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Abstract— Study of improving the reliability and lifetime of 

bladed pumps is now of great importance. In this context, 

the key objective is to reduce the hydrodynamic vibration of 

screw-centrifugal pumps caused by pressure pulsations in 

the pump outlet casing. Due to the flow stepwise 

nonuniformity at the impeller outlet, pressure pulsations 

emerge at the rotor blades passing frequency and its 

harmonics. These vibrations cause a dynamic load on the 

components of pump body causing its vibration, so the 

calculation of the pressure pulsations amplitude in the 

screw-centrifugal pump at the early stage of the design is a 

relevant task. When defining pressure pulsations generated 

by the three-dimensional vortex flow of the screw-

centrifugal pump their dual nature should be considered. 

The heterogeneous distribution of the flow parameters at 

the outlet of the centrifugal impeller generates acoustic 

disturbances that are propagated at the speed of sound in 

the operating fluid. At the same time, there are vortex 

disturbances that are convected by the main flow. Vortex 

oscillations of the main flow parameters is called 

"pseudosound" or the vortex mode. This paper develops a 

three-dimensional acoustic-vortex method of calculating 

pressure pulsation, which provides the ability to determine 

the amplitude of acoustic mode. It shows the derivation of 

the acoustic and vortex equations and the calculation 

example of the pressure pulsations amplitude at the screw-

centrifugal pump outlet with different guide channel design. 

It shows the ability of modeling the combination 

components in the spectrum of pressure pulsations.  

 

Index Terms— pressure pulsations, centrifugal pump, 

discrete component of blade passing frequency (BPF), mixed 

harmonic, complex acoustic impedance first term, second 

term, third term, fourth term, fifth term, sixth term 

 

I. INTRODUCTION 

Study of improving the reliability and lifetime of 

bladed pumps is now of great importance. For example, 

the screw-centrifugal pump is the main source of noise in 
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hydraulic systems, the key source of hydrodynamic 

vibrations of the feed system in the modern turbo-pump 

units. The hydrodynamic vibration of the centrifugal 

pump is a serious problem on the way of increasing its 

reliability and lifetime over a long period of time. We 

first heard of this problem in the 1960s of the last 

centuries in connection with the destruction of large 

pumps [1,2]. The hydrodynamic vibration excited by the 

pressure pulsations occurring in the pump outlet casing 

due to the different natures of hydrodynamic reasons [3,4] 

that include vortex formation, flow recirculation, 

cavitation, stepwise distortion of the flow parameters at 

the centrifugal impeller outlet. The latter factor causes the 

pressure pulsations generation on the so-called blade 

passing frequency (BPF) and its highest harmonics and 

combination frequencies. These pressure fluctuations are 

the integral part of the centrifugal pump's working 

process [ 5 ]. In centrifugal pumps, they are of high 

amplitude due to the features of the flow stepwise 

inhomogeneity formation in the centrifugal blade row. It 

is well known that the physical nature of pressure 

pulsations in the centrifugal pump is a summary 

manifestation of pseudosound and acoustic oscillations. 

Pseudosound [6,7] or the vortex mode [8,9,10] attenuate 

quickly downstream from the rotor [11], leaving in the 

pressure pipe only the acoustic mode of pressure 

pulsations. The determination of the pressure pulsations 

amplitude in the screw-centrifugal pump at the early 

stage of design is a relevant objective. In determining the 

pressure pulsations generated by the three-dimensional 

vortex-like flow in the screw-centrifugal pump, it must be 

taken into account that the heterogeneous distribution of 

the flow parameters at the outlet of the inducer creates 

conditions for generating pressure pulsation at 

combination frequencies. At the same time, there are 

vortex disturbances that are convected by the main flow. 

The dual nature of pressure pulsations in centrifugal 

pumps is considered by applying the decomposition [12] 

in the two-dimensional method of calculation. The flow 
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in modern screw-centrifugal pumps have a significant 

three-dimensional nature, so there is a need to adapt 

acoustic-vortex equations for a three-dimensional case. 

