 

human reasoning implemented as a hierarchical control 

concept. The developed concept is explained and 

illustrated in section 3 and validated on a real-life use 

case on a KUKA LWR 4+-robotic manipulator. The 

promising results satisfy the requirements established in 

section 2 and are presented in section 4. 

The suggested concept consists in an advanced version 

of a hybrid position-/force-/torque-controller extended to 
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address specific problematic situations often encountered 

in practice. In contrast to the general controller, the 

hierarchical system with the presented rule-based 

extension is able to deal with variations in workpiece 

dimension or positioning. The rule-based system 

therefore presents a valuable first step in the control of an 

automated manufacturing process. Although the 

suggested concept is able to address more than the 

general case of the process, the additional situations it can 

tackle are limited. Due to the nature of rule-based 

systems, the number of addressed situations is restricted 

by the complexity of the system and the situations need to 

be a priori planned and foreseen.  Further, the 

performance of the rule-based extension is dependent on 

the human knowledge, i.e. the human input during the 

design phase. This dependence is a result of the human 

mimicry of the concept. As was pointed out above, the 

advantages of this human mimicry however largely 

outweigh this deficit. 
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