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Abstract—An iterative search process of Metaheuristic to 

efficiently determine the optimum depends on the 

parameter levels. There are various natural intelligences 

and inspirations and in this work, Elephant Herding 

Optimisation algorithm or EHO was selected to find 

maximal solutions of some noisy non-linear and multimodal 

continuous mathematical functions. Metaheuristics with 

their own benefits are then merged with the conventional 

response surface methods. An aim is to avoid the design 

point to be premature during the refinement of the process 

variables in the context of response surface methodology. 

The new electrostatic process is automatically used for 

aluminium coating on metallic alloy wheels. It is very 

difficult to make powder coating run under various 

influential process variables, resulting in significantly lower 

customer specification for appearance issues. This study 

focuses on the optimisation of electrostatic powder coating 

process variable level via the novel elephant herding 

optimisation algorithm on the modified simplex method 

with multiple performance measures. The experimental 

results suggest that the proposed levels of process variables 

from the proposed method seems to be more efficient on the 

multiple response surfaces when compared with the 

previous operating condition. In addition, two phases based 

on the response surface methodology was also applied to 

study the EHO parameter levels via some performance 

measures.  

 

Index Terms—electrostatic powder coating process, elephant 

herding optimisation algorithm, modified simplex method, 

noisy multimodal response surfaces, desirability function 

 

I. INTRODUCTION 

Idea of stochastic algorithms based swarm intelligence 

is to mimic collective behaviour of natural spices. It has 

been a significant role of various research fields, 

especially hard search and optimisation problems. These 

systematic search procedures based on natural 

phenomena consist of algorithms of ant colony, firefly, 

monkeys, bats, cuckoo birds, spiders and counting still 

including elephant herding optimisation. Swarm 

algorithm provides its own phases and procedures. 

However, the main idea is to generate the set or domain 

of search solutions or possible agents. The best so far 
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solution is searched by collective intelligence from its 

own memory, global data from swarm and randomisation. 

Through multiple generations, these sequential searches 

bring special equations to approach their optimal fitness 

locations.  

Swarm intelligence has been successfully solved 

optimisation problems. Usually the algorithm starts with 

exploration where problem solutions widely proceed or 

visit new regions of a search space. Followed by 

Exploitation is then used where solutions visit 

neighborhood of previously visited design points in 

candidate search spaces. Their parameter values also 

strongly affect the quality of solutions. Determining the 

proper parameter levels is of importance with the 

requirement of expertise and information of the algorithm, 

the algorithmic structures, parameters and the stated 

problems. This paper describes how the refinement of 

elephant herding optimisation parameters can be 

automated by applying response surface method on a set 

of noisy multimodal continuous models. 

The applications of the conventional response surface 

methods based on simplex design concerns the 

determining of optimum conditions of the processes. 

Many modifications of the simplex design based method 

include an introduction of a relation between the initial 

size of the simplex and the number of process variables 

and the size of the possible solution domain. Some cases 

of many variables in simple response surfaces the 

convergence of the modification is higher than that of the 

original one. Some works merge the design points from 

useful factorial experiments and a previous regression 

equation. In some procedures a vertex of the simplex can 

be shifted to the border of the region of variables or the 

design point with deteriorated responses. It is important 

to select appropriate levels of step size in initial vertices.  

From some benefits of the metaheuristics this study 

proposes an evolutionary operation from the elephant 

herding optimisation algorithm (EHO) on the modified 

simplex method to avoid the simplex size extremely 

shrinks. Some additional study is performed to determine 

the effects of the EHO before implementing to the real 

process of electrostatic powder coating on metallic alloy 

wheel. The paper is organised as follows: Sections II and 

III give the details of the electrostatic powder coating and 
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a novel algorithm which is developed by extension from 

the traditional modified simplex method and the elephant 

herding optimisation algorithm, respectively. In Section 

IV the simulated response surfaces in forms of noisy 

multimodal functions is introduced to study the effects of 

parameters of the elephant herding optimisation 

algorithm. Section V demonstrates the promising 

performance of the proposed method using the 

manufacturing problem. The conclusion and some 

thoughts for further studies are given in the last section. 

II. ELECTROSTATIC POWDER COATING PROCESS 

(EPCP) 

The EPCP automatically creates a durable finish on 

metal and some plastics without the runs and overspray. 