Similar problems with high level of noise emission on the 

acoustical components that are multiple to the rotor speed 

are characteristic for the fan acoustics tasks of modern 

by-pass aircraft engines [13], train fans [14], computer 

and air-conditioning systems fans [15]. Fan noise consists 

of acoustical component and a wide-band noise [16]. The 

acoustical components on frequencies that are multiple to 

blades passing frequencies (BPF) usually dominate in the 

spectrum and determine the overall sound power level. 

Following the aero-acoustical analogy introduced by 

Lighthill [17], Curl [18], Floux, Williams and Hawkins 

[ 19 ] formulated the theoretical basis for analytical 

description of the sound generation process by pressure 

forces acting on the rotor and stator blades from the gas 

flow side. Currently, computer fluid dynamics and 

acoustics methods have developed widely allowing this to 

be used for determining the fans acoustic radiation 

[ 20 , 21 ]. They are currently based mainly on the 

application of the Lighthill equation and aero-acoustic 

analogies as in the FWH-equation or on the application of 

Kirchhoff's theorem [22]. To accurately determine the 

sound power of the acoustic source in pumps and fans it 

is necessary to apply decomposition, i.e. splitting the 

acoustic and vortex (pseudosound) mode in the area of 

the source [23] where it is represented as derivative with 

respect of time from the vortex mode pressure [24]. This 

defines the source, the pressure pulsations and acoustic 

mode propagation in near field as a direct result of the 

numerical modeling. 

II. DERIVATION OF BASIC EQUATIONS AND 

BOUNDARY CONDITIONS 

A. Acoustic-vortex Decomposition  

In the isentropic flow, the increment enthalpy, pressure 

and density are related by thermodynamic relations as 

follow: 

 
2,

dp
dh dp a dp

p
     (1) 

where a is the sound velocity in the operating 

environment. 
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Let's conduct the decomposition of the velocity field of 

the compressible environment which is described by the 

following equations: 
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where ν is the kinematic coefficient of viscosity 

 
d

H
dt
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U
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Here, the acoustic mode is introduced by the acoustic 

potential φ so that 
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The equation for acoustic mode of vibrations can be 

obtained by substituting i from the ratio (7) into the 

equation (3). 
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The right side of the equation (9) is the source of 

acoustic vibrations which is defined by the nonstationary 

part of the function (10) 

2

1 dH

a t
S

d
 U  (10) 

The change in the divergence of the vortex mode 

velocity vector U  is due to changes in density in the 

flow and does not depend on time. In the case of low 

average velocity of flow, the environment can be 

considered incompressible and  

0 U   (11) 

Taking into consideration that the amplitude of 

acoustic oscillations is significantly less than 

pseudosound and, while ignoring the viscous dissipation, 

we will write the acoustic-vortex wave equation for the 

case when the vortex mode motion can be considered as 

the incompressible flow in the form 

2

2 2 2

1 1d dH

a dt a dt


    (12) 

Taking into account linearization according to, the 

ratio (7) may be written as follows: 

d
h H

dt


     (13) 

Using the expression (13) the equation(12) can provide 

(14) 

2

2 2

1 d
h S

a dt

h
     (14) 

The disturbing function in the right side of the equation 

(14) can be expressed as the unsteady part of the 

expression(15): 
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  2

2
UH     U   (15) 

Using the local complex specific acoustic impedance Z, 

the boundary condition can be represented in the form 

(16). Thus, decomposition is also ensured at the boundary 

conditions.  

( ) 1 ( )h H h H

n a Z t

 

 

 
                   (16) 

where n is the boundary normal,  H  is the oscillations 

of the enthalpy obtained during computation of vortex 

mode. 

