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Abstract—A quadrotor unmanned aerial vehicle (UAV) 

controller distributes the pitch, roll and yaw commands to 

individual propellers. This paper explores fault-tolerant 

control of a quadrotor UAV using delayed feedback and 

Divided State Feedback Control (DSFC). Initially, a Sliding 

Mode Controller (SMC) for the quadrotor UAV is designed 

to obtain sustained performance in the presence of actuator 

faults. The SMC performance deteriorates considerably in 

the presence of delayed sensory feedback from the UAV. A 

DSFC is then used to restore effectiveness of the device 

controller. The proposed control structure delivers 

improved stabilization, robustness and transient response in 

the presence of actuator faults. Computer simulations are 

presented to illustrate the effectiveness of our hybrid control 

scheme.  

Index Terms—Divided State Feedback Control, Sliding Mode 

Control (SMC), Actuator Faults, Quadrotor UAV, Fault 

Tolerant Control (FTC), Time Delays 

I. INTRODUCTION 

Unmanned Aerial Vehicles (UAVs) aka drones have 

become popular in recent years for a variety of 

applications such as security, payload delivery, military 

and traffic surveillance, photography, wild-life 

monitoring, etc. It has also become a fascinating area of 

research for control engineers due to the challenges 

involved. A quadrotor UAV has six degrees of freedom 

(6DOF) that represent three angular and three 

translational motions i.e. roll, pitch, and yaw, and x, y, z, 

respectively. Quadrotor consists of four propellers that 

are mounted on the corners of an X-shaped frame. The 

position and orientation of the UAV in space is controlled 

by controlling the speed of the propellers. Since we have 

four inputs controlling 6DOF, the UAV represents an 

under actuated electromechanical system.  

Quadrotor UAV models have been used by numerous 

researchers as a promising candidate plant for the 

experimentation and testing of control algorithms [1]. 

Diverse control techniques for the most part intended for 

UAVs are feedback linearization [2], [3], back-stepping 

control [4], and siding mode control (SMC) [5], [6]. 

Some different techniques are implemented on a 
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linearized model of quadrotor and a comparison of the 

obtained results has been presented [7]. In this paper, 

SMC has been picked as controller due to its robustness 

to the model uncertainties, parametric vulnerabilities and 

external aggravations. This sliding mode controller is 

capable of making the quadrotor reach and stay within 

the desired altitude with desired rotations. 

Fault tolerant control system (FTCS) is a control 

framework with the capacity to endure faults 

automatically and proceed with its intended operation in 

case of a failure in some of its segments [8]. FTCSs are 

classified into two major categories, i.e. Passive FTCS 

and Active FTCS. The Passive FTCSs can only handle 

pre-defined faults with the controller tuned to fixed gains 

whereas in case of AFTC systems, the fault is detected, 

diagnosed, and estimated, and the controller is 

reconfigured online [5], [9], [10], [11]. The popular 

approaches toward fault-tolerant control includes SMC 

[5], [12], [13], [14], Model predictive Control (MPC) [15] 

which also allow operation under fault free conditions. A 

large measure of existing exploration has tended to the 

FTCS for quadrotor UAVs but still there exists 

considerable room for improvement. Some of these 

efforts addressing the fault tolerance issue include hybrid 

switching fault-tolerant control [12], Adaptive observers 

for the magnitude estimation of complex and time-

varying actuator faults [14], Terminal SMC for robust 

control operations in unstructured environments [6], [16], 

and the non-linear SMC observer used as Fault Diagnosis 

and Identification (FDI) unit for the online detection and 

estimation of fault magnitudes [17]. The type of fault 

addressed in this paper is the Loss of Effectiveness (LOE) 

in the thrust of actuators which is actually the most 

common type of actuator faults. Passive FTC is 

implemented for a pre-defined set of actuator faults. 

Divided state feedback (DSF) involves sensory 

feedback with time delays, and DSF control, which 

entails control with feedback delays, is capable of 

delivering an improved stabilization and transient 

response [18]. It is worth noting that time delays 

dependably exist in genuine control frameworks because 

of estimations by means of sensors, and so forth. The 

history of “Delayed Control” is quite old and results have 
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been obtained to accomplish execution for the 

frameworks comparable to conceivable [19]. Further, 

practical implementation of the control technology 

invariably involves time lags due to sensing, 

communication and processing times. These delays need 

to be appropriately addressed in the control design. The 

history of the “Delayed Control” case is quite old and 

controller delays were used to advantage [19]. This and 

other investigations, e.g., [20], concluded that a system 

with or without process delays could be stabilized with 

satisfactory performance by a controller with time delay 

provided the time delay was kept bounded [18]. In this 

paper, DSF control integrated with passive FTC is 

applied to a quadrotor subject to its potential value in 

delivering an improved stabilization and transient 

response as compared to other conventional control 

techniques.         