An environmentally friendly concept and sequential 

operations of the EPCP are simple, much more durable 

and perfect for on-site coating of metal items [1], [2]. A 

supply reservoir pneumatically feeds dry powder of 

pigments and resins to a spray gun with the high voltage 

charge. The charged powder articles are sprayed and 

firmly attracted to the surface of the part which is 

electrically grounded. They are then melted and fused 

into a smooth coating in the curing ovens and the powder 

coating will wrap around to the other side. There is no 

evaporation of solvents into the air or go down the drain. 

However, the surface of parts needs to be free from oil, 

sandblasting, chemical and acid pretreatments are of 

importance to remove dirt and rust (Fig. 1).  

 

 

Figure 1.  Electrostatic powder coating process. 

TABLE I.  PROCESS VARIABLES OF THE EPCP 

Process Variables Symbol 

Paint Resistance x1 

Electrostatic Charging x2 

Paint Viscosity x3 

Paint Flow Rate for Spray Gun Station 1 x4 

Ring Air Pressure for Spray Gun Station 1 x5 

Paint Flow Rate for Spray Gun Station 2 x6 

Ring Air Pressure for Spray Gun Station 2 x7 

There are only some important parameters to be tested 

to avoid excessive complication of experiments. These 

are determined by comparing the changes in the response 

caused by a change in level of each of the parameters 

upon expert systems. Then there are 7 variables of the 

EPCP in this implementation. The first three process 

variables are from metallic coating materials and the 

remaining are from twin spray gun stations (Table I). The 

pressure of regulator for solvent, paint inlet and return are 

set at 3, 6 and 5 bars, respectively. There are four 

simultaneously controlled specifications or process 

responses based on the metallic thickness in each position 

of the wheel as shown in Table II. 

TABLE II.  CUSTOMER SPECIFICATIONS ON CODED THICKNESS 

Reference Position Coded Metallic Thickness  

Lowest Target Highest 

Outboard spoke  150  225  300 

Inboard spoke  150 225 300 

Window between spoke  100 175 250 

Window outboard 10 0 175  250 

III. PROPOSED ALGORITHM  

A. Modified Simplex Method (MSM) 

Process optimisation system consists in such a 

selection of the controllable variables. These selected 

parameters enable a certain state-dependent variable or 

response to achieve the most beneficial levels. A classical 

algorithm for determining the optimal conditions is a one- 

variables-at-a-time (OVAT) optimisation procedure. An 

aim is to refine such a level of the given variable, which 

can provide the most preferable result of the experiment.  

However, there are some OVAT disadvantages other 

methods have been proposed with more information and 

less time consumption such as the steepest ascent 

technique by Box and Wilson, Various optimisation 

methods have been developed to achieve the smallest 

number of experiments needed and the simplicity of 

calculations. One among them is the algorithm involving 

geometric solids referred to as simplexes. The simplex 

method (SM) has been first introduced by Spendley and 

team. Every system applying the SM reacts to changes in 

the level of the response by changing the given set of 

values of the process variables. If the number of process 

variables is n, the simplex is a geometric figure defined 

by a number of points higher by one compared with or 

(n+1) dimensional [3].  

Process optimisation of the SA consists in finding the 

coordinates or values of the process variables that 

optimise the response. According to the basic principles 

of searching for an optimum by the SM the simplex is 

moved in the variable space depending on the 

experimental results in all the simplex vertices. After 

performing experiments for all the vertices the vertex 

corresponding to the worst response is decided to discard 

and reflect in the opposite face in order to generate the 

new vertex. Various procedures that enables to avoid the 

premature in searching within a local optimum have been 

proposed to increase the efficiency of searches for optima. 

Nelder and Mead have proposed a modified simplex 

method (MSM) to include an expansion and contraction 

of the simplex. These rules of such a movement 
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guarantee that even if for a new vertex the corresponding 

response is worse than that corresponding to the 

discarded one, the movement of the simplex toward the 

space of the optimum continues. There is always a 

possibility, that there are more than one response of the 

process. It is impossible to establish the overall 

performance measure via the desirability function 

technique.  

B. Elephant Herding Optimisation Algorithm 

Elephant herding optimisation algorithm (EHO) is a 

swarm optimisation algorithm proposed by Wang et al., 

in 2012 [4]. EHO was based on the social behaviour of 

elephant clans. There two herding rules on the EHO. On 

the exploitation, whole population of elephants contains 

some fixed number of clans or subgroups. The elephants 

in the clans move under the leadership of a matriarch. On 

the exploration, in each generation a fixed number of 

elephants leave their own clan and live alone. The 

following conclude the set of functions that control the 

herding of elephants in the search space. 