B. Acoustic-vortex equation and source function 

While ignoring the convective members, the acoustic 

vortex wave equation can be written in the Cartesian 

coordinates as 

2 2 2 2

2 2 2 2 2

1
'

h h h h
S

t x ya z

   
   

   
 (17) 

For the case of mean flow low speed, the source 

function in the equation (17) can be obtained from taking 

into account (11) in a Cartesian coordinate system, as the 

unsteady part S  of the expression (18). 
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  (18) 

C. Method of acoustic-vortex equation solution  

Solution to the equation (17) is divided into two tasks - 

the calculation of the non-stationary flow for the 

incompressible fluid model, which defines the disturbing 

function, and the solution of the inhomogeneous wave 

equation relative to the pressure pulsations h . A similar 

approach is used, for example, in the work [25]. 

For the vortex mode, the unsteady-state Navier-Stokes 

equations are solved by applying the standard k- model 

of turbulence. Experience shows that such approach 

produces successful results in simulating BPF pressure 

pulsations for the pump's steady-state mode of operation. 

The iterative procedure develops from zero initial 

conditions to obtaining convergence to periodic 

oscillating solution, followed by the definition of the 

source function. 

The calculation of the non-stationary flow of the 

vortex mode using the Navier-Stokes equations (19) and 

the equations of continuity (20) is taken for the first step 

of the acoustic-vortex method:  

1
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0 V  (20) 

These equations are supplemented by the equations k- 
(turbulent energy - dissipation rate) of the turbulence 

model. In this model of turbulence [26] the turbulent 

viscosity t is expressed through values k and as follows 

2
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where ini  is the initial value of the turbulent 

dissipation. Via G  the expression is designated 

ji i
eff

j j i

VV V
G

x x x

 


  

 
   

 

 (24) 

Model k -  parameter values are equal to: 

1k  ; 1.3  ; 0.09C  ; 
1 1.44C  ; 

2 1.92C  (25) 

The boundary condition for fluid velocity in turbulence 

flow on the wall is set using a numerical approximation 

of the logarithmic law for the tangential components of 

velocity on the wall [27]. The numerical method has been 

implemented on a rectangular mesh with local adaptation 

and submesh resolution of complex geometry. This 

approach ensures the computational accuracy in the high 

gradients zone of unsteady flow parameters (in rotor-

stator interaction zone), as well as the effective solution 

of the wave acoustic-vortex equation with minimal 

computational resources.  

The vortex mode computations have been carried out 

using sliding meshes techniques (to transmit data from 

the rotor to the pump inlet and outlet casing) with three 

sub-areas shown in the Fig. 1. It also shows the 

rectangular adaptive computational mesh. The mesh 

contains more than 250,000 cells. The time step of the 

non-stationary computation is 0.00001 second of the 

physical time. The processor time for computation of the 

rotor's one full turn is about 2 hours on the computer 

processor i5. 

The computational space reflects adequately the actual 

conditions of the operating fluid, given the hydrodynamic 

interaction of all components of the pump casing 

including guide vanes in the inlet, rotating blade system 

of the rotor with triple threaded screw inducer and 

centrifugal impeller with seven main and seven additional 

shortened blades, as well as a twelve-channel guide vane. 

When solving the wave equation, the explicit method 

in complex variables for the BPF individual harmonic is 

used. 

International Journal of Mechanical Engineering and Robotics Research Vol. 8, No. 6, November 2019

© 2019 Int. J. Mech. Eng. Rob. Res 949



 

 

Figure 1.  Computational area and mesh. 

III. COMPARISON OF EXPERIMENTAL AND 

COMPUTATIONAL RESULTS 

A. Experimental Screw-centrifugal Pump. 

On Picture 2 you can see the pump casing sketch of 

one of the model screw-centrifugal pumps where the 

pressure pulsation measurements were performed. 

To figure axis labels, use words rather than symbols. 

Do not label axes only with units. Do not label axes with 

a ratio of quantities and units. Figure labels should be 

legible, about 9-point type. 

Color figures will be appearing only in online 

publication. All figures will be black and white graphs in 

print publication.  

 

Figure 2.  Sketch of the screw-centrifugal pump. 

The pump is completed with pressure pulsation sensors 

in various points of the outlet casing. Pressure pulsation 

sensors are installed on the channel of guide vane (points 

1, 2), along the volute collector (points 3, 4, 5) and at the 

pump outlet (point 6), as shown in Fig. 3. 