This paper is organized as follows. In section II, the 

nonlinear dynamical model, the rotor model, and the 

linear state-space model of a quadrotor UAV are 

presented. In section III, passive FTC based on SMC is 

designed in the presence of actuator faults.  In section IV, 

DSF control is integrated with passive FTC and SMC and 

simulation results are presented to show the viability of 

our design. Finally, conclusions are stated in section V. 

II. SYSTEM MODEL 

A. Nonlinear Dynamic Model 

 

Figure 1. Quad rotor UAV 

The nonlinear dynamical model of the quadrotor UAV 

(see Fig. 1) is derived using Euler-Lagrange terminology 

and is comprised of the following equations [1].  

 

𝛷̈ = 𝜃̇ 𝛹̇ (𝐼𝑦-𝐼𝑧) / 𝐼𝑥 −  (𝐽𝑟/𝐼𝑥) 𝜃̇ 𝛀 + (𝑈2/𝐼𝑥) 

𝜃̈ = 𝛷 ̇ 𝛹̇ (𝐼𝑧-𝐼𝑥) / 𝐼𝑦 −  (𝐽𝑟/𝐼𝑦) 𝜃 ̇ 𝛀 + (𝑈3/𝐼𝑦) 

           𝜓̈ = 𝜃̇ 𝛷̇ (𝐼𝑥-𝐼𝑦)/ 𝐼𝑧) + (1/𝐼𝑧)𝑈4                (1) 

𝑥̈ = (cos Φ sin 𝜃 cos 𝜓 + sin 𝛷 sin 𝜓) (
𝑈1

𝑚
) 

𝑦̈ = (cos Φ sin 𝜃 sin 𝜓 − sin 𝛷 cos 𝜓) (
𝑈1

𝑚
) 

𝑧̈ =  −g + (cos 𝛷 cos 𝜃) (
𝑈1

𝑚
) 

where Φ, 𝛉, Ψ and x, y, z are the roll, pitch, and yaw 

angles, and the linear positions, respectively, with respect 

to the inertial frame of reference. The inputs 𝑈2, 𝑈3, 𝑈4 

control the rotational subsystem, and, combined with 𝑈1, 

form the control inputs for the translational subsystem. 

These inputs are defined as, 

 

𝑈1 = 𝑏(𝛺1
2 + 𝛺2

2 + 𝛺3
2 + 𝛺4

2) 

𝑈2 = 𝑏(𝛺4
2 − 𝛺2

2)                

       𝑈3 = 𝑏(𝛺3
2 - 𝛺1

2 )                    (2) 

𝑈4 = 𝑑(𝛺2
2 + 𝛺4

2 − 𝛺3
2 − 𝛺1

2) 

Where, 

b=thrust co-efficient 

d=drag co-efficient 

𝛀= 𝛺2 + 𝛺4 − 𝛺1 − 𝛺3 

𝛀=Speed of rotation of each propeller 

B. Rotor Model 

The rotor model [1] consists of DC motor equations, 

given as: 

 𝐿
𝑑𝑖

𝑑𝑡
= 𝑈 − 𝑅𝑖 − 𝑘𝑠⍵𝑚 

 𝐽
𝑑⍵𝑚

𝑑𝑡
= 𝜏𝑚 − 𝜏𝑑                                              (3)  

The dynamics of the DC-motor are approximated as: 

 𝐽
𝑑⍵𝑚

𝑑𝑡
= −(

𝑘𝑚
2

𝑅
) ⍵𝑚 - 𝜏𝑑 + (𝑘𝑚/R) U               (4) 

Where ⍵𝑚 =Angular Speed of motor, U=Motor Input, 

𝜏𝑑=Motor Load, 𝜏𝑚=Motor Torque, 𝑘𝑚=Torque constant, 

R=Motor Resistance, 𝑘𝑒 =Back emf constant, J=Motor 

Inertia. 

C. State Space Representation 

The state-space representation of the quadrotor UAV 

consists of 12 states (six positions and six velocities, 

three each for translation and rotation). The state 

variables x1, x3, and x5 represent the x, y,  and altitude 

position while x7, x9, and x11 represent the roll, pitch, 

and yaw angles respectively. 