The EHO is defined as follows. Suppose, there is a 

complete elephant population and they are divided into C 

clans. There are P elephants in each clan. The position of 

ith elephant in jth clan is represented as Xi, j. In each clan 

updating operator, the current position of all elephants is 

updated as given below: 

 

New Xi, j = Xi, j + ×rand×(XBEST, j - Xi, j) 

 

The new position of elephant (New Xi, j) is updated 

from the old position (Xi, j) to the best or matriarch 

location (XBEST, j) and 0, 1 is a matriarch scale factor 

determining the influence on clan. The parameter 

rand0, 1 is a random number. The best elephant which 

represents the matriarch cannot be updated the previous 

equation. The matriarch movement is then updated by the 

following equation. 

 

XBEST, j = β × XCENTRE, j 

 

where 0, 1 is the EHO factor controlling an influence 

of the center location of the herd as followed: 

 

XCENTRE, j = 
1

𝑃
∑ 𝑋𝑖,𝑗
𝑃
𝑗=1  

 

In each clan there is the exploration of some elephants 

with the worst values of the objective function moving 

away from the clan or the worst position (XWORST, j). The 

worst position is updated to the new positions according 

to the following equation:  

 

XWORST, j = XMIN + rand×(XMAX - XMIN + 1) 

 

where XMIN and XMAX represent, the lower and upper 

levels of the feasible solutions, respectively. The 

parameter rand0, 1 is random number chosen from 

uniform distribution. These sequential procedures 

continue until termination criterion meets. The pseudo 

code of the EHO is shown in Fig. 2 below [5]-[12]. 

 
Procedure EHO Metaheuristic() 
Begin; 

Initialise all EHO parameters    

Define the fitness function  
Set generation counter = 1 

Set the maximal generation or MaxGen 

Initialise the population and 
Repeat 

Sort all the elephants according to their fitness level 

For all clans j in the population do 
For all elephants i in the clan j do 

Update Xi, j and generate New Xi, j  
 If Xi, j is the best then 

Update Xi, j and generate XBEST, j 

 End if 
End for 

End for 

For all clans ci in the population do 
Replace the worst elephant in clan j by XWORST, j  

End for 

Evaluate population by the newly updated positions 
Until stop criteria=FALSE 

Return the best solution among all population 

End procedure 

Figure 2.  Pseudo Code of the EHO Algorithm. 

IV. PRELIMINARY STUDY OF EHOMS  

In this work, to test our proposed method or the novel 

elephant herding optimisation algorithm on modified 

simplex method (EHOMS) we used a C++ computer 

program and experiments were done on the platform with 

A Laptop computer DV2000 HP Pavilion. We tested the 

EHOMS on four standard benchmark functions with 

noisy and multimodal natures. Parameters of EHO 

algorithms were population size, clans, α, and β. Lower 

and upper bounds are provided in the previous section of 

multimodal response surfaces. 

There are various multimodal benchmark functions 

available in the literature. However, these functions are 

relatively simple and various algorithms can efficiently 

solve them. There is also a lack of noisy multimodal 

problems. In this paper, there are four noisy non-linear 

response surfaces used to determine the performance 

measures of the proposed metaheuristic for searching the 

optimal solutions. The functions, F1-F4, including its 

ranges are illustrated as follow [13]. 

 

F1: Himmelblau’s function 

f(x1, x2) = 200 - (𝑥1
2

+ x2-11)
2 
- (x1+ 𝑥2

2-7)
2
 

Range:  -6 ≤ x1, x2 ≤ 6 

 

F2: Six-Hump Camel Back’s function 

f(x1, x2) = -4[(4-2.1𝑥1
2 +

𝑥1
4

3
 )𝑥1 

2+ x1x2 + (-4+4𝑥2
2)𝑥2

2] 

Range:  -1.9 ≤ x1 ≤ 1.9 

-1.1 ≤ x2 ≤ 1.1 

 

F3: Shekel’s Foxholes function 

f(x1, x2) = 500 −
1

0.002+∑
1

1+𝑖+(𝑥1−𝑎(𝑖))
6
+(𝑥2−𝑏(𝑖))

6
24
𝑖=0

 