 

Figure 3.  Measurement points. 

The obtained pressure pulsation spectra in the outlet 

casing of the screw-centrifugal pump are characterized by 

the presence of the broadband noise-induced component 

and discrete components that are multiple to rotor 

frequency. It should be noted that, as a rule, the 

frequencies of all discrete components of the pressure 

pulsation spectra are multiple to rotor frequency (On 

Fig. 4, the spectra in measurement points 1, 2 are shown).  

At design point of operation, the maximum amplitudes 

in the pressure pulsations spectra have discrete 

components at impeller's blade passing frequencies (BPF) 

and at their highest and mixed harmonics. 

BPF harmonics are determined by the formula 

1b pf k z f  (26) 

where  

p
f  - rotor speed, Hz; 

1z - number of the centrifugal impeller blades, screw; 

k - harmonic number. 

To explain this phenomenon and its computational 

support, the study of the flow nature at the outlet of the 

centrifugal impeller is of fundamental importance.The 

issues of experimental and calculation studies of flow in 

centrifugal impeller machines have been recently given 

the increased attention in our country and abroad. The 

studies of flow in centrifugal fans with different geometry 

of blades are covered in the work [28]. The detailed study 

of the flow parameters in centrifugal compressors [29] 

and flow in the absolute and relative motion at the 

impeller outlet [30,31] of the centrifugal pumps confirm 

that the flow in the blade channel and at the outlet of the 

centrifugal impeller can be divided into two areas, 

namely, high-energy jet and low-energy wake area. Such 

nature of flow determines the significant nonuniformity 

of relative and absolute speeds and angles along the 

impeller's cascade pitch since the low energy zone is 

adjacent to the blade's trailing side. Due to the above 

discussed heterogeneity of the flow, when passing the 

impeller's blades, the pressure change in the pump's stator 
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takes place periodically with frequencies of rotating 

blades passing. Particularly sharp change of flow 

parameters takes place near the blade leading edge of the 

guide vanes and on the volute tongue, in the area of 

hydrodynamic interaction of rotor-stator. That is why so 

much attention is paid to choice of the optimum gap 

between impeller and the guide vane or volute tongue 

[32,33,34]. 

Such factors as the impeller geometry deviation in the 

circumferential direction and asymmetrical position of 

the impeller's blade leading edges relative to the blades of 

the superposed axial screw inducer result in 

circumferential distortion of flow parameters distribution 

at the impeller outlet with the order of circular symmetry 

equal to 1. Rotating together with the impeller, this 

nonuniformity excites pulsations of pressure in the pump 

outlet with rotor frequency.  

In this centrifugal pump with double-row centrifugal 

impeller with seven main and seven additional shortened 

blades, and three-blade screw on Fig. 4, in the pressure 

pulsation spectra, the BPF harmonic components  with 

rotor frequencies of 3, 7, 14 and mixed harmonics that are 

multiple to 4, 10, 11 from the rotor frequency were 

registered.  

The first phase computation of the vortex mode is 

performed in the model of incompressible fluid. This 

allows defining the pressure pulsations near the stator and 

rotor interaction zone rather precisely, in particular in the 

guide vane channels and at the beginning of volute where 

the vortex mode of oscillations is dominated.  

The computational analysis of the pressure pulsations 

in the screw-centrifugal pump with three-blade screw, 

seven main and seven additional blades of the centrifugal 

impeller identifies the dominant discrete components at 

channel input of the guide vane at frequencies 4, 7 and 14 

pf . 

Considering the main discrete components of pressure 

pulsations spectrum at the input of the guide vane channel, 

it can be noted that a significant change in the amplitude 

of the discrete component takes place when the flow rate 

and design flow rate ratio is 0.65-0.8 (see Fig. 5 – 6). 

During the flow rate reduction, the BPF amplitude 

according to the number of main blades and mixed 

harmonic 4 pf  increase essentially The amplitudes of the 

blade passing frequencies and the mixed harmonic 

decrease with the flow rate further reduction and rising in 

the intensity of back flows.  