The corresponding nonlinear state-space representation 

is given as: 

 

𝑥1̇ = 𝑥2  

𝑥2̇ = (𝑈1/𝑚)(cos 𝑥7 sin 𝑥9 cos 𝑥11 + sin 𝑥7 sin 𝑥11)  

𝑥3̇ = 𝑥4   

𝑥4̇ = (𝑈1/𝑚)(cos 𝑥7 sin 𝑥9 cos 𝑥11 − sin 𝑥7 cos 𝑥11)  

𝑥5̇ = 𝑥6  

𝑥6̇ = (𝑈1/𝑚)(cos 𝑥7 cos 𝑥9) − 𝑔                             (5) 

𝑥7̇ = 𝑥8  

𝑥8̇ = [(𝐽𝑦 − 𝐽𝑧) 𝑥10𝑥12 − 𝐽𝑟𝜔𝑥10+𝑙𝑈2] (
1

𝐽𝑥
) 

𝑥9̇ = 𝑥10  

𝑥10̇ = [(𝐽𝑧 − 𝐽𝑥) 𝑥8𝑥12 − 𝐽𝑟𝜔𝑥8+𝑙𝑈3] (
1

𝐽𝑦
) 

𝑥11̇ =  𝑥12  
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𝑥12̇ = [(𝐽𝑥 − 𝐽𝑦) 𝑥8𝑥10 + 𝐶𝑑𝑈4] (
1

𝐽𝑧
) 

III. FAULT-TOLERANT SLIDING MODE CONTROL 

A. Sliding Mode Control 

In this section, an SMC to control the translational and 

rotational motions of a quadrotor UAV is designed. We 

consider the nonlinear dynamic equation for the altitude, 

which is given as: 

       𝑧̈= -g + (cosΦcos𝛉) 𝑈1/m                         (6) 

where    𝑈1 is the control input. We next define a sliding 

surface ‘S’ such that the system tracks the desired 

trajectory, i.e. 𝑧𝑑(t) = z (t). 

        𝑆𝑧 = 𝑒𝑧̇ + 𝜆𝑧𝑒𝑧 + 𝑘𝑝 ∫ 𝑒𝑧                           (7) 

where 𝑒𝑧  = 𝑧𝑑  – z is the altitude error, and the integral 

term is added to minimize the steady-state error and the 

fault effect. 

𝑆𝑧̇ = 𝑒𝑧̈ + 𝜆𝑧𝑒𝑧̇ + 𝑘𝑝𝑒𝑧                        (8) 

The stability of the controller can be investigated via 

Lyapunov methods.  In particular, choosing the 

Lyapunov function as V=1/2(𝑆𝑧
𝑇𝑆𝑧) results in a negative 

definite time derivative (𝑉̇ = 𝑆𝑧𝑆𝑧̇<-𝜂|𝑆𝑧| ). Accordingly, 

the control effort 𝑈1 is selected as:  

  𝑈1 = 
𝑚

cos(𝛷)cos (𝜃)
 [g + 𝑧𝑑 ̈ + 𝜆𝑧𝑒𝑧̇ +  𝐾𝑧sign(S) 𝑘𝑝𝑒𝑧]   (9)  

In order to satisfy the reachability condition, i.e. to 

force system trajectories to reach and stay on the sliding 

manifold, S=0 in finite time ( 𝑆𝑧𝑆𝑧̇ <-𝜂 |𝑆𝑧| ), a 

discontinuous term is added to 𝑈1 , where sign(S) is 

defined as: 

sign (S) = {

1         𝑖𝑓      𝑠 > 0
0        𝑖𝑓      𝑠 = 0

−1     𝑖𝑓      𝑠 < 0
                                (10) 

The main drawback of SMC is the chattering effect 

produced by the discontinuous ‘sign(S)’ term in the 

controller. In order to overcome this problem, we may 

replace the sign function with a saturation function.     

Under this modified control, the system is guaranteed to 

reach and stay on the manifold 𝑆𝑧=0. The same steps are 

then followed to derive the other control efforts, i.e. 𝑈2, 

𝑈3 , 𝑈4  and 𝑈𝑥 , 𝑈𝑦 , where 𝑈𝑥  and 𝑈𝑦  are the control 

efforts required for x and y positions. 