 

where  𝑎(𝑖) = 16(𝑖 𝑚𝑜𝑑 5) − 2 and 

 𝑏(𝑖) = 16 (
𝑖 

5
) − 2 
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Range:  -65.536 ≤ x1, x2 ≤ 65.535 

 

F4: Inverted Shubert’s function 

f(x1, x2) = −∏ ∑ 𝑗𝑐𝑜𝑠[(𝑗 + 1)𝑥𝑖 + 𝑗]
5
𝑗=1

2
𝑖=1  

Range:  -10 ≤ x1, x2 ≤ 10 

 

Apart from the original function above in the context 

of response surface methodology, the process responses 

also apply the noise on all four multimodal functions. The 

noise is normally distributed with the mean of zero and 

standard deviation levels of 0, 1, 2 and 3. In a response 

surface method, screening designed experiments are 

performed in the early stages of the process to determine 

large effects of influential EHO parameters on the 

response for further investigation. An approximation 

model via a two-level factorial approach is built to 

determine the main and interaction effects among four 

parameters. The low and high levels of each of four 

parameter of the EHO need to be defined as shown in 

Table III. There are 200 realisations performed for each 

of the four functions and three noise levels. The results 

showed that the population size statistically affected the 

response when there was noise on the response at 95% 

confidence interval. All parameters, except α, affected the 

response when there was no noise on the response at 10% 

significance level (Table IV). 

TABLE III.  EHO PARAMETERS AND THEIR LOW/HIGH LEVELS 

Parameter Low High 

Population size (P) 50 100 

Clan (C) 5 10 

α 0.6 0.7 

β 0.005 0.05 

TABLE IV.  INFLUENTIAL PARAMETERS AND THEIR P-VALUES 

Parameter Noise F1 F2 F3 F4 

P 

0 0.012 0.009 0.021 0.001 

1 0.035 0.042 0.021 0.032 

2 0.048 0.029 0.033 0.045 

3 0.032 0.020 0.007 0.028 

C 

0 0.056 0.023 0.072 0.096 

1 0.021 0.073 0.092 0.008 

2 0.058 0.094 0.052 0.092 

3 0.056 0.023 0.022 0.013 

α 

0 0.124 0.233 0.103 0.376 

1 0.523 0.246 0.179 0.686 

2 0.408 0.233 0.103 0.376 

3 0.332 0.208 0.115 0.256 

β 

0 0.075 0.098 0.011 0.041 

1 0.019 0.042 0.053 0.074 

2 0.088 0.076 0.060 0.042 

3 0.008 0.059 0.073 0.092 

 

A second-order model can be constructed efficiently 

with the central composite design (CCD) of three 

parameters by fixing α at its proper level of 0.8. This 

designed experiment allowed estimation of the tuning 

parameters of the EHO. From the second phase of 

designed experiments, parameters of EHO algorithms 

were recommended as follows. Population size was 100 

and it was divided into 5 clans. Parameter α was set to 0.7 

and β was 0.005. For each function, the computational 

run using each method was repeated 100 realisations 

using different random seed numbers. The experimental 

results obtained from each phase including the best so far, 

worst, mean responses and its standard deviation (Stdev) 

as shown in Table V were compared for all four testing 

functions described in the previous section. 

TABLE V.  COMPARISON OF PERFORMANCE MEASURES OF THE 

EHOMS AFTER TWO PHASES OF DESIGNED EXPERIMENTS WITHOUT 

NOISE 

Surface 
Performance 

Measure 
1st Phase 2nd Phase 

F1 

Best so far -7.300 -1.905 

Worst -20.221 -5.886 

Mean -13.236 -3.762 

Stdev 3.794 1.235 

F2 

Best so far -2.715 -0.780 

Worst -10.074 -2.626 

Mean -6.006 -1.749 

Stdev 2.044 0.621 

F3 

Best so far -21.357 -1.690 

Worst -40.695 -3.654 

Mean -29.795 -2.582 

Stdev 6.587 0.576 

F4 

Best so far -14.302 -2.661 

Worst -21.094 -11.057 

Mean -17.879 -5.761 

Stdev 2.232 2.388 

 