 

Figure 4.  Amplitude-frequency spectra of pressure pulsations in the 
guide vane channel. 

 

Figure 5.  Amplitudes change of discrete components of the pressure 
pulsations spectrum in a guide vane channel. 

These results confirm the conclusion that the 

occurrence of back flows in the pump input is 

accompanied by a disruption of the flow circular 

symmetry in rotor and symmetry of the spiral flow in the 

pump's volute outlet contributing to the pressure 

oscillations generation on rotor and sub-rotor frequencies. 

The corresponding computation data on the total signal 

of pressure pulsations and spectrum is shown for the flow 

rate mode 0.85 on Fig. 5. 

The pressure pulsations amplitude of the spectrum 

discrete components significantly reduces due to the rapid 

attenuation of the vortex mode oscillations (pseudosound). 

For the computational analysis of this effect, the pressure 

oscillation modeling in the experimental pump with a 

double volute was carried out by solving the acoustic-

vortex equation (17). 

The comparison of the design and measured data is 

shown on Fig. 7. BPF amplitude reduction is found to be 

more than 20 dB along the pump's outlet path 

downstream from the outlet of the centrifugal impeller to 

the pump outlet.  

 

Figure 6.  Total signal and the pressure pulsations spectrum in the 
guide vane channel at the relative flow rate of 0.85.  

IV. DISCUSSIONS 

The explanation of mixed harmonics appearance in 

pressure pulsations spectrum is associated with the 
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amplitude modulation of the flow vortex disturbance in 

the circumferential direction of the impeller cascade. The 

flow circular symmetry change causes the vortex 

oscillations of pressure in the absolute motion at the 

rotating impeller outlet.  

Neglecting the initial phases, one can represent a signal 

with a frequency  , modulated with the frequency   

as follows: 

 ( ) ( )cos( ) [1 cos( )]cos( )ms t s t t S M t t          (27) 

The modulation depth M  is defined as the ratio of the 

modulating disturbance amplitude to the amplitude of the 

main oscillation. 

mS
M

S
  (28) 

As a result of the amplitude modulation in the 

spectrum of pressure pulsations, combination (sideband) 

components with frequencies ( )  and ( )   

emerge according to (29). 

   ( ) cos( ) cos ( ) ) cos ( ) )
2 2

M M
s t S t S t S t      

(29) 

The power ratio of the lateral component and the main 

frequency can be 2

2
M . 

Thus, the initial nonuniformity of flow caused by the 

inducer modulates the uneven flow in the centrifugal 

impeller. With this, in the spectrum, the combination 

(sideband) components with frequencies emerge 

 1( ),  1,2,3...a
m p

m z z mf f      (30) 

where za is the number of blades of inducer or another 

order of circular symmetry in the relative motion. 

Given this fact, it is possible to influence purposefully 

the spectral composition of pressure pulsations and the 

centrifugal pump vibration. Thus, the use of a centrifugal 

wheel with six main blades instead of seven in the same 

pump eliminates completely the discrete component 

4 pf .  

The emergence of mixed harmonics [35] can also be 

associated with the global instability of the input flow or 

the non-stationary separation processes in the centrifugal 

impeller, such as the rotating stall. Mixed harmonics can 

significantly change the spectral composition of the 

pressure pulsations and mask the manifestation of 

pressure pulsations at the blades passing frequency. 

V. CONCLUSION 

The modeling of generation and propagation of 

pressure pulsation in screw-centrifugal pumps has been 

carried out using the acoustic-vortex decomposition of 

the compressible fluid pressure field.  

The computations have proved that the reduction of 

BPF amplitude from the impeller exit downstream to the 

pump outlet section is more than 20 dB. 

The appearance of discrete components in the pressure 

pulsations spectrum at (combined) frequencies is 

explained by the amplitude modulation of the flow 

stepwise inhomogeneity in the centrifugal impeller by the 

uneven flow at the screw inducer outlet. The similar 

phenomenon can be caused by another circular flow 

asymmetry in a relative coordinate system.  
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