Sat(S) = {
𝑠𝑖𝑔𝑛(𝑆)       𝑖𝑓        |𝑆| > 𝜌

(𝑆/𝜌 )        𝑖𝑓        |𝑆| < 𝜌
                     (11) 

In the above, 𝜌 represents a boundary layer around the 

sliding surface ‘S’. The remaining control efforts 

designed on same lines are given as 

 

𝑈2= 
𝐽𝑥

𝑙
[-(𝐽𝑦-𝐽𝑧)𝜃̇𝛹̇+𝐽𝑟⍵𝜃̇+𝛷𝑑̈+𝜆𝛷𝑒𝛷̇+𝐾𝛷sat(S)+𝑘𝑝𝑒𝛷]  

𝑈3= 
𝐽𝑦

𝑙
[-(𝐽𝑥-𝐽𝑥)𝛷̇𝛹̇+𝐽𝑟⍵𝛷̇+𝜃𝑑̈+𝜆𝜃𝑒𝜃̇+𝐾𝜃sat(S)+𝑘𝑝𝑒𝜃]         

𝑈4= 
𝐽𝑧

𝐶𝑑
[-(𝐽𝑥-𝐽𝑦)𝜃̇𝛷̇+𝛹𝑑̈+𝜆𝛹𝑒𝛹̇+𝐾𝛹sat(S)+𝑘𝑝𝑒𝛹]         (12) 

𝑈𝑥= 
𝑚

𝑈1
[𝑥𝑑̈+𝜆𝑥𝑒𝑥̇+𝐾𝑥sat(S) +𝑘𝑝𝑒𝑥]               

𝑈𝑦= 
𝑚

𝑈1
[𝑦𝑑̈+𝜆𝑦𝑒𝑦̇+𝐾𝑦sat(S) +𝑘𝑝𝑒𝑦]               

Once all the control efforts are designed, the desired 

output of each actuator is obtained via the following 

transformation [5]. 

 

   (13) 

 

Where ‘b’ and ‘d’ are the thrust and drag co-efficient 

respectively. 

B. Actuator Faults and Passive Fault Tolerant Control 

SMC is a nonlinear robust controller which is capable 

of stabilizing the control of a quadrotor UAV in the 

presence of external disturbances as far as the system is 

operating under normal conditions. The question which 

arises here is that what would happen if a fault occurs? 

Two of the most common faults that occur on these types 

of nonlinear dynamical systems are the sensor faults and 

actuator faults. The type of fault addressed in this paper is 

the Loss of Effectiveness (LOE) in the thrust of actuators, 

which is a common type of actuator fault. Such faults 

may occur due to actuator wear out, mainly the bearing, 

or the damage to a rotor in the case of collision. 

The fault can be modelled in the system as 

 𝐹𝑖𝑓 = 𝜂 ∗ 𝑏 ∗ ⍵2                                            (17) 

 𝑇𝑖𝑓 = 𝜂 ∗ 𝑘 ∗ ⍵2                                            (18) 

 

Figure 2. Block Diagram 

Here i=1-4, while ‘b’ and ‘k’ are the thrust and drag 

coefficients, respectively. The state-space model assumes 

the following form: 

 𝐹𝑓 =△ 𝐹                                                        (19) 

where  

△ = diag [𝑘1,𝑘2,𝑘3,𝑘4]   , 0 ≤ 𝑘𝑖 ≤ 1 

In our work, the inputs are first decomposed into 

individual thrust forces and a fault is injected into them, 

which is then fed into the system model. The following 

block diagram (see Fig. 2) demonstrates the concept of 

FTC strategy. 

IV. DIVIDED STATE FEEDBACK CONTROL 

DSF Control is a novel control technique that 

comprises of control with feedback delays. Technically, it 

is the establishment of partitioned sampling that yields 
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the proposed feedback. The block diagram above depicts 

a general overview of DSF control, see Fig. 3. Let us 

consider a framework [18] with variable time delays 

 

𝑥̇(𝑡) = ∑ 𝐴𝑖𝑥(𝑡 − 𝜏𝑖
𝑠(𝑡) + 𝐵𝑢𝑛

𝑔=0                  (20) 

 