V. RESULTS AND DISCUSSIONS ON THE EPCP 

In this research the procedure for simultaneous 

optimisation of the four responses is a modification of the 

desirability function method developed by Derringer and 

Suich [14]-[17]. Each predicted response, �̂� , is 

transformed to a dimensionless partial desirability 

function (𝑑𝑖 ). This method considers the researcher’s 

priorities and desires when building the optimisation 

procedure of the specific process. In the EPCP refinement 

the response i is to be the-nominal-the best: The 

desirability function for the case of the nominal-the-best 

can be written as: 

 

𝑑𝑖 =

{
 
 

 
 [

�̂�−𝐴

𝑇−𝐴
]
𝑠𝑖
, 𝐴 ≤ �̂� ≤ 𝑇, 𝑠𝑖 ≥ 0

[
�̂�−𝐵

𝑇−𝐵
]
𝑡𝑖
, 𝑇 ≤ �̂� ≤ 𝐵, 𝑡𝑖 ≥ 0  

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

         , 𝑖 = 1,2,3,4 

 

In the quantity 𝑑𝑖 above, A and B are the lower and the 

lower bounds obtained for the response i, respectively. 

The value of �̂� is required to achieve a specific target 𝑇. 

When the �̂� equals to 𝑇, the desirability level is 1; if the 

departure of �̂� excesses a particular level from the target, 

the desirability level is 0. Parameters of  𝑠𝑖 and 𝑡𝑖 are the 

weights in each response. 𝑑𝑖  ranges between 0, for a 

completely undesired response, and 1, for a fully desired 

response. In both weight parameters, 𝑑𝑖  can vary non-

linearly while approaching the desired value. However, in 

this study a weight is set at 1, 𝑑𝑖 then varies linearly. In 

this work we chose weights equal to 1 for all four 

responses. The individual desirability functions (𝑑𝑖) are 

then merged into a single composite response, the so-
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called overall desirability function (𝐷). It is defined as the 

geometric mean of the different 𝑑𝑖 levels: 

 

𝐷 = [𝑑1 × 𝑑2 × …× 𝑑𝑛]
1/𝑛 

 

When all responses are near their target values 

simultaneously with the D level close to 1, the 

combination of the different criteria is globally optima. 

The design parameter levels of all parameters (x1, x2 , 

x3, x4, x5, x6, x7) are currently set at (90, 50, 9.8, 75, 2.3, 

75, 2.5), respectively. The coded levels of lower and 

upper bounds of operation on x1, x2 , x3, x4, x5, x6, and x7 

is given as [75, 100], [35, 65], [9, 10], [50, 70], [2, 2.5], 

[50, 70] and [2.5, 3], respectively. The aim of this study 

is to collect all benefits from the mentioned strategies to 

form the novel Elephant Herding Optimisation algorithm 

on the Modified Simplex method (EHOMS) for multiple 

response surface optimisation. This algorithm is applied 

to the EPCP and an aim is to simultaneously optimise all 

four customer specifications or process responses via the 

proper levels of influential variables. Firstly, the starting 

treatments from the MSM will be applied to moves 

toward the optimum.  All four responses are measured by 

the overall desirability. The size and position of the initial 

simplex is determined from preliminary experiments.  

For all the vertices the coordinates of all seven 

variables may be calculated from the step size of 

individual variables and from the initial design point 

selected in the variable space. The new vertices of the 

conventional MSM such as the reflected, passive and 

negative contraction are generated in order to achieve the 

better overall desirability level. The response surface is 

sometimes confined to such boundaries of admissible 

range of variables, which result from process conditions. 

If the vertex of a simplex moves outside this region or the 

simplex excessively shrink the realisation of the 

experiment becomes impossible. The simplest solution to 

this problem is to hybridise with the EHO to escape from 

the current solution to continue the search for the 

optimum. The proposed algorithm has been proposed 

used for controlling the shape of the simplex to avoid its 

massive contraction and thus ending the search for the 

optimum. After three main evolutionary MSM operators, 

the EHO generated four vertices and the vertex of EHO3 

led to the preferable level of overall desirability. 