Where 𝑥 ∈ 𝑅𝑑 , 𝜏𝑖
𝑠(𝑡) ∈  [0, 𝜏𝑠] , 𝑔 = 1, 2, … . , 𝑛  are the 

delays present in the system. The parameters defined for 

stability criterion [18] are 

𝑏 = 2𝑓̅‖𝑃‖, 𝑓̅ = 𝜓𝜏, 𝐿𝐹 = ∑ ‖𝐴𝑖‖ + 𝑑‖𝐵𝐾‖𝑛
𝑖=0  

𝜓 = ∑  𝑛
𝑖=1 ∑ ‖𝐴𝑖𝐴𝑝‖𝑛

𝑝=0 + 2𝑑‖𝐵𝐾‖ ∑ ‖𝐴𝑖‖
𝑛
𝑖=1 +

𝑑‖𝐵𝐾‖‖𝐴0‖ + 𝑑2‖𝐵𝐾‖2                                           (21) 

 

Figure 3. DSF control scheme 

A. Control Law  

The DSFC law for (18) is defined as: 

𝑢(𝑡) = 𝐾 ∑ 𝐾𝑘(𝑡)𝑥(𝑡 − 𝜏𝑘
𝑐(𝑡))𝑑

𝑘=1                 (22) 

The stability of the closed-loop system is determined 

via the following result [18]. 

Corollary [18]: Given a deterministic delayed system 

(20), design the DSFC law as (22), if the upper headed τ 

for the time delays, with 0 ≤ 𝜏 < (
1

2𝜃
) is sufficiently little 

to such an extent that 𝑐 > 0 , where 𝜃 = 2𝐿𝐹 , and the 

lattice P is sure answer for the Riccati-Ito network [18], 

with 𝐹𝑗 = 0, 𝑗 = 1,2, … . , 𝑟 then the harmony x=0 (20) is 

globally asymptotically stable in mean square. 

Time delays generally lead to oscillations, however, 

DSF control defines bounds on the state feedback delays 

such that the system delivers an improved stabilization 

and transient state response [18]. 

TABLE I. DSF CONTROL TIME DELAYS 

States Optimal Delays (sec) Inferior Delays (sec) 

x-position 0.25 > 0.25 

y-position 0.35 > 0.3 

Altitude 0.1 > 0.1 

Roll angle 0.045 > 0.045 

Pitch angle 0.045 >0.045 

Yaw angle 0.005 > 0.005 

x-position rate 0.01 > 0.01 

y-position rate 0.01 > 0.01 

Altitude rate 0.01 > 0.01 

Roll rate 0 > 0 

Pitch rate 0 > 0 

Yaw rate 0 > 0 

A detailed mathematical procedure for computation of 
bounds on time delays is presented in [18], [19].  Since 
our system and control are nonlinear, we have determined 
the values of time delays on the basis of simulation 

results. Table 1 above shows the range of time delays 
incorporated in our design. 

The DSF Control problem can be viewed as an 
optimality problem as investigation shows an initial 
improvement, followed by deterioration of performance 
with an increase in time delays. We have found the 
optimum values of time delays for improved results. The 
DSF control thus improves the stability and transient 
response of the system, by making use of delays in the 
feedback path. The bounds on the values of the delays 
satisfy the stability criteria [18]. 

B. Computer Simulations 

We present computer simulation results to illustrate the 
viability of our hybrid control design. Fig. 4 demonstrates 
the trajectory comparisons when the system is required to 
track a position of {10m, 10m} along the x and y 
directions, respectively. The figure shows a comparison 
between the results generated by applying a conventional 
passive fault-tolerant SMC and passive fault-tolerant 
SMC integrated with the DSF Control, see Fig. 4. The 
simulation results clearly demonstrate that the DSF 
control integrated with passive fault-tolerant SMC 
delivered an improved response as compared to the case 
without DSF control. The DSF control has its potential 
incentive for speeding up the response of systems [18] 
and has outperformed the conventional passive fault-
tolerant sliding mode control. Fig. 5 shows the control 
efforts required for the accomplishment of the task. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. Comparison of DSF Control with Passive FTC based on SMC: 

(a) Roll Angle; (b) Pitch Angle; (c) X-Displacement; (d) Y-

Displacement 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. (a) Control Effort U1; (b) Control Effort U2; (c) Control 

Effort U3; (d) Control Effort U4 

V. CONCLUSION 

This paper considered the fault-tolerant control of a 

nonlinear model of quadrotor UAV in the presence of 

control and/or sensory delays. An SMC provided good 

tracking performance under actuator fault conditions. In 

particular, we implemented a passive FTC that was 

designed for a pre-defined set of actuator faults. The FTC 

performance was observed to deteriorate in the presence 

of communication and sensory delays. Finally, a DSF 

control integrated with passive Fault-Tolerant SMC 

demonstrated improved stabilization, robustness and 

transient response in computer simulations. 
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