Moreover, some design points of C2- and C3- went 

outside the upper and lower bound of the process 

variables. The search for optimum by the EHOMS 

terminates after a certain value of an accepted criterion 

has been reached. In this implementation the search for a 

target was completed when the overall desirability 

reaches a level considered to be optimum by the 

experimenter. There were three iterations of the EHOMS 

as shown in Table VI and Fig. 3. The first experimental 

result applied successfully via the MSM operator of the 

reflected vertex. From the second cycle the reflected 

vertex deteriorated in the overall desirability the 

additional contraction was then performed to achieve the 

better result at C2+. However, in the third iteration there 

was no improvement via the MSM the evolutionary 

operation from the EHO was used for further 

improvement.  Currently, the best so far solution (BSF) is 

x* = (x1*, x2*, x3*, x4*, x5*, x6*, x7*) = (75, 60, 9.27, 67, 

2, 67, 2.8). At the BFS individual corresponding 

desirability levels of 𝑑1 , 𝑑2  𝑑3and 𝑑4  are 0.983, 0.777, 

0.623, and 0.544, respectively. To validate the outcome 

from the EHOMS, the new design point were carried out 

with targeted responses of outboard spoke, inboard spoke, 

window between spoke and window outboard of about 

223.75, 241.67, 146.75 and 140.83, respectively, on 

average.  

TABLE VI.  ITERATIVE PROCEDURES OF THE EPCP REFINEMENT VIA 

THE EHOMS 

Vertex x1 x2 x3 x4 x5 x6 x7 D 

Current 90 50 9.27 70 2.3 65 2.5 0.329 

R1 82 45 9.23 55 2.5 65 2.5 0.401 

R2 78 48 9.54 58 2.5 65 2.5 0.376 

C2- 81 46 9.62 60 2.5 66 3.5 Na 

C2+ 79 47 9.37 58 2.5 68 2.5 0.432 

R3 81 43 9.27 55 2.5 68 2.5 0.291 

C3- 80.5 46 9.26 47 2.5 68 2.5 Na 

C3+ 81 47 9.27 55 2 65 2.5 0.275 

EHO1 80.5 48 9.47 50 2.5 60 2.5 0.483 

EHO2 100 50 9.54 70 2 70 2.5 0.542 

EHO3 75 60 9.27 67 2 67 2.8 0.713 

EHO4 80.5 46 9.58 57 2.2 65 3 0.677 

 

The current and new operating conditions were tested 

to determine the differences between group means via an 

analysis of variance (ANOVA) at the 95% confidence 

interval. It can be concluded that there was no statistical 

significance on both scenarios. However, the statistical 

results suggested that the EHOMS scenario provided the 

slightly better performance in terms of the average the 

coded thickness for all customer requirements. 

 

 

Figure 3.  Sequential Performance of the EHOMS on the EPCP. 

VI. CONCLUSIONS 

In this paper, elephant herding optimisation algorithm 

was adapted to find optimal solutions of four noisy 

multimodal response surfaces. A series of designed 

experiments were conducted to ease the difficulty of 

choosing proper parameter levels of the metaheuristic 

when solving multimodal optimisation problems. 

Performance measures consist of the best so far solutions, 

mean and standard deviation. Based upon the number of 
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peaks and the noise levels, population size, one among 

various important factors in maximising multimodal 

functions, has influences on the formation of stable 

subpopulations. With a small population the algorithm is 

not able to fully explore the solution space, thus miss 

local optima. In contrast, a large population size takes 

longer to converge to the optimum after improving 

individuals’ experience and forming stable groups around 

local optima. The hybridisation of the elephant herding 

optimisation algorithm to the response surface method 

called the modified simplex method is proposed to fine 

tuning of the variable levels of the automatic electrostatic 

powder coating process. The experimental results show 

that with the overall desirability level increases from 

0.329 to 0.713.  

Seven variables of paint resistance, electrostatic 

charging, paint viscosity, paint flow rate for spray gun 

station 1, ring air pressure for spray gun station 1, paint 

flow rate for spray gun station 2 and ring air pressure for 

spray gun station 2 should be set at 75, 60, 9.27, 67, 2, 67, 

and 2.8, respectively. Therefore, this proposed method 

based on the conventional MSM and the evolutionary 

operation from the EHO metaheuristic is able to enhance 

the responses of the production process effectively, fast 

and economically. This metaheuristic can avoid the 

premature of the simplex and search further feasible 

levels of influential variables during the variable 

refinement. However, its parameter levels are sensitive to 

different problems. The additional procedure is needed to 

determine the proper levels of metaheuristic parameters. 

In future work, other metaheuristics would be considered 

to enhance the performance of the conventional response 

surface methods. Moreover, additional study includes 

their algorithmic procedures, especially the related 

parameters. Additionally, more complex and dimensional 

benchmarking functions will be considered to compare 

the performance measures of the algorithms when 

optimizing the manufacturing processes. 
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